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Abstract

Reinforcement learning is a promising ap-
proach to learning robotics controllers. It has
recently been shown that algorithms based on
finite-difference estimates of the policy gradi-
ent are competitive with algorithms based on
the policy gradient theorem. We propose a
theoretical framework for understanding this
phenomenon. Our key insight is that many
dynamical systems (especially those of inter-
est in robotics control tasks) are nearly de-
terministic—i.e., they can be modeled as a
deterministic system with a small stochastic
perturbation. We show that for such systems,
finite-difference estimates of the policy gra-
dient can have substantially lower variance
than estimates based on the policy gradi-
ent theorem. Finally, we empirically evaluate
our insights in an experiment on the inverted
pendulum.

1 Introduction

The policy gradient is the workhorse of modern rein-
forcement learning. In particular, most state-of-the-
art reinforcement learning algorithms aim to learn a
control policy πθ by estimating the policy gradient—
i.e., the gradient ∇θJ(θ) of the expected cumulative
reward J(θ) with respect to the parameters θ of the
control policy—in one of two ways: (i) numerically,
e.g., using a finite-difference approximation (Kober
et al., 2013; Mania et al., 2018), or (ii) by using the
policy gradient theorem (Sutton et al., 2000) to con-
struct estimates (Silver et al., 2014; Schulman et al.,
2015a,b, 2017). However, there has been little work
on theoretically understanding the tradeoffs between
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these two approaches, and our work aims to help fill
this gap.

We are interested in applications to robotics con-
trol, which typically have continuous state and action
spaces (Collins et al., 2005; Abbeel et al., 2007; Levine
et al., 2016). For example, reinforcement learning can
be used to learn controllers when the dynamics are un-
known (Abbeel et al., 2007; Ross and Bagnell, 2012;
Akametalu et al., 2014; Berkenkamp et al., 2017; Jo-
hannink et al., 2018). Understanding sample complex-
ity is especially important in this application, since
the goal is for robots to be able to learn based on
real world experience, which can be very costly to ob-
tain. Furthermore, having a theoretical understanding
of sample complexity is important for developing safe
reinforcement learning algorithms (Akametalu et al.,
2014; Berkenkamp et al., 2017; Dean et al., 2018b).

We argue that near determinism is an important char-
acteristic of dynamical systems relevant to robotics.
More precisely, we study settings where the noise
in the dynamics is “small” (i.e., sub-Gaussian with
small constant). This setting captures robotics tasks
such as grasping (Andrychowicz et al., 2018), quad-
copters (Akametalu et al., 2014), walking (Collins
et al., 2005), and driving (Montemerlo et al., 2008),
where the dynamics are primarily deterministic but
include small perturbations such as wind, friction, or
slippage. We discuss this claim in detail below.

Main results. In the context of near determinism, we
analyze the sample complexity of various algorithms
for estimating the policy gradient ∇θJ(θ). We study
three algorithms: (i) an algorithm based on finite-
differences, (ii) an algorithm based on the policy gra-
dient theorem, and (iii) a model-based algorithm (i.e.,
it knows the system dynamics) that uses backpropa-
gation to estimate the policy gradient. The model-
based algorithm represents the best convergence rate
we can hope to achieve using only random samples
of the noise. We give details on these algorithms in
Section 3.

Our key parameter of interest is the sub-Gaussian pa-
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rameter σζ of the system noise ζ, which is small for
nearly deterministic systems. Here, we also consider
dependences on the estimation error ε and the dimen-
sion dΘ of the parameter space; we state theorems giv-
ing dependences on all parameters in Section 4. We
prove the following bounds on the sample complexity
n (i.e., the number of samples needed to get at most ε
error with probability at least 1− δ):

• For the model-based estimate, n = Θ̃(σ2
ζ/ε

2).

• For the finite-differences estimate, n =
Θ̃(σ2

ζdΘ/ε
4).

• For the estimate based on the policy gradient the-
orem, n = Õ(1/ε2) and n = Ω̃(1/ε).

Our key finding is that while both the model-based and
finite-difference estimates become small as σζ becomes
small, the estimate based on the policy gradient theo-
rem does not. Thus, for nearly deterministic dynam-
ical systems, finite-difference algorithms perform sig-
nificantly better. However, this improvement comes at
a price—n depends on dΘ, and furthermore quadrati-
cally more samples are needed to get to the same es-
timation error.

Finally, we focus on how many samples are needed
to estimate the policy gradient on a single step. This
understanding is already useful for applications such as
safe reinforcement learning. Nevertheless, we discuss
how our results connect to the problem of optimizing
J(θ) in Section 4.

Motivation for near determinism. A common
approach in robotics is to model the robot dynam-
ics as deterministic (Levinson et al., 2011; Kuinder-
sma et al., 2016). To account for stochasticity, ei-
ther a stabilizing controller such as a PID controller
is used (Levinson et al., 2011), or the robot’s trajec-
tory is replanned at every step (Kwon et al., 1983;
Kuindersma et al., 2016). An alternative approach is
to assume that the dynamics are deterministic plus
a bounded perturbation at each step, and then use
robust control (Akametalu et al., 2014). Both ap-
proaches implicitly assume that the deterministic por-
tion of the dynamics are a good approximation of the
full dynamics. In general, most systems that have
been successfully studied in reinforcement learning
are nearly deterministic, including Atari games (Mnih
et al., 2015), MuJoCo benchmarks (Todorov et al.,
2012; Levine and Koltun, 2013), and simulated grasp-
ing tasks (Andrychowicz et al., 2018).

More importantly, we believe that it will be challeng-
ing to increase the sample efficiency of reinforcement
learning in systems where the noise is high. Indeed,
our analysis shows that noise can be greatly ampli-
fied by the dynamics, so if the noise is large, we be-

lieve there is very little hope for sample-efficient re-
inforcement learning. In these settings, we may need
to rely on techniques such as transfer learning (Taylor
and Stone, 2009), meta-learning (Finn et al., 2017), or
learning to plan (Tamar et al., 2016) to achieve low
sample complexity.

Related work. The theoretical work in reinforce-
ment learning algorithms has primarily focused on Q-
learning (Watkins and Dayan, 1992; Kearns and Singh,
2002; Kakade et al., 2003; Jin et al., 2018), espe-
cially for Markov decision processes (MDPs) with fi-
nite state and action spaces. There has been some
work on understanding the sample complexity of re-
inforcement learning with function approximation—
e.g., for fitted value iteration (Munos and Szepesvári,
2008), for fitted policy iteration (Antos et al., 2008;
Lazaric et al., 2012; Farahmand et al., 2015, 2016), fit-
ted Q-iteration (Tosatto et al., 2017), and the TD(0)
algorithm (Dalal et al., 2018). For robotics tasks,
where state and action spaces are typically continu-
ous, the most successful approaches are predominantly
based on policy gradient estimation (Collins et al.,
2005; Kober et al., 2013), for which there has been rel-
atively little work. In this direction, (Kakade et al.,
2003) has analyzed the sample complexity of algo-
rithms based on the policy gradient theorem, but they
do not study the dependence of the sample complex-
ity on the magnitude of the system noise. Further-
more, their work assumes finite state and action spaces
and bounded rewards, and they do not consider finite-
difference algorithms.

There has been work characterizing a key design choice
of finite-difference algorithms—i.e., the distribution of
perturbations used to numerically estimate the pol-
icy gradient (Roberts and Tedrake, 2009). They mea-
sure the performance of different choices using the
signal-to-noise ratio. In contrast, our goal is to under-
stand the sample complexity of different algorithms for
nearly deterministic systems.

There has recently been work on understanding the
sample complexity of learning controllers; however,
they focus on linear dynamical systems, and on differ-
ent algorithms—e.g., temporal difference learning (Tu
and Recht, 2018b) or model-based algorithms (Dean
et al., 2018a; Tu and Recht, 2018a). There has also
been work in this setting studying the possibility of
reducing variance by controlling the noise in the dy-
namics (Malik et al., 2019); in the setting we study,
we cannot control the noise.

There has been recent work comparing approaches
based on exploration in the action space (based on the
policy gradient theorem) to exploration in the state
space (based on finite difference methods) (Vemula
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et al., 2019). Our focus on nearly deterministic sys-
tems enables us to obtain qualitatively different in-
sights compared to theirs. In particular, they find that
approaches based on finite differences perform better
for problems with a long time horizon. However, we
analyze a more realistic model, and find that this in-
sight no longer holds. Instead, approaches based on
finite differences outperform approaches based on the
policy gradient theorem for nearly deterministic sys-
tems.

Our analysis differs in three key ways. First, they as-
sume an upper bound J(θ) ≤ Jmax, which is a very
strong assumption. Second, their analysis does not
model stochastic dynamics. Instead, they assume that
J(θ) is deterministic, but they can only obtain obser-
vations J(θ)+ζ, where ζ is i.i.d. noise. In contrast, our
analysis considers both stochastic dynamics, as well as
how noise is propagated through the dynamics. This
distinction substantially complicates our analysis, but
is necessary for us to understand the implications of
near determinism (since we need to understand how
the dynamics can amplify noise). Finally, unlike their
work, we provide lower bounds for our main results.

Connection to optimizing J(θ). Estimating the
policy gradient can be used in conjunction with
stochastic gradient descent to optimize J(θ). There
is a large body of work on understanding the conver-
gence rate of stochastic gradient descent (Robbins and
Monro, 1985; Spall et al., 1992; Bottou and Bousquet,
2008; Moulines and Bach, 2011), of which policy gra-
dient algorithms are a special case. Indeed, (Vemula
et al., 2019) uses these techniques to bound the com-
plexity of optimizing J(θ).

There are several reasons why we focus on understand-
ing the sample complexity of a single gradient step
rather than the sample complexity of optimization.
First, they rely on the strong assumption that J(θ) is
bounded—i.e., J(θ) ≤ Jmax for some Jmax ∈ R+. Sec-
ond, it would be much more difficult to derive lower
bounds on optimization—existing lower bounds are for
the setting where the objective f coming from a very
general function family, and these bounds may not ap-
ply when f is restricted to be the objective of a rein-
forcement learning problem. In contrast, for sample
complexity, we derive matching (or almost matching)
upper and lower bounds. Third, the sample complex-
ity of estimating ∇θJ(θ) is of intrinsic interest—for
example, it is an important prerequisite for safe rein-
forcement learning algorithms (Akametalu et al., 2014;
Berkenkamp et al., 2017; Dean et al., 2018b). Finally,
focusing on sample complexity simplifies our key in-
sight. In particular, consider the the completely de-
terministic setting—optimizing a deterministic func-
tion using gradient descent may still take many steps,

but “estimating” the gradient only requires a single
sample.

Additionally, we note that sample complexity is di-
rectly related to the complexity of optimizing J(θ). In
particular, the bounds in Vemula et al. (2019) all de-
pend directly on the variance σ2 of the observations
J(θ) + ζ. Our proof bounds the sample complexity of
estimating ∇J(θ) by bounding the sub-Gaussian pa-
rameter of J(θ), which is an upper bound on the vari-
ance of J(θ). Thus, smaller sample complexity trans-
lates to smaller complexity of optimizing J(θ).

Finally, our focus on estimating the gradient does not
address the problem of exploration. In terms of opti-
mization, gradient estimates can be used in conjunc-
tion with gradient descent to efficiently find local min-
ima, whereas exploration is needed to find global min-
ima. Understanding the sample complexity of explo-
ration is an important but orthogonal problem that we
leave to future work.

2 Preliminaries

We consider a dynamical system with states S ⊆ RdS ,
actions A ⊆ RdA , and transitions

st+1 = f(st, at) + ζt where ζt ∼ p(ζ),

where f : S×A→ S is deterministic and ζ ∈ RdS is a
random perturbation. We consider deterministic con-
trol policies πθ : S → A with parameters θ ∈ Θ ⊆ RdΘ .
Except in the case of the model-based policy gradient
algorithm, we assume that both f and p are unknown.
We separate f from p since we are interested in set-
tings where ζ is small. Also, we that assume ζt is
independent of st and at. This assumption enables us
to substantially simplify the model-based policy gra-
dient (since we avoid taking a derivatives of p), and it
also simplifies our analyses of other algorithms.

We are interested in controlling the system over a finite
horizon T ∈ G—given a reward function R : S ×A→
R, the goal is to find the policy πθ that maximizes the
expected cumulative reward

J(θ) = Epθ(α)

[
T−1∑
t=0

R(st, at)

]
,

where pθ(α) is the distribution over rollouts α =
((s0, a0), ..., (sT−1, aT−1)) when using πθ, and where
we assume the initial state s0 ∈ S is deterministic
and known. Note that α is determined by θ and
~ζ = (ζ0, ..., ζT−1), so an expectation over pθ(α) is

equivalent to one over p(~ζ). We are interested in esti-
mating the policy gradient

D(θ) = ∇θJ(θ)
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so we can perform gradient ascent on θ. As usual, let

Q
(t)
θ (s, a) = Ep(ζ)

[
R(s, a) + V

(t+1)
θ (f(s, a) + ζ)

]
V

(t)
θ (s) = Q

(t)
θ (s, πθ(s)),

for t ∈ {0, 1, ..., T − 1}, where V
(T )
θ (s) = 0, denote the

Q function and value function, respectively (Sutton

and Barto, 2018). In particular, J(θ) = V
(0)
θ (s0).

Remark 2.1. Our results straightforwardly extend to
dynamical systems with time varying dynamics and
rewards. Also, we can relax our assumption that the
initial state s0 is deterministic—i.e., to handle an ini-
tial state distribution p0, we can modify the dynamics
on the first step to be s1 = s0 + ζ0, where s0 = 0
and ζ0 ∼ p0. Furthermore, our results can be ex-
tended to the case where the noise ζ appears nonlin-
early in the transitions, as long as it can be reparam-
eterized (Kingma and Welling, 2014)—i.e., the transi-
tions can be written in the form s′ = f(s, ζ, a), where
ζ ∼ p(ζ) i.i.d. for some p(ζ). We require that f is
Lipschitz in ζ. Most kinds of noise considered in prac-
tice can be expressed in this form, though it may not
satisfy the Lipschitz condition. Finally, our results can
be extended to handle Martingale difference noise se-
quences by using the Azuma-Hoeffding inequality in
place of the Hoeffding inequality.

3 Policy Gradient Algorithms

We now describe the policy gradient estimation algo-
rithms that we consider.

Model-based policy gradient. When f is known,
we can estimate the policy gradient as

∇θJ(θ) = Ep(~ζ)[∇θĴ(θ; ~ζ)]

Ĵ(θ; ~ζ) =

T−1∑
t=0

R(st, at).

since a rollout α is determined by ~ζ. In particular, we
have estimator ∇θJ(θ) ≈ D̂MB(θ), where

D̂MB(θ) =
1

n

n∑
i=1

Ĵ(θ; ~ζ(i))

where ~ζ(i) ∼ p(~ζ) i.i.d. for i ∈ [n].

Policy gradient theorem. The policy gradient theo-
rem is formulated for stochastic policies—i.e., πθ(a | s)
is the probability of taking action a in state s. We as-
sume a distribution pξ(ξ) of action perturbations that
does not depend on θ—i.e., at = πθ(st) + ξt, where
ξt ∼ pξ(ξ). Then, we have π̃θ(a | s) = pξ(a − πθ(s)).

The following are the modified Q and value functions:

Q̃
(t)
θ (s, a) = R(s, a) + Ep(ζ)

[
Ṽ

(t+1)
θ (f(s, a) + ζ)

]
Ṽ

(t)
θ (s) = Eπ̃θ(a|s)

[
Q̃

(t)
θ (s, a)

]
,

where Ṽ
(T )
θ (s) = 0 as before. Then, the following is

the policy gradient theorem (Sutton et al., 2000):

Theorem 3.1. Letting p̃θ(α) be the distribution over
rollouts when using π̃θ, we have

∇θJ(θ) = Ep̃θ(α)

[
T−1∑
t=0

Q̃
(t)
θ (st, at)∇θ log π̃θ(at | st)

]
.

The key challenge to using Theorem 3.1 to estimate
∇θJ(θ) is to estimate Q̃(t)(st, at). The simplest ap-
proach is to estimate it using a single rollout (Williams,
1992):

Q̃
(t)
θ (s, a) = Ep̃θ(α)

[
Q̂

(t)
θ (α)

]
Q̂

(t)
θ (α) =

T−1∑
i=t

R(si, ai).

A common technique to reduce variance is to normalize

Q̃
(t)
θ (s, a) by subtracting the value function (Schulman

et al., 2015b). In particular, the advantage function

Ã
(t)
θ (s, a) = Q̃

(t)
θ (s, a)−Ṽ (t)

θ (s) measures the advantage
of using action a instead of using π̃θ in state s at time
t. Then, we have

∇θJ(θ) = Ep̃θ(α)

[
T−1∑
t=0

Ã
(t)
θ (α)∇θ log π̃θ(at | st)

]
.

Unlike Q̃
(t)
θ , we cannot estimate Ã

(t)
θ using a single

rollout. One approach is to estimate f
(t)
φ (s) ≈ Ṽ (t)

θ (s),

and then estimate Ã
(t)
θ using f

(t)
φ . We assume that our

estimate of Ṽ
(t)
θ is exact—in particular, we consider

the following estimator ∇θJ(θ) ≈ D̂PG(θ):

D̂PG(θ) =
1

n

n∑
i=1

T−1∑
t=0

Â
(t)
θ (α(i))∇θ log π̃θ(a

(i)
t | s

(i)
t )

Â
(t)
θ (α) = Q̂

(t)
θ (α)− Ṽ (t)

θ (st),

where α(i) ∼ pθ(α) i.i.d. for each i ∈ [n].

Remark 3.2. A common approach is to use an esti-

mate Q̂
(t)
θ (s, a) of the Q function in place of Q̂

(t)
θ (α).

This approach reduces variance, but may introduce
bias. For instance, for dynamical systems with contin-
uous actions, the deterministic policy gradient (DPG)
algorithm uses this approach Silver et al. (2014). We
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consider the algorithm described above for two rea-
sons. First, our focus is on estimating the policy gradi-
ent, rather than understanding the sample complexity
of Q-learning, which is required to analyze DPG. Sec-
ond, it is hard to prove bounds for DPG since it relies
on the derivative of the Q function, which cannot be
bounded without additional assumptions. For exam-

ple, suppose we train a random forest Q̂
(t)
θ (s, a). Even

if this model achieves achieves good accuracy, its gra-
dient would be zero nearly everywhere since this model
is piecewise constant; thus, it would not be useful in
the context of the DPG algorithm.

Finite-difference policy gradient. We can use
finite-differences to estimate ∇θJ(θ).

Theorem 3.3. For any f : X → R (where X ⊆ Rd)
where ∇f is L∇f -Lipschitz continuous, 1

∇xf(x) =

d∑
k=1

f(x+ λν(k))− f(x− λν(k))

2λ
· ν(k) + ∆

where ν(k) = δk (where δk is the Kronecker delta), and
∆ ∈ R satisfies ‖∆‖ ≤ L∇fdλ.

We give a proof in Appendix E. Then, the finite dif-
ference approximation of the policy gradient is

∇θJ(θ) ≈
dΘ∑
k=1

J(θ + λν(k))− J(θ − λν(k))

2λ
· ν(k).

We can estimate J(θ) using samples ~ζ ∼ p(~ζ), which
yields the estimator ∇θJ(θ) ≈ D̂FD(θ), where

D̂FD(θ) =

dΘ∑
k=1

[ 1
n

∑n
i=1 Ĵ(θ + λν(k); ~ζ(k,i))

2λ

−
1
n

∑n
j=1 Ĵ(θ − λν(k); ~η(k,j))

2λ

]
· ν(k)

where ~ζ(k,i), ~η(k,j) ∼ p(~ζ) i.i.d. for k ∈ [m] and
i, j ∈ [n]. Note that we use separate samples ζ(k,i)

and η(k,j) to estimate J(θ + λν(k)) and J(θ − λν(k)),
respectively. If we are using a simulator, then we can
reduce variance by using the same samples to estimate
both terms.

Remark 3.4. Typically, rather than choose a fixed
set of basis vectors ν(1), ..., ν(k), finite-difference algo-
rithms choose random vectors from a spherically sym-
metric distribution—e.g., ν ∼ N (0, σ2Idθ ) (Spall et al.,
1992; Mania et al., 2018). Our choice of a fixed basis
simplifies our analysis.

1We assume the L2 norm throughout.

4 Main Results

Sample complexity. Recall that the policy gradi-
ent ∇θJ(θ) must be estimated from sampled rollouts
ζ ∼ pθ(ζ). Our goal is to understand the tradeoffs
in sample complexity of estimating ∇θJ(θ) between
various different reinforcement learning algorithms.

Definition 4.1. Let X be a random vector, and let

µ̂
(n)
X = n−1

∑n
i=1 x

(i), where x(1), ..., x(n) ∼ pX(x)
i.i.d. The sample complexity of nX(ε, δ) of X is the
smallest n ∈ N such that

Prx(1),...,x(n)∼pX(x)

[
‖µ̂(n)

X ‖ ≥ ε
]
≤ δ.

We are interested in the sample complexity nD̂ of

D̂(ζ) −∇θJ(θ), where D̂(ζ) is an estimate of ∇θJ(θ)
using a single rollout ζ ∼ pθ(ζ).

Assumptions. We let fθ(s) = f(s, πθ(s)) and
Rθ(s) = R(s, πθ(s)). Similarly, for a stochastic pol-
icy πθ(s) + ξ (where ξ ∼ p(ξ)), we let f̃θ(s, ξ) =
f(s, πθ(s) + ξ) and R̃θ(s) = Ep(ξ)[R(s, πθ(s) + ξ)].
Next, to ensure convergence, we make regularity as-
sumptions about the dynamics and our control policy;
see Appendix F & G for definitions.

Assumption 4.2. We assume that f , R, πθ, fθ, f̃θ,
Rθ and R̃θ are Lipschitz continuous and are twice con-
tinuously differentiable with Lipschitz continuous first
derivative.

Remark 4.3. This standard assumption is needed
to ensure that we can estimate the gradient using fi-
nite differences. It is somewhat strong—e.g., it rules
out commonly used quadratic rewards. In practice,
the state space is often compact, in which case the
Lipschitz continuity assumption becomes redundant.
However, we cannot handle discontinuous rewards or
dynamics (including piecewise constant rewards). In
these cases, the policy gradient may diverge near the
discontinuities; thus, the sample complexity of esti-
mating this gradient may diverge as well. In principle,
we could handle discontinuities as long as the policy
visits these discontinuities with zero probability.

Finally, for any function h, we let Lh denote its Lips-
chitz constant and L̄h = max{L∇h, Lh, 1}.
Assumption 4.4. We assume that p(ζ) is σζ-
subgaussian.

This assumption is required for proving
concentration—e.g., it is typically assumed in
the context of safe reinforcement learning (Akametalu
et al., 2014; Berkenkamp et al., 2017). In practice,
perturbations due to noise are often bounded (which
implies the noise is sub-Gaussian), especially for
our setting of interest—e.g., forces due to wind,
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friction, or slippage have bounded magnituded. We
are interested in settings where σζ is small.

Definition 4.5. A system is nearly deterministic if
σζ � 1.

In particular, we are interested in the dependence of
the sample complexity on σζ .

Main theorems. For the model-based policy gradi-
ent, we have:

Theorem 4.6. For δ ≤ 1/2, the sample complexity of
D̂MB(θ)−∇θJ(θ) satisfies√

nMB(ε, δ) = Õ
(
T 8L̄Rθ L̄

5T
fθ
σζdA/ε

)√
nMB(ε, δ) = Ω̃

(
T L̄T−3

fθ
σζ/ε

)
.

For the policy gradient based on Theorem 3.1:

Theorem 4.7. For the choice pξ(ξ) = N (ξ |
~0, σ2

ζIdA), D̂PG(θ)−∇θJ(θ) has sample complexity√
nPG(ε, δ) = Õ

(
T 6(LR + LR̃θ )L̄fLπL̄

T
f̃θ
d4/ε

)
,

where d = max{dS , dA}, for ε sufficiently small—i.e.,
ε = Ω(T 6(LR + LR̃θ )L̄fLπL̄

T
f̃θ
d4). Next,

√
nPG(ε, δ) ≥

√
nξ

(
ε/L̄T−2

fθ
, δ
)

√
nPG(ε, δ) = Ω̃

(
min

{
L̄
T/2
fθ

/ε1/2, 1/δ1/2
})

.

The first lower bound holds for any pξ(ξ) that is ev-
erywhere differentiable on R and satisfies limξ→±∞ ξ ·
pξ(ξ) = 0, where nξ is the sample complexity of esti-
mating Epξ(ξ)[ξ · ∇ξ log pξ(ξ)] using samples from pξ.
The second lower bound holds for pξ(ξ) = N (0, σ2

ξ ),
for any σξ ∈ R+.

We have shown two lower bounds—one for an arbi-
trary distribution pξ (in terms of a sample complexity
nξ related to pξ), and one for the specific choice where
pξ is Gaussian (as is the case in our upper bound).
Also, note that our upper bound depends on choos-
ing the action noise to have variance σζ . In principle,
the first lower bound holds even if pξ depends on the
problem parameters; however, then nξ may depend on
these parameters as well. The second lower bound is
independent of the the action noise σξ, so it holds even
if σξ depends on the problem parameters.

Remark 4.8. Note that the upper and lower bounds
have a gap on the order of ε1/2. We believe that this
gap is due to limitations in our analysis. In particular,
our lower bounds depend on a lower bound on the tail
of the χ2

n distribution, which has exponential tails. In
contrast, our other lower bounds depend on Gaussian

tails, which are doubly exponential. Intuitively, since
the χ2

n distribution has a longer tail, it should not have
lower sample complexity.

Remark 4.9. Note that the second lower bound con-
tains a dependence on δ−1/2, which is unusual. How-
ever, this term only has a role if the first term in the
minimum is very large. Furthermore, the first term de-
pends as usual on log(1/δ) (which is not shown since
we omit log factors).

Remark 4.10. Actor-critic approaches reduce vari-
ance by using function approximation to obtain lower

variance estimates of the advantage Ã
(t)
θ (Schulman

et al., 2015b). However, our lower bounds hold even
if the advantage is known exactly. Thus, while actor-
critic approaches can reduce variance, they do not af-
fect our main insight that these estimates remain noisy
for nearly deterministic dynamical systems.

For the finite-difference policy gradient:

Theorem 4.11. The sample complexity of D̂FD(θ)−
∇θJ(θ) satisfies√

nFD(ε, δ) = Õ
(
T 9L̄2

Rθ
L̄5T
fθ
σζd

2
A

√
dΘ/ε

2
)

√
nFD(ε, δ) = Ω̃

(
T L̄

3(T−3)
fθ

σζdΘ/ε
2
)
.

The first bound (i.e., the upper bound) holds for a
choice λ = O(ε/T 5L̄Rθ L̄

4T
fθ
dA). The second bound

(i.e., the lower bound) holds for any λ ∈ R+, ε ≤ 1,
and δ ≤ 1/2,

Note that our upper bound is for the choice λ = O(ε),
but our lower bound holds for arbitrary λ.

Remark 4.12. In an abuse of notation, in Theo-
rem 4.11, we have ignored the fact that nFD must
always be at least 2dΘ; in particular, it does not go
to zero as σζ goes to zero. This discrepancy in The-
orem 4.11 arises because there is an implicit assump-
tion we use when inverting Hoeffding’s inequality that
n ≥ 1—more precisely, Hoeffding’s inequality gives a
bound of the form

Pr[µ̂
(n)
X ≥ ε] ≤ δ,

where µ̂
(n)
X is an estimate of µX = E[X] using n

samples, and δ ≥ e−nε
2/(2σ2). Solving for n yields

n ≥ 2σ2 log(1/δ)/ε2. However, if σ = 0, then δ is not
well defined, so it does not mean we can get an es-
timate of µX using n = 0 samples; instead, we need
to take n = 1. In our proof of Theorem 4.11, we
apply Hoeffding’s inequality 2dΘ times (since we esti-
mate the gradient of each component separately), so
we need n ≥ 2dΘ.

Proof strategy. We give a high-level overview of our
proof strategy, focusing on Theorem 4.6. Our proof
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proceeds in two steps. First, we prove an upper bound

|D̂MB(θ)−∇θJ(θ)| ≤ AE +B, (1)

where E = T−1
∑T−1
t=0 ‖ζt‖ and A,B ∈ R+ do not de-

pend on ~ζ. This step uses induction based on the re-
cursive structure of Vθ. Second, we prove Lemma G.7;
we state a simplified version:

Lemma 4.13. Let X be a σX-sub-Gaussian random
vector over Rd, and let Y be a random vector over Rd′

satisfying ‖Y ‖ ≤ A‖X‖1 +B, where A,B ∈ R+. Then
Y is σY -sub-Gaussian, where σY = Õ(AσXd+B).

Combined with (1), we conclude that D̂MB(θ)−∇θJ(θ)
is sub-Gaussian, from which we can use Hoeffding’s in-
equality (see Lemma G.3) to complete the proof. For
the lower bound, we construct a system where J(θ)
is Gaussian. The proof of Theorem 4.7 follows simi-
larly, except we need to use analogous results for sub-
exponential random variables. In particular, we prove
Lemma H.7, an analog of Lemma G.7. The proof of
Theorem 4.11 also follows similarly, but we need to
account for the bias in the finite-difference estimate of
∇θJ(θ) from Theorem 3.3.

5 Discussion

Dependence on σζ. Both nMB and nFD scale linearly
in σζ . Thus, the corresponding algorithms perform
very well when σζ is small. In contrast, nPG does
not become small when σζ becomes small. Intuitively,
if pξ is wide, then the action noise adds uncertainty

to D̂PG(θ). On the other hand, if pξ is narrow, then
∇θ log π̃θ(a | s) = ∇θ log pξ(a−πθ(s)) becomes large—
in particular, pξ must change rapidly for some values
of ξ, and must have large gradient at such values of ξ.

A key point is that in the first lower bound for nPG

(i.e., for arbitrary pξ), even though we do not know its
explicit dependence on ε, δ, T , and L̄fθ , we know that
it is completely independent of σζ . Thus, regardless of
how pξ is chosen (e.g., even if it chosen based on the
problem parameters), the sample complexity does not
become small as σζ becomes small.

Full determinism (σζ = 0). When σζ = 0, we have
nMB = 1 (i.e., we only need a single sample to estimate
∇θJ(θ)) and nFD = 2dΘ (i.e., we need two samples to
estimate the derivative of each parameter, taking λ
small enough to get ε error). For the case of nPG, our
lower bound in Theorem 4.7 still holds—the dynam-
ical system we use to obtain the lower bound has no
noise in the dynamics. In particular, a large number
of samples are still needed to obtain good estimates
(i.e., possibly exponential in T ).

Dependence on ε. Both nMB and nPG depend

quadratically on ε (ignoring the gap between the upper
and lower bounds for nPG). In contrast, nFD depends
quartically on ε. This gap arises because according to
Theorem 3.3, the finite-differences error of D̂FD(θ) (as-
suming there is no noise) depends linearly on λ. Thus,
we must choose λ = O(ε) to obtain error at most ε.
If the dynamical system and control policy are both
linear, then this error goes away, so the dependence
on ε becomes quadratic.

Dependence on dΘ. Only nFD depends on dΘ—
whereas the other two algorithms make use of the fact
that we can compute ∇θπθ, the finite-difference ap-
proximation ignores this ability.

Dependence on T . All of the sample complexities
depend exponentially on T . As we show in our lower
bounds, this dependence is unavoidable—it arises from
the fact that the dynamics cause the state (and there-
fore the rewards) to grow exponentially large in T . A
common assumption made in prior work is that the re-
wards are bounded uniformly by Rmax ∈ R+ (Kearns
and Singh, 2002; Kakade et al., 2003). Intuitively, our
results indicate that without stronger assumptions,
Rmax may be exponentially large. In practice, rewards
for continuous control tasks are often quadratic, and
can indeed be exponentially in magnitude.

An important aspect is that estimation is substan-
tially easier when the current policy is good. In our
bounds, the base of the exponential dependence is al-
ways L̄fθ . If the initial policy πθ provides relatively
stable control, then we may expect that Lfθ ≤ 1—i.e.,
the states remain bounded in magnitude. Then, we
have L̄fθ = 1, so our bounds no longer depend expo-
nentially on T . This insight suggests the importance
of good initialization for fast estimation.

Indeed, policy gradient estimators can have high vari-
ance in practice. As an example, consider the cart-pole
problem with continuous action space, with random
initial state and where the reward function is the neg-
ative distance to origin. We empirically estimated that
the MSE of the model-based policy gradient estimator
using n = 1 on a randomly initialized policy for this
benchmark is 3.5 × 107. This error is substantially
reduced when the policy is stable—for a trained cart-
pole policy, we estimate that the MSE of the model-
based policy gradient estimator is just 5.2× 10−2.

6 Experiments

We empirically evaluated the effect of σζ on the per-
formance of the different algorithms.

Dynamical system. We use the inverted pendu-
lum (Tedrake, 2018) (specifically, using the dynamics
from OpenAI Gym (Brockman et al., 2016)), which
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Figure 1: The cumulative expected reward J(θ) as a function of the number of gradient steps i ∈ {1, 2, ..., 1000}.
The black, purple, blue, green, orange, and red curves correspond to σζ = {10−6, 10−5, 10−4, 10−3, 10−2, 10−1},
respectively. The x-axis is the number of gradient steps taken (or equivalently, the number of rollouts), and the
y-axis is −J(θ).

has state space S = R2 (i.e., angle ϑ and angular ve-
locity ω) and actions A = R (i.e., applied torque).
Letting f be the (deterministic) pendulum dynamics,
we consider the system st+1 = f(st, at) + ζt, where
ζt ∼ N (0, σ2

ζ ) i.i.d. We use the rewards

R((ϑ, ω), a) = −(wϑ · (ϑ− ϑ0)2 + wω · ω2 + wa · a2),

where ϑ0 is the angle corresponding to the upright
position, and wϑ = 1, wω = 10−1, and wa = 10−2.
Our goal is to control the system over a horizon of
T = 50 steps, from a fixed start state s0 = (ϑ′0, 0),
where ϑ′0 = 0.05. For the control policy, we used a
neural network πθ with a single hidden layer with 100
neurons, ReLU activations, and linear outputs. As
usual, we randomly initialize the weights; to reduce
variance, we initialized the policy to have a reasonably
high reward by running our model-based algorithm un-
til J(θ) ≥ −100.

Algorithms. We use stochastic gradient descent in
conjunction with each of the three estimation algo-
rithms. On each gradient step, we use a single sample
to estimate the gradient, and we take 1000 gradient
steps. We modify the finite-difference algorithm to
use a single random sample ν ∼ Uniform(SdΘ−1) (i.e.,
the uniform distribution on the unit sphere in RdΘ),
rather than summing over the dΘ basis vectors ν(k).
This choice may improve the dependence of the sam-
ple complexity on dΘ; however, it should not affect
dependence on σζ , which is our parameter of interest.

For the algorithm based on the policy gradient theo-
rem, we use action noise ξ ∼ N (0, σξIdA). For each
choice of σζ , we used cross-validation to identify the
optimal hyperparameters: the learning rate υ (for all
algorithms), the parameter λ (for the finite-differences
algorithm), and the action noise σξ (for the algorithm
based on the policy gradient theorem).

Results. Average the results of each algorithm
over 20 runs; the algorithms have very high vari-
ance, so we discard runs that do not converge. In

Figure 1, we show the learning curves for σζ ∈
{10−6, 10−5, 10−4, 10−3, 10−2, 10−1} (i.e., J(θ) as a
function of the number of gradient steps). The darker
colors correspond to smaller noise. We show enlarged
versions of these plots in Appendix I.

Note that unlike the other two algorithms, the finite-
difference algorithm actually uses 2000 sampled roll-
outs (since it uses two per gradient step). However,
this detail does not affect our insights regarding the
relative convergence rate of different algorithms for dif-
ferent σζ .

Our key finding is that the learning curves for the
model-based and finite-differences are ordered based
on the choice of σζ—i.e., the curves tend to converge
more quickly for smaller choices of σζ . This effect is
most apparent in the curves for the finite-differences
algorithms, where curves for smaller σζ (black and
blue) converge much faster than those for larger σζ
(red and orange). In contrast, the learning curves
for the policy gradient based algorithm do not have
strong dependence on σζ . For example, the fastest
curve to converge (at least initially) for the policy gra-
dient based algorithm is for our second-largest choice
σζ = 10−2 (orange), whereas the slowest to converge
is for σζ = 10−4 (blue). These results mirror our the-
oretical insights.

Finally, as expected, the model-based algorithm con-
verges most quickly, followed by the finite-differences
and policy gradient theorem based algorithms.

7 Conclusion

We have analyzed the sample complexity of algorithms
for estimating the policy gradient for nearly determin-
istic dynamical systems. Future work includes lever-
aging these results in safe reinforcement learning algo-
rithms, and understanding the sample complexity of
optimizing J(θ).
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Regularized policy iteration with nonparametric
function spaces. JMLR, 2016.

Chelsea Finn, Pieter Abbeel, and Sergey Levine.
Model-agnostic meta-learning for fast adaptation of
deep networks. In ICML, 2017.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and
Michael I Jordan. Is q-learning provably efficient?
In Advances in Neural Information Processing Sys-
tems, pages 4868–4878, 2018.

Tobias Johannink, Shikhar Bahl, Ashvin Nair,
Jianlan Luo, Avinash Kumar, Matthias Loskyll,
Juan Aparicio Ojea, Eugen Solowjow, and Sergey
Levine. Residual reinforcement learning for robot
control. arXiv preprint arXiv:1812.03201, 2018.

Sham Machandranath Kakade et al. On the sample
complexity of reinforcement learning. PhD thesis,
University of London London, England, 2003.

Michael Kearns and Satinder Singh. Near-optimal re-
inforcement learning in polynomial time. Machine
learning, 49(2-3):209–232, 2002.

Diederik P Kingma and Max Welling. Auto-encoding
variational bayes. In ICLR, 2014.

Jens Kober, J Andrew Bagnell, and Jan Peters. Rein-
forcement learning in robotics: A survey. The Inter-
national Journal of Robotics Research, 32(11):1238–
1274, 2013.

Scott Kuindersma, Robin Deits, Maurice Fallon,
Andrés Valenzuela, Hongkai Dai, Frank Perme-
nter, Twan Koolen, Pat Marion, and Russ Tedrake.
Optimization-based locomotion planning, estima-
tion, and control design for the atlas humanoid
robot. Autonomous Robots, 40(3):429–455, 2016.

W Hi Kwon, AM Bruckstein, and T Kailath. Stabi-
lizing state-feedback design via the moving horizon
method. International Journal of Control, 37(3):
631–643, 1983.

Tor Lattimore and Csaba Szepesvári. Bandit algo-
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A Proof of Theorem 4.6

Preliminaries. Note that the expected cumulative reward is equivalent to

J(θ) = V
(0)
θ (s0)

V
(t)
θ (s) = Rθ(s) + Ep(ζ)

[
V

(t+1)
θ (fθ(s) + ζ)

]
(∀t ∈ {0, 1, ..., T − 1})

V
(T )
θ (s) = 0

and the expected model-based policy gradient is

∇θJ(θ) = ∇θV (0)
θ (s0)

∇θV (t)
θ (s) = ∇θRθ(s) + Ep(ζ)

[
∇θV (t+1)

θ (fθ(s) + ζ) +∇sV (t+1)
θ (fθ(s) + ζ)∇θfθ(s)

]
∇sV (t)

θ (s) = ∇sRθ(s) + Ep(ζ)
[
∇sV (t+1)

θ (fθ(s) + ζ)∇sfθ(s)
]

∇θV (T )
θ (s) = ∇sV (T )

θ (s) = 0.

Similarly, given a sample ~ζ ∼ p(~ζ), the stochastic approximation of the expected cumulative reward is

Ĵ(θ; ~ζ) = V̂
(0)
θ (s0; ~ζ)

V̂
(t)
θ (s; ~ζ) = Rθ(s) + V̂

(t+1)
θ (fθ(s) + ζt; ~ζ) (∀t ∈ {0, 1, ..., T − 1})

V̂
(T )
θ (s; ~ζ) = 0

and the stochastic approximation of the model-based policy gradient is

∇θĴ(θ; ~ζ) = ∇θV̂ (0)
θ (s0; ~ζ)

∇θV̂ (t)
θ (s; ~ζ) = ∇θRθ(s) +∇θV̂ (t+1)

θ (fθ(s) + ζt; ~ζ) +∇sV̂ (t+1)
θ (fθ(s) + ζt; ~ζ)∇θfθ(s)

∇sV̂ (t)
θ (s; ~ζ) = ∇sRθ(s) +∇sV̂ (t+1)

θ (fθ(s) + ζt; ~ζ)∇sfθ(s)

∇θV̂ (T )
θ (s; ~ζ) = ∇sV̂ (T )

s (s; ~ζ) = 0.

Bounding the deviation of ∇θV̂ (t)
θ from ∇θV (t)

θ . We claim that for t ∈ {0, 1, ..., T}, we have

‖∇θV̂ (t)
θ (s; ~ζ)−∇θV (t)

θ (s)‖ ≤ B(t)
0 (~ζ)

‖∇sV̂ (t)
θ (s; ~ζ)−∇sV (t)

θ (s)‖ ≤ B(t)
1 (~ζ)

for all θ ∈ Θ and s ∈ S, where

B
(t)
0 (~ζ) =

T−1∑
i=t

LfθB
(i+1)
1 (~ζ) + L

(i+1)
∇V (Lfθ + 1)(‖ζi‖+ σζ

√
dS)

B
(t)
1 (~ζ) =

T−1∑
i=t

L
(i+1)
∇V Li−t+1

fθ
(‖ζi‖+ σζ

√
dS)

B
(T )
0 (~ζ) = B

(T )
1 (~ζ) = 0,
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where L
(t)
∇V is a Lipschitz constant for ∇V (t)

θ . The base case t = T follows trivially. Note that σζ
√
dS ≥√

Ep(ζ)[‖ζ‖2] ≥ Ep(ζ)[‖ζ‖]. Then, for t ∈ {0, 1, ..., T − 1}, we have

‖∇θV̂ (t)
θ (s; ~ζ)−∇θV (t)

θ (s)‖ ≤
∥∥∥∇θV̂ (t+1)

θ (fθ(s) + ζt; ~ζ)− Ep(ζ)
[
∇θV (t+1)

θ (fθ(s) + ζ)
]∥∥∥

+ Lfθ

∥∥∥∇sV̂ (t+1)
θ (fθ(s) + ζt; ~ζ)− Ep(ζ)

[
∇sV (t+1)

θ (fθ(s) + ζ)
]∥∥∥

≤
∥∥∥∇θV̂ (t+1)

θ (fθ(s) + ζt; ~ζ)−∇θV (t+1)
θ (fθ(s) + ζt)

∥∥∥
+ Ep(ζ)

[∥∥∥∇θV (t+1)
θ (fθ(s) + ζt)−∇θV (t+1)

θ (fθ(s) + ζ)
∥∥∥]

+ Lfθ

∥∥∥∇sV̂ (t+1)
θ (fθ(s) + ζt; ~ζ)−∇sV (t+1)

θ (fθ(s) + ζt)
∥∥∥

+ LfθEp(ζ)
[∥∥∥∇sV (t+1)

θ (fθ(s) + ζt)−∇sV (t+1)
θ (fθ(s) + ζ)

∥∥∥]
≤B(t+1)

0 (~ζ) + L
(t+1)
∇V (‖ζt‖+ σζ

√
dS) + LfθB

(t+1)
1 (~ζ) + LfθL

(t+1)
∇V (‖ζt‖+ σζ

√
dS)

=B
(t+1)
0 (~ζ) + LfθB

(t+1)
1 (~ζ) + L

(t+1)
∇V (Lfθ + 1)(‖ζt‖+ σζ

√
dS)

=B
(t)
0 (~ζ).

Similarly, we have

‖∇sV̂ (t)
θ (s; ~ζ)−∇sV (t)

θ (s)‖ ≤Lfθ
∥∥∥∇sV̂ (t+1)

θ (fθ(s) + ζt; ~ζ)− Ep(ζ)
[
∇sV (t+1)

θ (fθ(s) + ζ)
]∥∥∥

≤Lfθ
∥∥∥∇sV̂ (t+1)

θ (fθ(s) + ζt; ~ζ)−∇sV (t+1)
θ (fθ(s) + ζt)

∥∥∥
+ LfθEp(ζ)

[∥∥∥∇sV (t+1)
θ (fθ(s) + ζt)−∇sV (t+1)

θ (fθ(s) + ζ)
∥∥∥]

≤Lfθ
(
B

(t+1)
1 (~ζ) + L

(t+1)
∇V (‖ζt‖+ σζ

√
dS)
)

=B
(t)
1 (~ζ).

The claim follows.

Bounding the deviation of ∇θĴ from ∇θJ . We claim that

‖∇θĴ(θ; ~ζ)−∇θJ(θ)‖ ≤ 132T 7L̄Rθ L̄
5T
fθ

(E + σζ
√
dS),

where E = T−1
∑T−1
t=0 ‖ζt‖. To this end, letting L∇V = arg maxt∈{0,1,...,T} L

(t)
∇V , note that

B
(t)
1 ≤ TL∇V L̄

T−1
fθ

(E + σζ
√
dS)

for t ∈ {1, 2, ..., T}, so

‖∇θĴ(θ; ~ζ)−∇θJ(θ)‖ ≤ B(0)
0 (~ζ) =

T−1∑
i=0

LfθB
(i+1)
1 (~ζ) + L∇V (Lfθ + 1)(‖ζi‖+ σζ

√
dS)

≤ T 2L∇V L̄
T
fθ

(E + σζ
√
dS) + TL∇V (Lfθ + 1)(E + σζ

√
dS)

≤ 3T 2L∇V L̄
T
fθ

(E + σζ
√
dS)

≤ 132T 7L̄Rθ L̄
5T
fθ

(E + σζ
√
dS),

where the last step follows from our bound on L
(t)
∇V in Lemma D.2.
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Upper bound on sample complexity of ∇θĴ − ∇θJ . Note that E ≤ ‖~ζ‖1, where we think of ~ζ as the

length TdS concatenation of the vectors ζ0, ζ1, ..., ζT−1, so ~ζ is σζ-sub-Gaussian. We apply Lemma G.7 with

Y = ∇θĴ(θ; ~ζ)−∇θJ(θ)

X = E

A = 132T 7L̄Rθ L̄
5T
fθ

B = Aσζ
√
dS .

Thus, Y is σMB-sub-Gaussian, where

σMB = max{10AσζTdS log(TdS), 5Aσζ
√
dS}

= 10AσζTdS log(TdS)

≤ 1320T 8L̄Rθ L̄
5T
fθ
σζdS log(TdS).

Thus, by Lemma G.6, the sample complexity of ∇θĴ(θ)−∇θJ(θ) is

√
nMB(ε, δ) =

σMB

√
2 log(2dS/δ)

ε

= O

(
T 8L̄Rθ L̄

5T
fθ
σζdS log(T ) log(dS)3/2 log(1/δ)1/2

ε

)
.

The claim follows.

Lower bound on sample complexity of ∇θĴ −∇θJ . Consider a linear dynamical system with S = A = R,
time-invariant deterministic transitions f(s, a) = βs+ a (where β ∈ R), time-varying noise

pt(ζ) =

{
N (ζ | 0, σ2

ζ ) if t = 0

δ(0) otherwise,

where σζ ∈ R, initial state s0 = 0, time-varying rewards

Rt(s, a) =

{
s if t = T − 1

0 otherwise,

control policy class πθ(s) = θs, and current parameters θ = 0. Note that

st =

{
0 if t = 0

(β + θ)t−1ζ otherwise,

where ζ = ζ0 is the noise on the first step. Thus, we have

Ĵ(θ; ζ) = sT−1 = (β + θ)T−2ζ,

so

∇θĴ(θ; ζ) = (T − 2)(β + θ)T−3ζ.

Also, note that

∇θJ(θ) = Ep(ζ)[∇θĴ(0; ζ)] = Ep(ζ)[(T − 2)(β + θ)T−3ζ] = 0.

Next, note that for n i.i.d. samples ζ(1), ..., ζ(n) ∼ N (0, σ2
ζ ), we have

D̂MB(0)−∇θJ(0) =
1

n

n∑
i=1

(T − 2)βT−3ζ(i) ∼ N
(

0,
σ2

MB

n

)
,
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where

σMB = σ2
ζ (T − 2)2β2(T−3).

Thus, by Lemma G.8, for

n <
σ2

MB

(
log
(√

e
2π

)
+ log(1/δ)

)
ε2

,

we have

Pr
[
|D̂MB(0)−∇θJ(0)| ≥ ε

]
= Prx∼N (0,σ2

MB/n) [|x| ≥ ε] ≥
√

e

2π
· e−nε

2/σ2
MB > δ.

Thus, the sample complexity of D̂MB(0)−∇θJ(0) satisfies

nMB(ε, δ) ≥
σ2
ζ (T − 2)2β2(T−3) ·

(
log
(√

e
2π

)
+ log(1/δ)

)
ε2

.

Note that the numerator is positive as long as δ ≤ 1/2. The claim follows, as does the theorem statement.

B Proof of Theorem 4.7

Preliminaries. Recall the form of the policy gradient based on Theorem 3.1:

∇θJ(θ) = Ep̃θ(ζ)

[
T−1∑
t=0

Â
(t)
θ (ζ)∇θ log π̃θ(at | st)

]
,

where, for t ∈ {0, 1, ..., T − 1}, we have

Â
(t)
θ (α) = Q̂

(t)
θ (α)− Ṽ (t)

θ (st),

where

Q̂
(t)
θ (α) = R(st, at) + Q̂

(t+1)
θ (α)

Ṽ
(t)
θ (s) = Epξ(ξ),p(ζ)[R̃θ(s) + Ṽ

(t+1)
θ (f̃θ(s, ξ) + ζ)]

Q̂
(T )
θ (α) = Ṽ

(T )
θ (s) = 0.

The stochastic approximation of ∇θJ(θ) for a single sampled rollout α ∼ p̃(α) is

D̂PG(θ;α) =

T−1∑
t=0

Â
(t)
θ (α)∇θ log π̃θ(at | st).

Bounding Q̂
(t)
θ − Ṽ

(t)
θ . We claim that

‖Q̂(t)
θ (ζ)− Ṽ (t)

θ (st)‖ ≤B(t)(ζ),

where

B(t)(ζ) =

T−1∑
i=t

(LR + L
(i+1)

Ṽ
Lf )(‖ξt‖+ σζ

√
d) + L

(i+1)

Ṽ
(‖ζt‖+ σζ

√
d),

where L
(t)

Ṽ
is a Lipschitz constant for Ṽ

(t)
θ . We prove by induction. The base case t = T is trivial. Note

that σζ
√
d ≥

√
Ep(ζ)[‖ζ‖2] ≥ Ep(ζ)[‖ζ‖], and similarly σζ

√
d ≥

√
Epξ(ξ)[‖ξ‖2] ≥ Epξ(ξ)[‖ξ‖]. Then, for t ∈
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{0, 1, ..., T − 1}, we have

‖Q̂(t)
θ (ζ)− Ṽ (t)

θ (st)‖ ≤Epξ(ξ) [‖R(st, πθ(st) + ξt)−R(st, πθ(st) + ξ)‖]

+ ‖Q̂(t+1)
θ (ζ)− Ṽ (t+1)

θ (st+1)‖

+ Epξ(ξ),p(ζ)
[
‖Ṽ (t+1)

θ (f(st, πθ(st) + ξt) + ζt)− Ṽ (t+1)
θ (f(st, πθ(st) + ξ) + ζ)‖

]
≤LR(‖ξt‖+ σζ

√
d) +B(t+1)(ζ) + L

(t+1)

Ṽ
(‖ζt‖+ σζ

√
d) + L

(t+1)

Ṽ
Lf (‖ξt‖+ σζ

√
d)

=B(t)(ζ).

The claim follows.

Bounding log π̃θ(a | s). We claim that

‖∇θ log π̃θ(a | s)‖ ≤
Lπ
σ2
ζ

· ‖ξ‖,

where ξ = a− πθ(s). Recall that pξ(ξ) = N (~0, σ2
ζIdA). Thus, we have

log π̃θ(a | s) = log pξ(a− πθ(s)) = logN (a− πθ(s) | 0, σ2
ζIdA) = −1

2
log(2πσ2

ζ )− 1

2σ2
ζ

· ‖a− πθ(s)‖2.

Thus, we have

‖∇θ log π̃θ(a | s)‖ =
1

2σ2
ζ

·
∥∥∇θ‖a− πθ(s)‖2∥∥ =

1

σ2
ζ

·
∥∥∇θπθ(s)>(a− πθ(s))

∥∥ ≤ Lπ
σ2
ζ

· ‖ξ‖,

as claimed.

Bounding the deviation of D̂PG from ∇θJ . We claim that

‖D̂PG(θ; ζ)−∇θJ(θ)‖ ≤ 3T 4(LR + LR̃θ )L̄fLπL̄
T
f̃θ
d ·

(
4d+

Ẽ + E + 2σζ
√
d

σ2
ζ

)
,

where LṼ = arg maxt∈{1,...,T} L
(t)

Ṽ
, E = T−1

∑T−1
t=0 ‖ζt‖, and Ẽ = T−1

∑T−1
t=0 ‖ξt‖. First, note that

‖Q̂(t)
θ (ζ)− Ṽ (t)

θ (st)‖ ≤ T
(

(LR + LṼ Lf )(Ẽ + σζ
√
d) + LṼ (E + σζ

√
d)
)

≤ 3T 3(LR + LR̃θ )L̄f L̄
T−1

f̃θ
(Ẽ + E + 2σζ

√
d),

where the last step follows from the bound on L
(t)

Ṽ
in Lemma D.3. Then, we have

‖D̂PG(θ; ζ)‖ =

∥∥∥∥∥
T−1∑
t=0

(Q̂
(t)
θ (ζ)− Ṽ (t)

θ (st))∇θ log π̃θ(at | st)

∥∥∥∥∥
≤
T−1∑
t=0

‖Q̂(t)
θ (ζ)− Ṽ (t)

θ (st)‖ · ‖∇θ log π̃θ(at | st)‖

≤
T−1∑
t=0

3T 3(LR + LR̃θ )L̄f L̄
T
f̃θ

(Ẽ + E + 2σζ
√
d) · Lπ

σ2
ζ

· ‖ξt‖

= 3T 4(LR + LR̃θ )L̄fLπL̄
T
f̃θ
· (E + Ẽ + 2σζ

√
d)Ẽ

σ2
ζ

.

Furthermore, we have

‖∇θJ(θ)‖ ≤ Ep̃θ(ζ)[‖D̂PG(θ; ζ)‖]

≤ Ep̃θ(ζ)

[
3T 4(LR + LR̃θ )L̄fLπL̄

T
f̃θ
· (E + Ẽ + 2σζ

√
d)Ẽ

σ2
ζ

]
= 12T 4(LR + LR̃θ )L̄fLπL̄

T
f̃θ
d,
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where we have used the fact that Ep(~ζ)[E] = T−1
∑T−1
t=0 Ep(ζt)[‖ζt‖] ≤ σζ

√
d, and similarly Epξ(ξ)[Ẽ] =

T−1
∑T−1
t=0 Epξ(ξ)[‖ξt‖] ≤ σζ

√
d. Therefore, we have

‖D̂PG(θ; ζ)−∇θJ(θ)‖ ≤ ‖D̂PG(θ; ζ)‖+ ‖∇θJ(θ)‖ ≤ 3T 4(LR + LR̃θ )L̄fLπL̄
T
f̃θ
d ·

(
4d+

(Ẽ + E + 2σζ
√
d)Ẽ

σ2
ζ

)
,

as claimed.

Upper bound on the sample complexity of D̂PG−∇θJ . We have E′ = (Ẽ+E+2σζ
√
d)Ẽ ≤ ‖φ‖1, where

we think of φ as the T 2(dA + dS + 1)dA values ξt,iξt′,i′ , ζt,jξt′,i′ , and 2σζ
√
dξt′,i′ , for all t, t′ ∈ {0, 1, ..., T − 1},

i, i′ ∈ [dA], and j ∈ [dS ]. Since ξt and ζt are σζ-sub-Gaussian for each t ∈ T , by Lemma H.6, φ is (τ, b)-sub-
exponential, where τ, b = O(dσ2

ζ ). Thus, we can apply Lemma H.7 with

Y = D̂PG(θ; ζ)−∇θJ(θ)

X = E′

A =
3T 4(LR + LR̃θ )L̄fLπL̄

T
f̃θ
d

σ2
ζ

B = 0.

Thus, Y is (τPG, bPG)-sub-exponential, where

τPG, bPG = O(A(τ + b)d log d+B) = O
(
T 6(LR + LR̃θ )L̄fLπL̄

T
f̃θ
d4 log(Td)

)
.

Thus, by Lemma G.6, the sample complexity of D̂PG(θ)−∇θJ(θ) is

√
nPG(ε, δ) =

τPG

√
2 log(2TdA/δ)

ε

= O

(
T 6(LR + LR̃θ )L̄fLπL̄

T
f̃θ
d4 log(T ) log(d)3/2 log(1/δ)1/2

ε

)
,

for all ε ≤ dτ2
PG/bPG. The claim follows.

Lower bound on the sample complexity of D̂PG − ∇θJ . Consider a linear dynamical system with S =
A = R, time-varying deterministic transitions

ft(s, a) =

{
β(s+ a) if s = 0

βs otherwise,

zero noise pt(ζ) = δ(0) (i.e., σζ = 0), initial state s0 = 0, time-varying rewards

Rt(s, a) =

{
s if t = T − 1

0 otherwise,

control policy class πθ(s) = θ, current parameters θ = 0, and action noise pξ. Note that

at = θ + τξξt,

where ξt ∼ pξ(ξ) i.i.d., so

st =

{
0 if t = 0

βt−1(θ + τξξ) otherwise,

where ξ = ξ0 is the action noise on the first step. Note that

Q̂
(t)
θ (ξ) = βT−2(θ + τξξ),
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and

Ṽ
(t)
θ (s) =

{
Epξ(ξ)[βT−2(s+ θ + τξξ)] = 0 if t = 0

βT−t−2s otherwise.

In particular, note that

Q̂
(t)
θ (ξ)− Ṽ (t)

θ (st) =

{
βT−2(θ + τξξ) if t = 0

0 otherwise.

Also, note that ∇θJ(θ) = βT−2. Therefore, we have

∇θ log π̃(a | s) = ∇θ log pξ

(
a− θ
τξ

)
= −

∇ξpξ
(
a−θ
τξ

)
τξ · pξ

(
a−θ
τξ

) = − 1

τξ
· ∇ξ log pξ

(
a− θ
τξ

)
.

Thus, for i.i.d. samples ξ(1), ..., ξ(n) ∼ pξ(ξ), we have

D̂PG(0)−∇θJ(0) =
1

n

n∑
i=1

(
Q̂

(t)
θ (ξ(i))− Ṽ (t)

θ (s
(i)
t )
)
·
(
−∇θ log π̃(a

(i)
t | s

(i)
t )
)
− βT−2

=
1

n

n∑
i=1

βT−2τξξ
(i) ·

(
− 1

τξ
· ∇ξ log pξ(ξ

(i))

)
− βT−2

= −βT−2

[
1 +

1

n

n∑
i=1

ξ(i) · ∇ξ log pξ(ξ
(i))

]
.

Note that for pξ(ξ) satisfying our conditions (differentiable on R and satisfying limξ→±∞ ξ · pξ(ξ) = 0), we have

Epξ(ξ)[ξ · ∇ξ log pξ(ξ)] =

∫ ∞
−∞

ξ · ∇ξpξ(ξ)dξ = −
∫ ∞
−∞

pξ(ξ)dξ = −1, (2)

where the second-to-last step follows from integration by parts. Thus, by the definition of the sample complexity,

Pr

[∣∣∣∣∣ 1n
n∑
i=1

ξ(i) · ∇ξ log pξ(ξ
(i)) + 1

∣∣∣∣∣ ≥ ε
]
> δ

for any n < nξ(ε, δ), so we have

Pr
[
|D̂PG(0)−∇θJ(0)| ≥ ε

]
= Pr

[
βT−2

∣∣∣∣∣ 1n
n∑
i=1

ξ(i) · ∇ξ log pξ(ξ
(i)) + 1

∣∣∣∣∣ ≥ βT−2ε

]
> δ.

for any n < nξ(ε/β
T−2, δ). Thus, we have

nPG(ε, δ) ≥ nξ(ε/βT−2, δ).

Next, consider the case where pξ(ξ) = N (ξ | 0, σ2), for any σ ∈ R+. Then, we have

∇ξ log pξ(ξ) = ∇ξ
(
− log

√
2π − ‖ξ‖

2

2σ2

)
= − ξ

σ2
,

so

D̂PG(0)−∇θJ(0) = βT−2

[
−1 +

1

nσ2

n∑
i=1

(ξ(i))2

]
= βT−2

[
−1 +

1

n

n∑
i=1

(x(i))2

]
,
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where x(i) ∼ N (0, 1) are i.i.d. standard Gaussian random variables for i ∈ [n]. By Lemma H.8, letting x =
n−1

∑n
i=1(x(i))2 (so µx = Ep(x) = 1), for

n ≤ min

{
2βT−2

(
1
2 log(1/δ) + log(1/e2

√
2)
)

ε
,

1

δ

}
,

we have

Pr
[
D̂PG(0)−∇θJ(0) ≥ ε

]
= Prp(x)

[
x ≥ µx +

ε

βT−2

]
≥ 1√

n
· 1

e2
√

2
e
− nε

2βT−2 ≥
√
δ ·
√
δ = δ.

Thus, the sample complexity of D̂PG −∇θJ(θ) satisfies

nPG(ε, δ) ≥ min

{
2βT−2

(
1
2 log(1/δ) + log(1/e2

√
2)
)

ε
,

1

δ

}
.

Note that the numerator is positive as long as δ ≤ 1/12. The claim follows, as does the theorem statement.

C Proof of Theorem 4.11

Preliminaries. Note that the expected cumulative reward is equivalent to

J(θ) = V
(0)
θ (s0)

V
(t)
θ (s) = Rθ(s) + Ep(ζ)

[
V

(t+1)
θ (fθ(s) + ζ)

]
(∀t ∈ {0, 1, ..., T − 1})

V
(T )
θ (s) = 0.

Similarly, given a sample ~ζ ∼ p(~ζ), the stochastic approximation of the expected cumulative reward is

Ĵ(θ; ~ζ) = V̂
(0)
θ (s0; ~ζ)

V̂
(t)
θ (s; ~ζ) = Rθ(s) + V̂

(t+1)
θ (fθ(s) + ζt; ~ζ) (∀t ∈ {0, 1, ..., T − 1})

V̂
(T )
θ (s; ~ζ) = 0.

The finite difference approximation of ∇θJ(θ) is

DFD(θ) =

dΘ∑
k=1

J(θ + λν(k))− J(θ − λν(k))

2λ
· ν(k),

where ν(k) is a basis vector for k ∈ [d] and dΘ is the dimension of the parameter space Θ = Rd. Finally, an
estimate of the finite difference approximation for two samples ζ, η ∼ p̃(ζ) is

D̂FD(θ; ~ζ, ~η) =

dΘ∑
k=1

Ĵ(θ + λν(k); ~ζ)− Ĵ(θ − λν(k); ~η)

2λ
· ν(k),

where Ĵ(θ; ~ζ) is as defined in the proof of Theorem 4.6.

Bounding the deviation of V̂
(t)
θ from V

(t)
θ . We claim that for t ∈ {0, 1, ..., T}, we have

‖V̂ (t)
θ (s; ~ζ)− V (t)

θ (s)‖ ≤ B(t)(~ζ)

for all θ ∈ Θ and s ∈ S, where

B(t)(~ζ) =

T−1∑
i=t

L
(i+1)
V (‖ζi‖+ σζ

√
dA),
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where L
(t)
V is a Lipschitz constant for V

(t)
θ . The base case t = T follows trivially. Note that σζ

√
dA ≥√

Ep(ζ)[‖ζ‖2] ≥ Ep(ζ)[‖ζ‖]. Then, for t ∈ {0, 1, ..., T − 1}, we have

‖V̂ (t)
θ (s; ~ζ)− V (t)

θ (s)‖ =
∥∥∥V̂ (t+1)

θ (fθ(s) + ζt; ~ζ)− Ep(ζ)
[
V

(t+1)
θ (fθ(s) + ζ)

]∥∥∥
≤‖V̂ (t+1)

θ (fθ(s) + ζt; ~ζ)− V (t+1)
θ (fθ(s) + ζt)‖

+ Ep(ζ)
[
‖V (t+1)

θ (fθ(s) + ζt)− V (t+1)
θ (fθ(s) + ζ)‖

]
≤B(t+1)(~ζ) + L

(t+1)
V (‖ζt‖+ σζ

√
dA)

=B(t)(~ζ).

The claim follows.

Bounding the deviation of D̂FD from DFD. Let

DFD(θ)Ep(~ζ),p(~η)[D̂FD(θ)].

Then, letting L∇V = arg maxt∈{0,1,...,T} L
(t)
∇V , note that

‖Ĵ(θ; ~ζ)− J(θ)‖ ≤ B(0)(~ζ) =

T−1∑
i=0

L
(i+1)
V (‖ζi‖+ σζ

√
dA) ≤ 3T 3LRθ L̄

T
fθ

(E + σζ
√
dA),

where E = T−1
∑T−1
t=0 ‖ζt‖. Thus, we have

‖D̂FD(θ; ζ, η)k −DFD(θ)k‖ =

∥∥∥∥∥ Ĵ(θ + λν(k); ~ζ)− Ĵ(θ − λν(k); ~η)

2λ
· ν(k) − J(θ + λν(k))− J(θ − λν(k))

2λ
· ν(k)

∥∥∥∥∥
≤ ‖Ĵ(θ + λν(k); ~ζ)− J(θ + λν(k))‖+ ‖Ĵ(θ − λν(k); ~η)− J(θ − λν(k))‖

2λ

≤
3T 3LRθ L̄

T
fθ

(E + Ẽ + 2σζ
√
dA)

2λ

for k ∈ [dΘ], where Ẽ = T−1
∑T−1
t=0 ‖ηt‖.

Upper bound on the sample complexity of D̂FD −DFD. Note that E + Ẽ ≤ ‖E′‖1, where E′ = ~ζ ◦ ~η is
the length 2TdS concatenation of the vectors ζ0, ζ1, ..., ζT−1, η0, η1, ..., ηT−1, so E′ is σζ-sub-Gaussian. We apply
Lemma G.7 with

Y = D̂FD(θ; ~ζ, ~η)k −DFD(θ)k

X = E′

A =
3T 3LRθ L̄

T
fθ

λ

B = Aσζ
√
dA.

Thus, Y is σFD-sub-Gaussian, where

σFD = max{10Aσ(2TdA) log(2TdA), 5Aσζ
√
dA)}

= 20AσζTdA log(TdA)

≤
60T 4LRθ L̄

T
fθ
σζdA log(TdA)

λ
.

Thus, by Lemma G.6, for k ∈ [dΘ], the sample complexity of D̂FD(θ)k −DFD(θ)k is√
ñFD(ε̃, δ̃) =

σFD

√
2 log(2dA/δ̃)

ε̃

= O

(
T 4LRθ L̄

T
fθ
σζdA log(T ) log(dA)3/2 log(1/δ̃)1/2

λε̃

)
.
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Upper bound on the sample complexity of D̂FD −∇θJ(θ). By Theorem 3.3, we have

∇θJ(θ) = DFD(θ) + ∆,

where

‖∆‖ ≤ L∇JdAλ ≤ 44T 5L̄Rθ L̄
4T
fθ
dAλ,

where the second inequality follows from the fact that L∇J = L
(0)
∇V and the bound on L

(0)
∇V in Lemma D.2. Now,

taking

λ =
ε

88T 5L̄Rθ L̄
4T
fθ
dA

ε̃ =
ε

2
√
dΘ

δ̃ =
δ

dΘ
,

then with probability 1− δ, we have

‖D̂FD(θ)−∇θJ(θ)‖ ≤ ‖D̂FD(θ)−DFD(θ)‖+ ‖∆‖ ≤ ε,

so the sample complexity of D̂FD(θ)−∇θJ(θ) is

√
nFD(ε, δ) = = O

(
T 9L̄2

Rθ
L̄5T
fθ
σζd

2
A

√
dΘ log(T ) log(dA)3/2 log(dΘ)1/2 log(1/δ̃)1/2

ε2

)
.

The claim follows.

Lower bound on the sample complexity of D̂FD − ∇θJ(θ). Consider a linear dynamical system with
S = R2, A = R, time-varying deterministic transitions

ft((s, s
′), a) =

{
β(s, s′ + a) if s = 0

β(s, s′) otherwise,

time-varying noise

pt((ζ, 0)) =

{
N (ζ | 0, σ2

ζ ) if t = 0

δ(0) otherwise,

where σζ ∈ R, initial state s0 = (0, 0), time-varying rewards

Rt((s, s
′), a) =

{
s+ φ(s′) if t = T − 1

0 otherwise,

where φ : R→ R is defined by

φ(x) =


2x− 1 if x ≥ 1

x2 if − 1 ≤ x < 1

2x+ 1 if x < −1,

control policy class πθ((s, s
′)) = θ, and current parameters θ = 0. Note that technically, R is not twice continu-

ously differentiable, so it does not satisfy Assumption 4.2. However, the only place in the proof of Theorem 4.11
where we need this assumption is to apply Lemma F.2 in Lemma D.2. By the discussion in the proof of
Lemma F.2, the lemma still applies, so our theorems still apply to this dynamical system. Now, we have

st =

{
0 if t = 0

βt−1(ζ, θ) otherwise,



Sample Complexity of Estimating the Policy Gradient

where ζ = ζ0 is the noise on the first step. Thus, we have

Ĵ(θ; ζ) = sT−1 + s′T−1 = βT−2ζ + φ(βT−2θ).

Also, note that

∇θJ(θ) = Ep(ζ)[∇θĴ(0; ζ)] = φ′(βT−2θ) · βT−2,

so ∇θJ(0) = 0, since φ′(0) = 0.

Next, note that for 2n i.i.d. samples ζ(1), ..., ζ(n), η(1), ..., η(n) ∼ N (0, σ2
ζ ), we have

D̂FD(0)−∇θJ(0) =
1

2λ

[
1

n

n∑
i=1

Ĵ(λ; ζ(i))− 1

n

n∑
i=1

Ĵ(−λ; η(i))

]

=
1

2λ
· 1

n

n∑
i=1

[
βT−2ζ(i) − βT−2η(i)

]
+

1

2λ

[
φ(βT−2λ)− φ(−βT−2λ)

]
.

Letting ζ(n+i) = −η(i) for i ∈ [n], and using the fact that φ(−x) = −φ(x), we have

D̂FD(0)−∇θJ(0) =
1

2λn

2n∑
i=1

βT−2ζ(i) +
1

λ
· φ(βT−2λ) ∼ N

(
µFD,

σFD

n

)
.

where

µFD = φ(βT−2λ)

σFD =
βT−2σζ

λ
.

Thus, by Lemma G.8, for

n ≤
σ2

FD

(
log
(√

e
2π

)
+ log(1/δ̃)

)
ε2

,

and recalling that DFD(θ) = Epθ(α)[D̂FD(θ;α)] = µFD, we have

Pr
[
D̂FD(0)−DFD(0) ≥ ε̃

]
= Prx∼N (0,σ2

FD/n)[|x| ≥ ε̃] ≥
√

e

2π
· e−nε

2/σ2
FD ≥ δ̃.

Thus, the sample complexity of D̂FD(0)−DFD(0) satisfies

ñFD(ε̃, δ̃) ≥
σ2

FD

(
log
(√

e
2π

)
+ log(1/δ̃)

)
ε̃2

.

Now, recall that ∇θJ(0) = 0, so

Pr
[
D̂FD(0)−∇θJ(0) ≥ ε

]
= Pr

[
D̂FD(0) ≥ ε

]
= Pr

[
D̂FD(0)−DFD(0) ≥ ε− µFD

]
.

Thus, using our assumption δ ≤ 1/2, then we need to have µFD ≤ ε for Pr
[
D̂FD(0)−∇θJ(0) ≥ ε

]
≤ δ to hold.

As a consequence, using our assumption ε ≤ 1, we must have

ε ≥ µFD = φ(βT−2λ) = β2(T−2)λ2,

where the last step follows since 0 ≤ φ(βT−2λ) ≤ 1 implies φ(x) = x2. Thus, we have λ ≤
√

ε
β2(T−2) , so we have

σFD ≥ β4(T−2)σ2
ζ/ε. Finally, we have

Pr
[
D̂FD(0)−∇θJ(0)) ≥ ε

]
≥ Pr

[
D̂FD(0)−DFD(0) ≥ ε

]
,
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so the sample complexity of D̂FD(0)−∇θJ(θ) satisfies

nFD(ε, δ) ≥ ñFD(ε, δ) ≥
σ2

FD(T − 2)2β2(T−3) ·
(
log
(√

e
2π

)
+ log(1/δ)

)
ε2

≥
(T − 2)2β6(T−3)σ2

ζ ·
(
log
(
log(1/δ) +

√
e

2π

))
ε4

.

Finally, for any dΘ ∈ N, we can consider dΘ independent copies of this dynamical system. Then, estimating the
gradient ∇θJ(θ) is equivalent to estimating dJ

dθi
(θ) for each i ∈ [dΘ]. Thus, we have

nFD(ε, δ) ≥ ñFD(ε, δ) ≥
(T − 2)2β6(T−3)σ2

ζdΘ ·
(
log
(
log(1/δ) +

√
e

2π

))
ε4

.

The claim follows, as does the theorem statement.

D Bounds on Lipschitz Constants

We prove bounds on the Lipschitz constants L
(t)
V for V

(t)
θ , L

(t)
∇V for ∇V (t)

θ , and L
(t)

Ṽ
for Ṽ

(t)
θ . We use implicitly

use the commonly known results in Appendix F throughout these proofs.

Lemma D.1. We claim that for t ∈ {0, 1, ..., T}, V (t)
θ is L

(t)
V -Lipschitz, where

L
(t)
V ≤ 3T 2LRθ L̄

T−t−1
fθ

.

Proof. First, we show that V
(t)
θ is L

(t)
V,θ-Lipschitz in θ and L

(t)
V,s-Lipschitz in s, where

L
(t)
V,θ =

T−1∑
i=t

(LRθ + LfθL
(i+1)
V,s )

L
(t)
V,s =

T−1∑
i=t

Li−tfθ
LRθ ,

We prove by induction. The base case t = T is trivial. Then, for t ∈ {0, 1, ..., T − 1}, note that V
(t)
θ is

(L
(t)
V,θ)
′-Lipschitz in θ, where

(L
(t)
V,θ)
′ = LRθ + L

(t+1)
V,θ + LfθL

(t+1)
V,s = L

(t)
V,θ.

Similarly, note that V
(t)
θ is (L

(t)
V,s)
′-Lipschitz in s, where

(L
(t)
V,s)
′ = LRθ + LfθL

(t+1)
V,s = L

(t)
V,s,

as was to be shown. Finally, note that

L
(t)
V,s ≤ TLRθ L̄

T−t−1
fθ

,

so

L
(t)
V,θ ≤ T (LRθ + Lfθ · TLRθ L̄

T−t−2
fθ

) ≤ 2T 2LRθ L̄
T−t−1
fθ

.

Thus, V
(T )
θ is (L

(t)
V )′-Lipschitz, where

(L
(t)
V ) ≤ L(t)

V,θ + L
(t)
V,s ≤ 3T 2LRθ L̄

T−t−1
fθ

= L
(t)
V .

The claim follows.
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Lemma D.2. We claim that for t ∈ {0, 1, ..., T}, ∇V (t)
θ is L

(t)
∇V -Lipschitz, where

L
(t)
∇V = 44T 5L̄Rθ L̄

4(T−t−1)
fθ

.

Proof. First, we show that ∇θV (t)
θ is L

(t)
∇V,θ,θ-Lipschitz in θ and L

(t)
∇V,θ,s-Lipschitz in s, and that ∇sV (t)

θ is

L
(t)
∇V,θ,s-Lipschitz in θ and L

(t)
∇V,s,s-Lipschitz in s, where

L
(t)
∇V,θ,θ =

T−1∑
i=t

(L∇Rθ + 2LfθL
(i+1)
∇V,θ,s + L2

fθ
L

(i+1)
∇V,s,s + L∇fθL

(i+1)
V )

L
(t)
∇V,θ,s =

T−1∑
i=t

Li−tfθ
(L∇Rθ + L2

fθ
L

(i+1)
∇V,s,s + L∇fθL

(i+1)
V )

L
(t)
∇V,s,s =

T−1∑
i=t

L
2(i−t)
fθ

(L∇Rθ + L∇fθL
(i+1)
V )

L
(T )
∇V,θ,θ = L

(T )
∇V,θ,s = L

(T )
∇V,s,s = 0.

We prove by induction. The base case t = T is trivial. First, for t ∈ {0, 1, ..., T − 1}, note that ∇θV (t)
θ is

(L
(t)
∇V,θ,θ)

′-Lipschitz in θ, where

(L
(t)
∇V,θ,θ)

′ = L∇Rθ + L
(t+1)
∇V,θ,θ + LfθL

(t+1)
∇V,θ,s + Lfθ (L

(t+1)
∇V,θ,s + LfθL

(t+1)
∇V,s,s) + L∇fθL

(t+1)
V = L

(t)
∇V,θ,θ.

Second, note that ∇θV (t)
θ is (L

(t)
∇V,θ,s)

′-Lipschitz in s, where

(L
(t)
∇V,θ,s)

′ = L∇Rθ + LfθL
(t+1)
∇V,θ,s + L2

fθ
L

(t+1)
∇V,s,s + L∇fθL

(t+1)
V = L

(t)
∇V,θ,s.

Third, note that ∇sV (t)
θ is (L

(t)
∇V,s,θ)

′-Lipschitz in θ, where

(L
(t)
∇V,s,θ)

′ = L∇Rθ + Lfθ (L
(t+1)
∇V,θ,s + LfθL

(t+1)
∇V,s,s) + L∇fθL

(t+1)
V = L

(t)
∇V,θ,s.

Fourth, note that ∇sV (t)
θ is (L

(t)
∇V,s,s)

′-Lipschitz in s, where

(L
(t)
∇V,s,s)

′ = L∇Rθ + L2
fθ
L

(t+1)
∇V,s,s + L∇fθL

(t+1)
V = L

(t)
∇V,s,s,

as was to be shown. Finally, note that

L
(t)
∇V,s,s ≤ T L̄

2(T−t−1)
fθ

(L∇Rθ + L∇fθ · 3T 2LRθ L̄
T−t−2
fθ

) ≤ 4T 3L̄Rθ L̄
3(T−t−1)
fθ

,

so

L
(t)
∇V,θ,s ≤ T L̄

T−t−1
fθ

(L∇Rθ + L2
fθ
· 4T 3L̄Rθ L̄

3(T−t−2)
fθ

+ L∇fθ · 3T 2LRθ L̄
T−t−2
fθ

) ≤ 8T 4L̄Rθ L̄
4(T−t−1)
fθ

so

L
(t)
∇V,θ,θ ≤ T (L∇Rθ + 2Lfθ · 8T 4L̄Rθ L̄

4(T−t−2)
fθ

+ L2
fθ
· 4T 3L̄Rθ L̄

3(T−t−2)
fθ

+ L∇fθ · 3T 2LRθ L̄
T−t−2
fθ

)

≤ 24T 5L̄Rθ L̄
4(T−t−1)
fθ

.

Thus, ∇V (t)
θ is (L

(t)
∇V )′-Lipschitz, where

(L
(t)
∇V )′ = L∇V,θ,θ + 2L∇V,θ,s + L∇V,s,s ≤ 44T 5L̄Rθ L̄

4(T−t−1)
fθ

= L
(t)
∇V .

The claim follows.

Lemma D.3. We claim that for t ∈ {0, 1, ..., T}, Ṽ (t)
θ is L

(t)

Ṽ
-Lipschitz, where

L
(t)

Ṽ
= 3T 2LR̃θ L̄

T−t−1

f̃θ
.

Proof. Note that Ṽ
(t)
θ is exactly equal to V

(t)
θ with Rθ replaced with R̃θ and fθ replaced with f̃θ. Thus, the

claim follows by the same argument as for Lemma D.1.
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E Proof of Theorem 3.3

Theorem E.1. (Taylor’s theorem) Let f : R → R be an everywhere differentiable function with Lf ′-Lipschitz
derivative. Then, for any x, ε ∈ R, we have

f(x+ ε) = f(x) + f ′(x) · ε+ ∆,

where

|∆| ≤ Lf ′ε
2

2
.

Proof. The claim follows from Theorem 5.15 in Rudin et al. (1976), together with Lemma F.2, which implies
that |f ′′(x)| ≤ Lf ′ for all x ∈ R.

Now, we prove Theorem 3.3. By Taylor’s theorem, we have

f(x+ µ) = f(x) + 〈∇f(x), µ〉+ ∆(µ),

where

‖∆(µ)‖ ≤ 1

2
L∇f‖µ‖2.

Thus, we have

d∑
k=1

f(x+ λν(k))− f(x− λν(k))

2λ
· ν(k)

=

d∑
k=1

(f(x) + 〈∇f(x), λν(k)〉+ ∆(λν(k)))− (f(x)− 〈∇f(x), λν(k)〉+ ∆(−λν(k)))

2λ
· ν(k)

=

d∑
k=1

〈∇f(x), ν(k)〉 · ν(k) +
∆(λν(k))−∆(−λν(k))

2λ
· ν(k)

=

d∑
k=1

ν(k)((ν(k))>∇f(x)) +

d∑
k=1

∆(λν(k))−∆(−λν(k))

2λ
· ν(k)

= ∇f(x) +

d∑
k=1

∆(λν(k))−∆(−λν(k))

2
· ν(k)

Therefore, we have

∆ =

d∑
k=1

∆(λν(k))−∆(−λν(k))

2λ
· ν(k),

so

‖∆‖ ≤
d∑
k=1

∥∥∥∥∆(λν(k))−∆(−λν(k))

2λ
· ν(k)

∥∥∥∥ ≤ 1

2
L∇fλ · ‖ν(k)‖3 ≤ L∇fdλ,

as claimed.

F Technical Lemmas (Lipschitz Constants)

We define Lipschitz continuity (for the L2 norm), and prove a number of standard results.
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Definition F.1. A function f : X → Y (where X ⊆ Rd and Y ⊆ Rd′) is Lf -Lipschitz continuous if for all
x, x′ ∈ X ,

‖f(x)− f(x′)‖ ≤ Lf‖x− x′‖. (3)

If X is a space of matrices or tensors, we assume x and x′ are unrolled into vectors. in (3).

Lemma F.2. If f : X → Y is Lf -Lipschitz and continuously differentiable, then for all x ∈ X ,

‖∇f(x)‖ ≤ Lf .

Proof. Note that

∇f(x) = lim
‖ε‖→0

f(x+ ε)− f(x)

‖ε‖
,

so

‖∇f(x)‖ = lim
‖ε‖→0

‖f(x+ ε)− f(x)‖
‖ε‖

≤ lim
‖ε‖→0

Lf‖ε‖
‖ε‖

= Lf ,

as claimed. Note that the result holds even if each component fi is continuously differentiable except on a finite set
X. In particular, for each point x ∈ X, we can use the standard definition (∇f(x))i = (f ′i,+(x)+f ′i,−(x))/2, where
f ′i,+(x) is the right derivative and f ′i,−(x) is the left deriviative. Letting (∇+f(x))i = f ′i,+(x) and (∇−f(x))i =
f ′i,−(x), then ∇f(x) = (∇+f(x) +∇−f(x))/2. Then, we have

‖∇f(x)‖ ≤ ‖∇+f(x)‖+ ‖∇−f(x)‖
2

≤ Lf ,

as claimed.

Lemma F.3. If f, g : X → Y are Lf - and Lg-Lipschitz, respectively, then h(x) = f(x) + g(x) is Lh-Lipschitz,
where Lh = Lf + Lg.

Proof. Note that

‖h(x)− h(x′)‖ ≤ ‖f(x)− f(x′)‖+ ‖g(x)− g(x′)‖ ≤ (Lf + Lg)‖x− x′‖ = Lh‖x− x′‖,

as claimed.

Lemma F.4. If f, g : X → Y where f is Lf -Lipschitz and bounded by Mf (i.e., |f(x)| ≤ Mf for all x ∈ X ),
and g is Lg-Lipschitz and bounded by Mg. Then h(x) = f(x) · g(x) is Lh-Lipschitz, where Lh = MgLf +MfLg.

Proof. Note that

‖h(x)− h(x′)‖ ≤ ‖(f(x)− f(x′))g(x)‖+ ‖(g(x)− g(x′))f(x′)‖
≤MgLf‖x− x′‖+MfLg‖x− x′‖
= Lh‖x− x′‖,

as claimed.

Lemma F.5. If f : X → Y is Lf -Lipschitz and g : Y → Z is Lg-Lipschitz, then h(x) = g(f(x)) is Lh-Lipschitz,
where Lh = LgLf .

Proof. Note that

‖g(f(x))− g(f(x′))‖ ≤ Lg‖f(x)− f(x′)‖ ≤ LgLf‖x− x′‖ ≤ Lh‖x− x′‖,

as claimed.
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Lemma F.6. Let f : X ×Y → Z be Lf,x-Lipschitz in X (for all y ∈ Y) and Lf,y-Lipschitz in Y (for all x ∈ X ).
Then, f is Lf -Lipschitz in X × Y, where Lf = Lf,x + Lf,y.

Proof. Note that

‖f(x, y)− f(x′, y′)‖ ≤ ‖f(x, y)− f(x′, y)‖+ ‖f(x′, y)− f(x′, y′)‖
≤ Lf,x‖x− x′‖+ Lf,y‖y − y′‖
≤ Lf,x‖(x, y)− (x′, y′)‖+ Lf,y‖(x, y)− (x′, y′)‖
≤ (Lf,x + Lf,y)‖(x, y)− (x′, y′)‖
= Lf‖(x, y)− (x′, y′)‖,

as claimed.

Lemma F.7. Let f : X → Y be Lf -Lipschitz, and g : X → Z be Lg-Lipchitz. Then, h(x) = (f(x), g(x)) is
Lh-Lipschitz, where Lh = Lf + Lg.

Proof. Note that

‖h(x)− h(x′)‖ ≤ ‖(f(x)− f(x′), g(x)− g(x′))‖

=

√√√√ dY∑
i=1

(fi(x)− fi(x′))2 +

dZ∑
j=1

(gi(x)− gi(x′))2

≤

√√√√ dY∑
i=1

(fi(x)− fi(x′))2 +

√√√√ dZ∑
j=1

(gi(x)− gi(x′))2

= ‖f(x)− f(x′)‖+ ‖g(x)− g(x′)‖
≤ Lf‖x− x′‖+ Lg‖x− x′‖
≤ (Lf + Lg)‖x− x′‖
= Lh‖x− x′‖,

as claimed.

Lemma F.8. Let f : X ×Z → Y be Lf -Lipschitz. Then, g(x) = Ep(z)[f(x, z)] (where p(z) is a distribution over
Z) is Lg-Lipschitz, where Lg = Lf .

Proof. Note that

‖g(x)− g(x′)‖ ≤ Ep(z) [‖f(x, z)− f(x′, z)‖] ≤ Lf‖x− x′‖ = Lg‖x− x′‖,

as claimed.

G Technical Lemmas (Sub-Gaussian Random Variables)

We define sub-Gaussian random variables, and prove a number of standard results. We also prove Lemma G.7,
a key lemma that enables us to infer a sub-Gaussian constant for a random variable bounded Y in norm by a
sub-Gaussian random variable X, i.e., ‖Y ‖ ≤ A‖X‖1 +B (where ‖ · ‖ is the L2 norm). This lemma is a key step
in the proofs of our upper bounds for the model-based and finite-difference policy gradient estimators. Finally,
we also prove Lemma G.8, which is a key step in the proof of our lower bounds.

Definition G.1. A random variable X over R is σX-sub-Gaussian if E[X] = 0, and for all t ∈ R, we have

E[etX ] ≤ eσ2
Xt

2/2.

Lemma G.2. If a random variable X over R is σX-sub-Gaussian, then E[|X|2] ≤ σ2
X .

Proof. See Stromberg (1994).
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Lemma G.3. (Hoeffding’s inequality) Let x1, ..., xn ∼ pX(x) be i.i.d. σX-sub-Gaussian random variables over
R. Then,

Pr

[∣∣∣∣∣ 1n
n∑
i=1

xn

∣∣∣∣∣ ≥ ε
]
≤ 2e

− nε2

2σ2
X .

Proof. See Proposition 2.1 of Wainwright (2019).

Definition G.4. A random vector X over Rd is σX -sub-Gaussian if each Xi is σX -sub-Gaussian.

Lemma G.5. If a random vector X over Rd is σX-sub-Gaussian, then E[‖X‖] ≤ σX
√
d.

Proof. Note that

E[‖X‖] = E


√√√√ d∑

i=1

‖Xi‖2

 ≤
√√√√ d∑

i=1

E[‖Xi‖2] ≤ σX
√
d,

where the first inequality follows from Jensen’s inequality.

Lemma G.6. Let X be random vector over Rd with mean µX = E[X], such that X − µX is σX-sub-Gaussian.
Then, given ε, δ ∈ R+, the sample complexity of X satisfies

nX(ε, δ) ≤ 2σ2
X log(2d/δ)

ε2
,

i.e., given x1, ..., xn ∼ pX(x) i.i.d. samples of X with empirical mean x = n−1
∑n
i=1 xn, then Pr[‖x − µX‖ ≥

ε] ≤ δ.

Proof. Note that

Pr[‖x− µX‖ ≥ ε] ≤ Pr[‖x− µX‖1 ≥ ε] ≤
d∑
i=1

Pr
[
|xi − µX,i| ≥

ε

d

]
≤ 2de

− nt2

2σ2
X ≤ δ,

as claimed.

Lemma G.7. Let X be a σX-sub-Gaussian random vector over Rd, and let Y be a random vector over Rd′

satisfying

‖Y ‖ ≤ A‖X‖1 +B,

where A,B ∈ R+. Then Y is σY -sub-Gaussian, where

σY = max{10AσXd log d, 5B}.

Proof. We first prove that |Yi| is bounded for each i ∈ [d], and then use this fact to prove that Yi is sub-Gaussian.
In particular, we claim that for any i ∈ [d] and any t ∈ R+, we have

Pr[|Yi| ≥ t] ≤ 2e
− t2

2σ̃2
Y ,

where

σ̃Y = max
{

4AσXd
√

log d, 2B
}
.

To this end, note that by Theorem 5.1 in Lattimore and Szepesvári (2018), for any i ∈ [d] and any t ∈ R+, we
have

Pr[|Xi| ≥ t] ≤ 2e
− t2

2σ2
X .
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Now, note that

Pr[|Yi| ≥ t] ≤ Pr[‖Y ‖ ≥ t] ≤ Pr

[
‖X‖1 ≥

t−B
A

]
≤

d∑
i=1

Pr

[
|Xi| ≥

t−B
Ad

]
≤ 2de

− (t−B)2

(AdσX
√

2)2 .

We consider three cases. First, suppose that t ≥ max{4AσXd
√

log d, 2B}. Then, (t−B)2 ≥ (t/2)2, so

Pr[|Yi| ≥ t] ≤ 2de
− t2

(AdσX
√

8)2 = 2e
− t

2−(AdσX
√

8)2 log d

(AdσX
√

8)2 .

Furthermore, t2 − (AdσX
√

8)2 log d ≥ (t2/2), so

Pr[|Yi| ≥ t] ≤ 2e
− t

2−(AdσX
√

8)2 log d

(AdσX
√

8)2 ≤ 2e
− t2

2(AdσX
√

8)2 ≤ 2e
− t2

2σ̃2
Y .

Second, if t ≤ 2B, then

2e
− t2

2σ̃2
Y ≥ 2e

− (2B)2

2σ̃2
Y = 2e−1/2 > 1,

so

Pr[|Yi| ≥ t] ≤ 1 ≤ 2e
− t2

2σ̃2
Y .

Third, if t ≤ 4AσXd
√

log d, then

2e
− t2

2σ̃2
Y ≥ 2e

− (4AσXd
√

log d)2

2σ̃2
Y ≥ 2e−1/2 > 1,

so

Pr[|Yi| ≥ t] ≤ 1 ≤ 2e
− t2

2σ̃2
Y .

As a consequence, by Note 5.4.2 in Lattimore and Szepesvári (2018), Yi is σ̃Y
√

5-sub-Gaussian. Note that
σY ≥ σ̃Y

√
5, so the theorem follows.

Lemma G.8. Given σ ∈ R+,

Prx∼N (0,σ2)[|x| ≥ t] ≥
√

e

2π
· e−t

2/σ2

.

Proof. By Theorem 2 in Chang et al. (2011), we have

1− Φ(t) ≥ 1

2

√
e

2π
· e−t

2

,

where Φ(t) is the cumulative distribution function of N (0, 1). Thus, for ε ∈ R+, we have

Prx∼N (0,σ2)[|x| ≥ t] = Prz∼N (0,1)

[
|z| ≥ t

σ

]
= 2

(
1− Φ

(
t

σ

))
≥
√

e

2π
· e−t

2/σ2

≥ δ.

The claim follows.

H Technical Lemmas (Sub-Exponential Random Variables)

We define sub-exponential random variables, and prove a number of standard results. Additionally, we prove
Lemma H.7 (an analog of Lemma G.7), a key lemma that enables us to infer a sub-exponential constant for a
random variable bounded Y in norm by a sub-exponential random variable X, i.e., ‖Y ‖ ≤ A‖X‖1 + B (where
‖ · ‖ is the L2 norm). This lemma is a key step in the proof of our upper bound in Theorem 4.7. Finally, we also
prove Lemma H.8, which is a key step in the proof of our lower bound in Theorem 4.7.
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Definition H.1. A random variable X over R is (τX , bX)-sub-exponential if E[X] = 0, and for all t ∈ R satisfying

|t| ≤ b−1
X , we have E[etX ] ≤ eτ2

Xt
2/2.

Lemma H.2. Let x1, ..., xn ∼ pX(x) be i.i.d. (τX , bX)-sub-exponential random variables over R. Then, we have

Pr

[∣∣∣∣∣ 1n
n∑
i=1

xn

∣∣∣∣∣ ≥ ε
]
≤

2e
− nε2

2τ2
X if |ε| ≤ τ2

X/bX

2e
− nε

2bX otherwise.

Proof. See (2.20) in Wainwright (2019).

Definition H.3. A random vector X over Rd is (τX , bX)-sub-exponential if each Xi is (τX , bX)-sub-exponential.

Lemma H.4. Let X be a random vector over Rd with mean µX = E[X], such that X − µX is (τX , bX)-sub-
exponential. Then, given ε, δ ∈ R+ such that ε ≤ dτ2

X/bX , the sample complexity of X satisfies

nX(ε, δ) =
2τ2
X log(2d/δ)

ε2
,

i.e., given x1, ..., xn ∼ pX(x) i.i.d. samples of X with empirical mean x = n−1
∑n
i=1 xn, then Pr[‖x − µX‖ ≥

ε] ≤ δ.

Proof. Note that

Pr[‖x− µX‖ ≥ ε] ≤ Pr[‖x− µX‖1 ≥ ε] ≤
d∑
i=1

Pr
[
|xi − µX,i| ≥

ε

d

]
≤ 2de

− nt2

2τ2
X ≤ δ,

as claimed.

Lemma H.5. Let X be σX-sub-Gaussian. Then, X2 is (τX , bX)-sub-exponential, where τX , bX = O(σ2
X).

Proof. The result follows from Lemma 5.5, Lemma 5.14, and the discussion preceding Definition 5.13 in Vershynin
(2010). In particular, using the notation in Vershynin (2010), by Lemma 5.5, we have that X satisfies ‖X‖ψ2 =
O(σX). Then, by Lemma 5.14, we have that ‖X2‖ψ1

= 2‖X‖2ψ2
= O(σ2

X). Finally, by the discussion preceding

Definition 5.13, we have that X2 is (τX , bX)-sub-exponential with parameters τX , bX = O(‖X2‖ψ1
) = O(σ2

X).
The claim follows.

Lemma H.6. Let X and Y be σX-sub-Gaussian, respectively. Then, Z = XY is (τZ , bZ)-sub-exponential, where
τZ , bZ = O(σ2

X).

Proof. Note that

Z = XY =
(X + Y )2 − (X − Y )2

4
.

By Lemma H.5, we have X + Y and X − Y are (τ, b)-sub-exponential for τ, b = O(σ2
X), so Z is τZ , bZ-sub-

exponential, for τZ , bZ = O(τ + b) = O(σ2
X), as claimed.

Lemma H.7. Let X be a (τX , bX)-sub-exponential random vector over Rd, and let Y be a random vector over
Rd′ satisfying

‖Y ‖ ≤ A‖X‖1 +B,

where A,B ∈ R+. Then Y is (τY , bY )-sub-exponential, where τY , bY = O(A(τX + bX)d log d+B).

Proof. We use Lemma 5.14 and the discussion preceding Definition 5.13 in Vershynin (2010). In particular, let
τ̃X = max{τX , bX}; then, from the definition of sub-exponential random variables with t = τ̃−1

X , we have

E
[
e
Xi
τ̃

]
≤ E

[
e
t2

2τ̃2
X

]
≤ e
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for each i ∈ [d]. Thus, using the notation in Vershynin (2010), so by the discussion preceding the Definition 5.13
in Vershynin (2010), we have Xi satisfies ‖Xi‖ψ1 = O(τ̃X), and furthermore satisfies

Pr[|Xi| ≥ t] ≤ 3e−t/K

for all t ∈ R+, where K = O(‖Xi‖ψ1
) = O(τ̃X). Thus, for each i ∈ [d], we have

Pr[|Yi| ≥ t] ≤ Pr

[
‖X‖1 ≥

t−B
A

]
≤

d∑
i=1

Pr

[
|Xi| ≥

t−B
Ad

]
≤ de1− t−B

AKd .

Now, let

τ̃Y = max{4AKd log d, 2B}.

We consider three cases. First, suppose that t ≥ max{4AKd log d, 2B}. Then, t−B ≥ t/2, so

Pr[|Yi| ≥ t] ≤ de1− t
2AKd = e1− t−2AKd log d

2AKd .

Furthermore, t− 2AKd log d ≥ t/2, so

Pr[|Yi| ≥ t] ≤ e1− t−2AKd log d
2AKd ≤ e1− t

4AKd ≤ e1− t
τ̃Y .

Second, if t ≤ 2B, then

e
1− t

τ̃Y ≥ e1− 2B
τ̃Y ≥ 1,

so

Pr[|Yi| ≥ t] ≤ 1 ≤ e1− t
τ̃Y .

Third, if t ≤ 4AKd log d, then

e
1− t

τ̃Y ≥ e1− 4AKd log d
τ̃Y ≥ 1,

so

Pr[|Yi| ≥ t] ≤ 1 ≤ e1− t
τ̃Y .

As a consequence, by the discussion preceding Definition 5.13 in Vershynin (2010), we have Yi satisfies ‖Yi‖ψ1
=

O(τ̃Y ). Thus, by Lemma 5.15 in Vershynin (2010), we have that Yi is (τY , bY )-sub-exponential, where

τY , bY = O(‖Yi‖ψ1) = O(τ̃Y ) = O(AKd log d+B) = O(Aτ̃Xd log d+B) = O(A(τX + bX)d log d+B).

The claim follows.

Lemma H.8. Given σ ∈ R+, let

x =
(x(1))2 + ...+ (x(n))2

n
,

where x(1), ..., x(n) ∼ N (0, σ2) i.i.d., and let µx = Ep(x)[x] = σ2. Then, we have

Prp(x)[x ≥ µx + ε] ≥ 1

e2
√

2n
e−

nε
2σ2 .

Proof. Let z = (z(1))2 + ... + (z(n))2 be the sum of the squares of n i.i.d. standard Gaussian random variables
z(1), ..., z(n) ∼ N (0, 1). We assume that n = 2k is even. Then, z is distributed according to the χ2

2k distribution,
which has density function

p2k(z) =
1

2k(k − 1)!
zk−1e−z,
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and mean µ2k = 2k. For z ≥ µ2k = 2k, we have

p2k(z) ≥ 1

2k(k − 1)!
(2k)k−1e−z/2 =

1

2
· kk−1

(k − 1)!
e−z/2 ≥ 1

2
· kk−1

(k − 1)k−1/2e−k+2
e−z/2 ≥ 1

2e2
√
k
ek−z/2,

where the second inequality follows from a result

n! ≤ nn+1/2e1−n

based on Stirling’s approximation Robbins (1955). Thus, for any ε ∈ R+, we have

Prz∼χ2
2k

[z ≥ µ2k + ε] ≥
∫ ∞
µ2k+ε

1

2e2
√
k
ek−z/2 =

1

2e2
√
k
ek−(µ2k+ε)/2 =

1

2e2
√
k
e−ε/2.

Finally, for x = ((x(1))2 + ...+ (x(n))2)/n, where x(1), ..., x(n) ∼ N (0, σ2) i.i.d., note that x = σ2z
n and

µx = Ep(x)[x] =
σ2µn
n

= σ2,

so we have

Prp(x)[x ≥ µx + ε] = Prz∼χ2
n

[
z ≥ µn +

nε

σ2

]
≥ 1

e2
√

2n
e−

nε
2σ2 .

The claim follows.

I Experimental Results

We show enlarged versions of the plots from Figure 1:
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