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Abstract

Deep learning models have shown extreme vulnerabil-
ity to distribution shifts such as synthetic perturbations and
spatial transformations. In this work, we explore whether
we can adopt the characteristics of adversarial attack meth-
ods to help improve robustness of object detection to dis-
tribution shifts such as synthetic perturbations and spa-
tial transformations. We study a class of realistic object
detection settings wherein the target objects have control
over their appearance. To this end, we propose a reversed
Fast Gradient Sign Method (FGSM) to obtain these angelic
patches that significantly increase the detection probabil-
ity, even without pre-knowledge of the perturbations. In de-
tail, we apply the patch to each object instance simultane-
ously, strengthening not only classification, but also bound-
ing box accuracy. Experiments demonstrate the efficacy of
the partial-covering patch in solving the complex bounding
box problem. More importantly, the performance is also
transferable to different detection models even under severe
affine transformations and deformable shapes. To the best
of our knowledge, we are the first object detection patch that
achieves both cross-model efficacy and multiple patches.
We observed average accuracy improvements of 30% in the
real-world experiments. Our code is available at: https:
//github.com/averysi224/angelic_patches.

1. Introduction

Deep learning models have been heavily deployed in
many safety-critical settings such as autonomous vehicles.
However, these models have been notoriously fragile to
mild perturbations. For example, natural corruptions like
weather conditions and simple lightning effects can signif-
icantly degrade the performance of state-of-the-art mod-
els [11, 14]. Similarly, the performance under small spa-
tial transformations exhibits a large gap compared to clean
benchmarks [2, 7, 15]. On the other hand, a set of carefully
designed adversarial examples [10] are able to manipulate
the prediction behavior arbitrarily without notice of human
eyes. The untrustworthiness of deep learning systems leads
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Foggy Clean Foggy Patched

Figure 1. In this paper, we demonstrate that optimizing a partial-
cover patch for pre-trained object detectors can improve robust-
ness and significantly boost performance for both the classification
and bounding box regression accuracy. In the left picture, one of
the three people is mis-detected after applying the fog corruption.
However, in the right image with our angelic patch, the detector
was able to detect all three people with even more accurate bound-
ing boxes. Consider all three people wearing an angelic raincoat,
we could save lives from the foggy-blinded autonomous car!

to high stake failures and devastating consequences.
Two main streams of algorithms investigate solving these

problems. One is to improve out-of-distribution behav-
ior by adding more robustness interventions and diverse
data during training. However, they do not fully close the
gap between standard model performance and perturbed re-
sults [8]. Others applied domain adaptation over covari-
ate shift achieving reasonable performance [23], yet this
method does not generalize on unseen domains. Whereas
the misspecified test time distribution occurs dominantly in
practice.

Motivated and inspired by the efficacy of these perturba-
tion/adversarial methods above, we ask the question: Can
we adopt the characteristics of adversarial attack methods
to help improve perturbation-robustness? We propose to
reconsider the problem setup itself and study in a scenario
where the target objects are in control of their appearance.
To simplify, we build the objects instead of the models to
improve detection reliability. As a concrete example, con-
sider a pedestrian interacting with autonomous cars that use
deep learning models for detection. Our approach is to pro-
vide a wearable patch designed to improve the visibility of
these people to these models (Figure 1). Such practices
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Step 1: Apply patch. Step 2: Apply corruption.

(a) An example of corruption-aware angelic patch training procedure.

Step 1: Apply patch.

(b) An example of corruption-agnostic angelic patch training.

Figure 2. Examples of the two considered methods for constructing angelic patches. In the corruption-aware setting, we compute loss by
the predictions of the corrupted patched images. At test time, we test on the same type of corruption; In the corruption-agnostic setting, we
compute loss by the predictions of the corrupted clean images. At test time, we test on arbitrary corruption.

are already common for dealing with human drivers—e.g.,
wearing bright or reflective clothing at night.

Furthermore, though the adversarial attacks and robust-
ness of classifiers are well-studied, we focus on the less
studied yet practically broadly used object detection setting.
In detail, the detectors learn not only the object class infor-
mation but also learn about the localization and the size of
an object, e.g. bounding boxes. Besides, the object detec-
tion problem is essentially multiple instances, causing im-
plicit interaction between objects with even occlusions. To
our knowledge, we are the first to systematically investigate
this setting. We validated our method on both the single-
stage detector and the two-stage detector that are with the
proposal network as well as cross model experiments.

Our contribution is three-fold: First, we propose the
novel angelic patches with a Reversed Fast Signed Gra-
dient Method to improve the performance of both single-
stage and two-stage third-party object detectors. Second,
we demonstrate the efficacy of our framework on a wide va-
riety of detection settings including dozens of synthetic cor-
ruptions and affine transformations without additional aug-
mentation during training. Third, we are the first defense
physical patch that achieves cross-model validation on sev-
eral state-of-the-art unseen models. We extensively evalu-
ated our approach with both programmatic patches as well
as real-world experiments. We believe our approach identi-
fies a highly practical valuable strategy that can be used in
a broad range of applications.

In the following sections, we start with a review of re-
lated work, then give the proposed angelic patch framework
and experiment results. After that, we conclude the paper.

2. Related Work
Adversarial Attacks and Patch Attacks. Our approach
is based closely on techniques from the literature on ad-
versarial attacks, where the goal is to design techniques
to design inputs that confuse the model. While this liter-
ature initially considered attacks in the form of L∞-norm
bounded perturbations [10, 27], they have since considered
more realistic perturbations such as adding noise or corrup-

tions such as rain and snow [12]. Specifically, we build on
a class of light-weighted effective attacks called adversar-
ial patches. Adversarial patches confuse a classification or
detection model if they are present in an image. For in-
stance, [4, 5] propose universal physical applicable adver-
sarial patches, misleading a classifier to output any targeted
class. [25] designs glasses frames that cause facial recogni-
tion models to misclassify faces. Alternatively, [9] proposes
a black-and-white mask-guided sticker to generate stickers
of certain shapes for traffic sign classifiers.

Patch Methods on Object Detection. In the detection
setting, most patch methods focused on adversarial attacks.
[16,20,26] generate patches that aim to make objects invis-
ible to detectors. Of all the works, [16, 20] float the patch
arbitrarily on the images without interaction with the ob-
jects. In an application that is closely related to ours, [28]
proposes to use these techniques to design wearable patches
that prevent detection, which enables users to ensure their
privacy. However, the achieved patch is not transferable
across models. Besides, notice the misclassification of an
object could lead to a misdetection, previous works gave no
systematic analysis of the effect of regression loss and clas-
sification loss. Our framework, on the contrary, illustrates
that the patch impacts on both ends.
Adversarial Defences. One line of promising defense strat-
egy use data augmentation to expand the training set and
cover the perturbations. The augmentations are applied ei-
ther on norm-bounded perturbations [10] spatial transfor-
mations [8] or more general perturbations. In the latter di-
rection, CutMix [32], Mixup [33], RandAugment [6], Aug-
Mix [13], and Augmax [31] strategically aggregate several
general transformations to augment the training data. There
are also dynamic defence [30] and structural defence [3].
Most relatedly, [24] proposed unadversarial examples for
classification and regression settings. In contrast, our work
systematically investigates the more challenging object de-
tection setting; furthermore, we demonstrate critical fea-
tures of our approach such as robustness to unseen pertur-
bations and transferability to new object detectors, which
have not been previously studied.
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3. Background
3.1. Fast Gradient Sign Method (FGSM)

The fast gradient sign method [10] is an effective method
for generating adversarial images, originally focusing on
image classification. At a high level, this approach aims to
maximize the loss J(x; θ) as a function of the input image
x (instead of the parameters θ). A naı̈ve strategy is to per-
form gradient ascent—i.e., take gradient steps ∇xJ(x; θ).
However, this approach can be inefficient.

Instead, FGSM is a projected update designed to maxi-
mize the step in the direction of the gradient under the L∞
norm. This step is maximized by projecting the gradient
onto the L∞ ball B∞(0, ϵ), which can be efficiently com-
puted by taking the sign of the gradient—i.e.,

xadv = x+ ϵ · sign(∇xJ(x, y, θ)), (1)

where the sign function is applied element-wise, and where
the loss J is either the classification or detection loss. While
the original strategy was to take a single signed gradient
step, subsequent approaches also considered taking multi-
ple steps to further improve the performance of the attack.

3.2. Patch Attack

A patch attack is an algorithm that constructs an ad-
versarial patch p designed to mislead a specific pretrained
model to incorrect predictions at higher rates. The Expec-
tation over Transformation framework of [4] is a widely
adopted framework for patch attacks. In this approach, the
patch is constructed by maximizing the expected loss:

p̂ = argmax
p

Ex,t,ℓ log Pr(ŷ | A(p, x, ℓ, t)),

where x is an image, t is a randomly chosen transformation
on the patch, ℓ is a randomly chosen location in the image,
and A applies the patch p on the image x at the location ℓ
by transforming the patch using t. Note that the expecta-
tion is taken over images, which encourages the identified
patch to work regardless of the background. One strategy to
optimize p is to use iterative FGSM updates restricted to p.

3.3. Object Detection

We consider the object detection problem, where the
goal is to learn a model f that predicts, for each category
i ∈ I, a list of bounding boxes along with confidence asso-
ciated with each bounding box that its label is i. Let x be an
image, b be a list of ground-truth bounding boxes in x, b̂
be a list of bounding boxes predicted by f for x, where the
kth bounding box of b̂ matches the k-th bounding box of b,
and ĉ be a list of confidence scores for being the category
i, where the k-th confidence score of ĉ corresponds to the
k-th bounding box of b̂. Then, the simplified single-shot

detection (SSD) detection loss [19] is

Jssd(x,b, i, f) = Jloc(b̂,b) + Jconf(ĉ, i).

Here, Jloc is the localization loss that computes the dissim-
ilarity between the ground-truth bounding boxes b and the
matched predicted bounding boxes b̂, and Jconf is confi-
dence loss that penalizes when the confidence score for cat-
egory i is small. Other detection loss functions (e.g., Faster
R-CNN [22]) are defined similarly.

4. Angelic Patches
Leverage the more controlled setting Realizing the dif-
ficulty of general distribution shift robustness discussed
earlier in previous sections, we leverage a novel setting
where the target objects have control over their appearance.
For example, pedestrians tend to wear raincoats with flam-
boyant colors to be noticed by the human driver. In the
case of machine, this inspires us to search for lightweight
patches/textures that rely on model priors instead.

Figure 3. Perturbations on images often result in higher loss. Our
angelic patches use reversed FGSM to compute a patch that, when
applied to an input image, moves it to a lower point in the loss
landscape.

4.1. From Patch Attack to Patch Defense

In contrast to adversarial attacks, our goal is to construct
a patch pi for each object category i ∈ I such that when
pi are present in the input image x, then the probability
that instances of category i in x are correctly detected by
a given model f is maximized; we refer to pi as an angelic
patch. Intuitively, we can attach the constructed patch pi to
an object of category i to improve the probability that it is
correctly detected by f .

Our strategy for constructing angelic patches is to con-
struct a patch that minimizes the classification and the
bounding box regression loss on the training set as a func-
tion of the patch p, which is programmatically applied to
images of category i. Importantly, our patch does not re-
quire modification of the given model f , instead relying
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solely on modifying the input image to improve perfor-
mance. We focus on the whitebox setting where we have ac-
cess to gradients of f—for instance, we may have reverse-
engineered the model of a self-driving car, but we cannot
modify the models running on other cars. Through achiev-
ing cross-model transferability, we address the problem of
the practical use of possible blackbox models.

Reversed FGSM. We build on the approach of construct-
ing adversarial patches using FGSM updates but reverse the
procedure. In other words, we apply signed gradient up-
dates to the patch to minimize the loss (rather than maxi-
mize it). This strategy generates a patch that increases the
performance of the given model (see Figure 3 for an il-
lustration). Compared to naive gradient descent methods,
FGSM is effective under the scaling setup, thus tailored to
this problem.

4.2. Angelic Patches for Detection

Given a detector f , our goal is to find a patch pi for a
given category i such that objects of category i in an input
image x are correctly detected with a higher probability if
they include pi. Let x be an image that contains an instance
for the object category i, b be the corresponding ground-
truth bounding boxes for the category i, δ ∈ ∆ be pertur-
bations, and t be the list of transformations for patches for
ground-truth bounding boxes. We consider a patch applica-
tion operator Adet(p, x,b, t, δ). Our goal is to compute the
patch that minimizes a detection loss:

pi = argmin
p

E
x,b,t,δ

Jdet(Adet(p, x,b, t, δ),b, i, f) (2)

where Jdet is the detection loss. Then, our algorithm iterates
over training images x; for each one, it also iterates over
objects of category i in x, samples a random transformation
t and perturbation δ, and then takes a gradient step

p← p− ϵ · sign (∇pJdet(Adet(p, x,b, t, δ),b, i, f)) .

Without loss of practical value, we simply apply the patch to
the center of each object (bounding box). The pseudocode
is provided in Algorithm 1.

Patch application operators. So far, we have left the
patch application operators unspecified; we provide details
here. Unlike previous object detector patches that arbitrar-
ily float the patch [16, 20], we resize the patch to the ob-
ject size to implicitly gain spatial information. Notice we
constraint the patch to be at most one-fourth of the bound-
ing box area to make it more practically realizable. Thus,
Adet(p, x,b, t, δ) performs the following steps; (i) apply a
transformation t ∈ t, which is a differentiable scaling of p
to final patch length

lp ∝ min(width(b), height(b))

Algorithm 1 Angelic patch algorithm for object detection
Input: Object detector f , Set of images Z with bounding
box annotations for category i, Learning rate ϵ, Set of patch
transformations T , and Set of perturbations ∆.
Output: Patch pi

1: Initialize the patch pi to be zeros.
2: for j ∈ {1, 2, ...} do
3: for (x,b) ∈ Z do
4: Choose t from T .
5: Randomly choose δ from ∆
6: x′ ← Adet(p, x,b, t, δ) ▷ apply patches
7: gp ← ∇pJdet(x

′,b, i, f)
8: pi ← pi − ϵ · sign(gp) ▷ reversed FGSM
9: end for

10: end for
11: return pi

for each bounding box b ∈ b, (ii) include p in x at each
bounding box b, and (iii) apply perturbation δ to x. Note
that in this case, a separate patch is added to x for each
object in x with ground truth category i.

Corruption-aware vs Corruption-agnostic. We first
verify the efficacy of our method through a corruption-
aware setting, where we train and test with the same type
of corruption applied (say frost). We then leverage a com-
plex setting, in which we train with no corruption applied.
In this way, neither model nor the patch is aware of the test
corruption during training. We demonstrate the two training
procedures in Figure 2.

Multiple objects. Previous adversarial patch algo-
rithms [5, 20] focus on optimizing the patch for a single
object in each image at each gradient step. However, in
detection, there may be multiple patches; as a consequence,
patches may be occluded by other patches.

We handle overlapping patches by backpropagating
through the patch application function across all patches,
ensuring that only the visible portion of each patch is up-
dated by each gradient step.

4.3. Cross Model Patch Training

A batch of detector patch attack works investigate the
transferability across different models [16,20,26] in a naive
floating patch setup. In a similar and more realistic set-
ting, [28] designed wearable adversarial patches and stated
that it was impossible to achieve cross-model transferabil-
ity. Intuitively, we know the transferability of attack meth-
ods should be easier to achieve as the break of either the
classification head or the regression head could cause a mis-
detection. Yet for the patch defense setting, we must im-
prove both heads to improve the overall performance.
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Corrupt: NoPatch, Patch Clear: NoPatch, Patch

Figure 4. Example images of two comparison groups to evalu-
ate our efficacy of the angelic patch. The left two images are for
corrupted testing scenarios; the right two images denote the no
corruption (e.g. clear weather) testing scenarios, both for whether
the objects wear a patch. Notice that most of the corruptions in
ImageNet-C are random corruptions with different appearances
even for a single corruption category. However, we validate our
patch from the average performance of the large testset.

Avg. Precision
IoU Area

0.5:0.95 0.5 0.75 S M L
Corrupt, NoPatch 14.0 24.3 22.1 0.6 12.3 26.8

Corrupt, Patch 22.0 39.9 34.1 2.24 15.6 35.9

Avg. Recall
#Dets Area

1 10 100 S M L
Corrupt, NoPatch 8.9 23.6 27.0 2.1 19.3 37.3

Corrupt, Patch 17.6 37.3 41.1 9.9 32.0 54.3

Table 1. mAP and mAR comparison results for corruption-aware
Faster R-CNN patches over seven categories. For the category-
wise table, please refer to the supplementary. Results show our
patch improves both mAP and mAR in the corrupted setting.

To this end, we propose to evaluate our method in both
the common single model transferability and a novel effi-
cient double model transferability. Specifically, when we
train a patch on one pretrained detector f1, then apply the
patch to another detector f2, the performance improvement
is inconsistent on different object categories. In this way,
we constructed the double model transferability. That is,
we alternatingly apply signed gradients of two different de-
tectors to update a single patch. Thus, we obtain a single
patch that is robust to both detectors, encouraging our patch
to generalize to new detectors.

5. Experiments
We empirically justify the efficacy of the proposed an-

gelic patches in both the corruption-aware and corruption-
agnostic settings on two detectors, Faster R-CNN [22] and
SSD [19], over the MS-COCO dataset [18] (Section 5.1 and
5.2). Then, we evaluate our patch for spatial robustness
and cross-model transferability (Section 5.3 and 5.4). Fi-
nally, we printed out the angelic patches to a set of various
real-world experiments to demonstrate the practical value
of angelic patches (Section 5.6). For each experiment, we
provide statistics and sample visualization images. For full
results, please refer to the supplementary.

Experimental Setup. We consider both the one-stage and
two-stage detectors: Faster R-CNN [22] and SSD [19], re-

spectively. We apply patches to objects in the MS-COCO
dataset [18]. As we will consider physical patches applied
to real-world objects, we focus on seven categories that are
easy to get in the real world: “bus”, “cup”, “person”, “bot-
tle”, “bowl”, “laptop”, and “chair”.

Baselines. We consider two groups of comparison setups:
(“Corrupt, NoPatch”), (“Corrupt, Patch”); and (“Clear,
NoPatch”), (“Clear, Patch”), see Figure 4. Here “Patch” se-
tups are our results. For more details about the experiment
setups, please refer to Appendix A.

Metrics. For evaluation, we consider two sets of metrics.
First, we use the standard set of COCO object detection
evaluation metrics [18], consisting of the average precision
(AP) at the different intersection of union (IoU) thresholds
(i.e., 0.5 : 0.05 : 0.95), and the average recall (AR) metrics
for each category. Second, we use the AR at IoU 0.5 for
high confidence (i.e., confidence > 0.5) predictions.

5.1. Corruption-aware Angelic Patches

For the perturbation set ∆, here we consider frost of
severity level 3 from ImageNet-C [11] for our corruption-
aware training and testing. For a set of patch transfor-
mations T , we use zooming in/out to mimic the varied
viewpoints we expect for real-world patches. Intuitively,
corruption-aware patches achieve good performance more
easily since they are aware of the corruption distribution in
identifying patches. The mAP and mAR results for Faster
R-CNN are shown in Table 1.

For each object category, the primary average precision
metrics (0.5 : 0.05 : 0.95) of patched images improve
by a large margin. In particular, this improvement corre-
sponds to fewer false positive detections, indicating more
precise bounding box locations on patched images. On the
other hand, the impressive improvements in average recall
demonstrate that our patch helps the detector miss fewer
ground truth detections. Detection samples in Figure 5
demonstrate how our corruption-aware angelic patches help
improve detection performance under corrupted images.

In addition, we show the easier-to-understand valid de-
tection accuracy in Figure 5a and Figure 5b using our sec-
ond metric. Our patch increases performance by large mar-
gins in each category, both with and without corruption. We
see as much as a two to three times improvement in ac-
curacy in some categories. In particular, we find that for
corruptions that cause greater degradation in performance,
our patch provides the largest gain in performance. Thus,
our patches work well at recovering performance in settings
where shifts and corruptions reduce performance. In the
next section, we consider a more challenging setting where
corruptions are unseen in patch construction.
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(a) Faster R-CNN

(b) SSD.

Figure 5. We show corruption-aware AR (high IoU high confidence) of the two detectors in both the corrupted and the clear setting (no
patch results, patch results). Results show drastic improvements on patched images in both detectors.

Figure 6. High IoU high confidence recall for corruption-agnostic
Faster R-CNN and SSD patch under corruption on COCO. For
each color, the first bar in red is the performance on original im-
ages, the second bar in blue is the performance on patched images.

5.2. Corruption-agnostic Angelic Patches

We now leverage our approach in the more challeng-
ing corruption-agnostic setting, where the goal is to im-
prove performance without prior knowledge of corruption.
For corruption-agnostic experiments, we broadly consider
15 different corruptions including weather corruptions like
frost and fog and lighting corruptions like brightness and
contrast. We applied the same set of patch transformations
T as in the corruption-aware setting. In this case, we trained
patches without any corruption. Then, we applied corrup-
tions to the patched and clean image during testing.

As before, we show the high IoU high confidence recall
for both detectors under 15 corruption types in Figure 6. We
observe reasonable increases for both detectors in the ma-
jority of the corruption categories. In Table 2, we show key
statistics of mean average precision (AP) and mean average
recall (AR) across all seven categories of frost corruption
in comparison with the corruption-aware results in Table
1. Our results demonstrate that despite no prior knowledge
of the corruption during training, the corruption-agnostic
patch is still effective at improving performance in the pres-

Avg. Precision
IoU Area

0.5:0.95 0.5 0.75 S M L
Corrupt, NoPatch 14.3 24.9 20.9 1.2 10.4 26.5

Corrupt, Patch 17.8 33.1 27.2 3.3 12.3 31.8

Avg. Recall
#Dets Area

1 10 100 S M L
Corrupt, NoPatch 8.7 23.4 26.6 6.2 17.2 37.0

Corrupt, Patch 14.4 32.8 37.9 9.6 25.3 49.6

Table 2. mAP and mAR results for corruption-agnostic Faster
R-CNN patch on the seven selected categories in the corrupted
COCO dataset. For each corruption, the first row is the perfor-
mance on the original corrupted images, the second row is the per-
formance on patched images.

ence of corruption applied at test time. The agnostic patch
achieved fewer improvements on single corruption (frost)
when compared to the aware setting. The results agree with
our intuition that exposing the corruption distribution dur-
ing training helps with a performant patch.

We also provide the training curves of both settings in
Figure 8 where both losses improved to lower than on the
corresponding no-patch images.

5.3. Spatial Transformation
We then move on to a more realistic setting, in which we

apply random affine transformations on the whole patched
image. We show detection accuracies in clear and corrupted
settings for both detectors in Figure 7. Example images
are also provided on the left. We observe that despite no
explicit spatial transformation augmentation applied during
training, our patch still improves the spatial robustness of
both object detectors even more significantly than no trans-
formation testing. This enhances our confidence in applying
the patch to the real world.

5.4. Transferability
Imagine the real-world scenario that our pedestrian

wears an angelic raincoat, there could be autonomous cars
from different companies driving on the road. The com-
panies may deploy different perception models for system
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(a) Faster R-CNN

(b) SSD

Figure 7. Spatial transformation results for both detectors. We provide corrupted (left) and clear (right) results.

(a) Faster R-CNN aware. (b) Faster R-CNN agnostic.
Figure 8. Sampled training curves for classification loss and re-
gression loss on the person category.

consideration. In that case, the feature of cross-model trans-
ferability on both the known and unknown detector models
would boost our protection for pedestrians.

As stated in a prior work [28], we observed cross-model
improvements on only some of the categories when trained
on a single detector and tested on the other. However, we
pushed the experiment to a double-model setting, where we
achieve transferability on all target object categories. In
this case, we update the patch with two pretrained detec-
tors during training by a simple iterative reversed FGSM
procedure. Here we train our patch with SSD and Faster-
RCNN, and evaluate its transferability with two object de-
tectors from torchvision [21] including FCOS [29], Reti-
naNet [17] and the well-known YOLOv5 [1]. We show high
confidence (> 0.5) recall and precision results in Figure 9.

(a) FCOS

(b) RetinaNet

(c) YOLOv5

Figure 9. Cross model results.

We see drastic performance improvements for all three un-
seen models. We also provide the performance of single
detector transferability results in supplementary.

5.5. Extra Results

Considering that it could be hard to control all objects
in real deployments, we evaluate under two less satisfying
scenarios. The first scenario is when not all objects wear
the patch, and the second scenario is when the patch is not
placed at the center of the objects. High IoU and high con-
fidence recall results are shown in Figure 11 and Figure 12,
respectively. Again, our patch gains an advantage under
both cases.

5.6. Physical Patch Experiments

Finally, we demonstrate the critical property that our
patches continue to work well when applied physically in
new real-world scenes. To this end, we printed out our
patches and attached them to real-world objects to verify
that our patch continues to work well. We collected videos
in four different environments from different angles for each
category and converted each video to approximately 100
image frames. We controlled the target object moving tra-
jectory to ensure the same object videos behave as similarly
as possible before and after attaching the patches.

We show results in Table 3; we observed average accu-
racy improvements of 30% with the patch applied. To vi-
sualize the patch performance, we show example images
in Figure 10. Following our perspective experiments in the
previous section, we tested not only front-facing patches but
also unseen viewpoints such as extremely skewed patches,
e.g., on cups and bottles. We also tested our patches on
deformable objects such as laptops in extreme poses. We
tested under different poses for the “person” category, in-
cluding jumping jacks, partial occlusion, sitting, etc. Our
patches performed well across all viewpoints and poses.

6. Conclusion
We have proposed angelic patches, a promising strat-

egy enabling users to improve their detection probability
on third-party detectors. Our extensive experimental re-
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Category Env Faster R-CNN SSD

Corrupt,
NoPatch

Corrupt,
Patch

Clear,
NoPatch

Clear,
Patch

Corrupt,
NoPatch

Corrupt,
Patch

Clear,
NoPatch

Clear,
Patch

Cup Env01 0.0% 41.2% 100.0% 100.0% 0.0% 12.0% 100.0% 100.0%
Env02 5.3% 42.1% 100.0% 89.5% 4.0% 12.0% 68.4% 73.7%
Env03 14.3% 35.7% 96.4% 100.0% 0.0% 28.0% 100.0% 100.0%
Env04 0.0% 23.8% 90.5% 100.0% 13.4% 30.0% 100.0% 100.0%

Person Env01 100.0% 100.0% 100% 100% 77.8% 100.0% 100.0% 100.0%
Env02 25.0% 35.4% 81.3% 85.4% 0.0% 8.5% 31.2% 46.8%
Env03 29.4% 62.7% 85.7% 85.7% 27.9% 60.5% 76.7% 88.4%
Env04 74.0% 100.0% 100.0% 100.0% 36.0% 56.0% 68.0% 64.0%

Bottle Env01 15.7% 73.7% 100.0% 100.0% 0.0% 56.3% 50.0% 88.9%
Env02 31.6% 84.2% 100.0% 100.0 % 0.0% 51.1% 86.4% 95.5%
Env03 17.6% 47.1% 100.0% 100.0% 26.3% 78.9% 57.9% 78.9%
Env04 75.0% 100.0% 100.0 % 100.0% 4.3% 17.4% 66.2% 69.6%

Laptop Env01 38.1% 66.7% 100.0% 100.0% 12.7% 45.0% 100% 100%
Env02 0.0% 19.2% 96.2% 96.2% 23.3% 72.3% 93.8% 100%
Env03 0.0% 41.2% 100.0% 100.0% 0.0% 51.3% 100% 100%
Env04 0.0% 19.1% 100.0% 100.0 % 6.7% 27.8% 100% 100%

Table 3. Real-world high IoU high confidence accuracy w/w.o corruption-aware patch in varied scenes under frost corruptions.

Faster
R-CNN

SSD

Bottle Person Cup Laptop

NoPatch

Clear

Bottle Person Cup Laptop

Figure 10. Example Real-world predictions under frost corruptions and clear/no patch images for comparison. The objects with patches
(on the left) had a much higher chance of being detected under the frost corruption.

sults demonstrate that our approach can significantly im-
prove detection probability in both the corruption-aware

(a) FRCNN

(b) SSD

Figure 11. High IoU high confidence results when patches are not
applied on all the object instances (partial).

Figure 12. High IoU high confidence results when patches are not
applied in the center of object instances (random placed in bbox).

and corruption-agnostic settings, including in the physical
patch setting representative of many use cases in safety-
critical settings. We believe our patches can be used to
make many important objects more visible to third-party
detectors—e.g., in the autonomous car setting: pedestrians,
other vehicles, signs, traffic cones, and barriers, among oth-
ers. Most importantly, we designed patches that transfer
well across multiple detectors.

Future work is needed to understand whether our patches
work well for natural covariant shifts. In addition, while
we have demonstrated that our approach does not reduce
performance on average (e.g., of other objects in the scene),
it is important to validate that our patches do not interfere
with detecting other objects (e.g., unpatched pedestrians) in
more realistic scenarios.
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Philip HS Torr, and Bernard Ghanem. Combating adver-
saries with anti-adversaries. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pages
5992–6000, 2022. 2

[4] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin
Kwok. Synthesizing robust adversarial examples. In Inter-
national conference on machine learning, pages 284–293.
PMLR, 2018. 2, 3

[5] Tom Brown, Dandelion Mane, Aurko Roy, Martin Abadi,
and Justin Gilmer. Adversarial patch. 2017. 2, 4

[6] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmen-
tation with a reduced search space. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition workshops, pages 702–703, 2020. 2

[7] Samuel Dodge and Lina Karam. A study and comparison
of human and deep learning recognition performance under
visual distortions. In 2017 26th international conference on
computer communication and networks (ICCCN), pages 1–
7. IEEE, 2017. 1

[8] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig
Schmidt, and Aleksander Madry. Exploring the landscape of
spatial robustness. In International conference on machine
learning, pages 1802–1811. PMLR, 2019. 1, 2

[9] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li,
Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi
Kohno, and Dawn Song. Robust physical-world attacks on
deep learning visual classification. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 1625–1634, 2018. 2

[10] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014. 1, 2, 3

[11] Dan Hendrycks and Thomas G Dietterich. Benchmarking
neural network robustness to common corruptions and sur-
face variations. arXiv preprint arXiv:1807.01697, 2018. 1,
5

[12] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and
Dawn Song. Using self-supervised learning can improve
model robustness and uncertainty. Advances in neural in-
formation processing systems, 32, 2019. 2

[13] Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph,
Justin Gilmer, and Balaji Lakshminarayanan. Augmix: A
simple data processing method to improve robustness and
uncertainty. arXiv preprint arXiv:1912.02781, 2019. 2

[14] Hossein Hosseini, Baicen Xiao, and Radha Poovendran.
Google’s cloud vision api is not robust to noise. pages 101–
105, 12 2017. 1

[15] Can Kanbak, Seyed-Mohsen Moosavi-Dezfooli, and Pascal
Frossard. Geometric robustness of deep networks: analysis
and improvement. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4441–
4449, 2018. 1

[16] Mark Lee and Zico Kolter. On physical adversarial patches
for object detection. arXiv preprint arXiv:1906.11897, 2019.
2, 4

[17] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017. 7

[18] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft coco: Common objects in context. In
David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuyte-
laars, editors, Computer Vision – ECCV 2014. Springer In-
ternational Publishing, 2014. 5

[19] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European con-
ference on computer vision, pages 21–37. Springer, 2016. 3,
5

[20] Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song, Hai Li,
and Yiran Chen. Dpatch: An adversarial patch attack on
object detectors. arXiv preprint arXiv:1806.02299, 2018. 2,
4

[21] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 7

[22] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015. 3, 5

[23] Evgenia Rusak, Steffen Schneider, Peter Gehler, Oliver
Bringmann, Wieland Brendel, and Matthias Bethge. Adapt-
ing imagenet-scale models to complex distribution shifts
with self-learning. arXiv preprint arXiv:2104.12928, 2021.
1

[24] Hadi Salman, Andrew Ilyas, Logan Engstrom, Sai Vemprala,
Aleksander Madry, and Ashish Kapoor. Unadversarial exam-
ples: Designing objects for robust vision. Advances in Neu-
ral Information Processing Systems, 34:15270–15284, 2021.
2

[25] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and
Michael K Reiter. Accessorize to a crime: Real and stealthy
attacks on state-of-the-art face recognition. In Proceedings
of the 2016 acm sigsac conference on computer and commu-
nications security, pages 1528–1540, 2016. 2

[26] Dawn Song, Kevin Eykholt, Ivan Evtimov, Earlence Fernan-
des, Bo Li, Amir Rahmati, Florian Tramer, Atul Prakash, and
Tadayoshi Kohno. Physical adversarial examples for object
detectors. In 12th USENIX workshop on offensive technolo-
gies (WOOT 18), 2018. 2, 4

24646



[27] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013. 2

[28] Simen Thys, Wiebe Van Ranst, and Toon Goedemé. Fooling
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