
Measuring Neural Net Robustness?

Osbert Bastani1, Yani Ioannou2, Leonidas Lampropoulos3, Dimitrios Vytiniotis4,
Aditya V. Nori4, and Antonio Criminisi4

1 MIT
obastani@csail.mit.edu
2 University of Cambridge

yai20@cam.ac.uk
3 University of Pennsylvania

llamp@seas.upenn.edu
4 Microsoft Research

{dimitris, adityan, antcrim}@microsoft.com

Abstract. Neural nets have been shown to be susceptible to adversarial
examples, where a small perturbation to an input can cause it to become
mislabeled. We propose metrics for measuring the robustness of a neural
net and devise a novel algorithm for approximating them. We show
how existing approaches to improving robustness “overfit” to adversarial
examples generated using a specific algorithm.

Recent work [6] shows that it is often possible to construct an input mislabeled
by a neural net by perturbing a correctly labeled input by a tiny amount in a
carefully chosen direction. Lack of robustness can be problematic in a variety of
settings, such as changing camera lens or lighting conditions, successive frames
in a video, or adversarial attacks in security-critical applications [5].

Approaches have since been proposed to improve robustness [2]. However,
work in this direction has been handicapped by the lack of objective measures of
robustness. A typical approach to improving the robustness of a neural net f is to
use an algorithm A to find adversarial examples, augment the training set with
these examples, and train a new neural net f ′ [2]. Robustness is then evaluated
by using the same algorithm A to find adversarial examples for f ′—if A discovers
fewer adversarial examples for f ′ than for f , then f ′ is concluded to be more
robust than f . However, f ′ may have overfit to adversarial examples generated
by A—in particular, a different algorithm A′ may find as many adversarial
examples for f ′ as for f . Having an objective robustness measure is vital not
only to reliably compare different algorithms, but also to understand robustness
of production neural nets—e.g., when deploying a login system based on face
recognition, a security team may need to evaluate the risk of an attack using
adversarial examples.

Thus, it is critical that we develop algorithms for measuring the robustness
of neural nets [4,3]. In this paper, we propose scalable algorithms for measuring
robustness. Using our techniques, we show evidence that existing algorithms
? This paper is based on [1].



designed to improve the robustness of neural nets can overfit to adversarial
examples identified a specific algorithm.

Defining robustness. We begin by formalizing the notion of robustness in [2,6].
Consider a classifier f : X → L, where X ⊆ Rn is the input space and L =
{1, ..., L} are labels. Intuitively, f is robust at x∗ ∈ X if a “small” perturbation
to x∗ does not affect the assigned label. We are interested in perturbations
sufficiently small that they do not affect human classification; an established
condition is ‖x−x∗‖∞ ≤ ε for some parameter ε. We say f is (x∗, ε)-robust if for
every x such that ‖x− x∗‖∞ ≤ ε, f(x) = f(x∗). Then, the pointwise robustness
ρ(f,x∗) of f at x∗ is the minimum ε for which f fails to be (x∗, ε)-robust:

ρ(f,x∗)
def
= inf{ε ≥ 0 | f is not (x∗, ε)-robust}. (1)

Finally, the adversarial frequency

φ(f, ε)
def
= Prx∗∼D[ρ(f,x∗) ≤ ε]

measures how often f fails to be (x∗, ε)-robust. In other words, if f has high
adversarial frequency, then it fails to be (x∗, ε)-robust for many inputs x∗.

Computing robustness. We give a high-level overview of how we compute
robustness; see [1] for details. We compute ρ(f, ε) by expressing (1) as a system
C of linear constraints. For a neural net f with ReLU activations, the constraint
f(x) = ` can be expressed as constraints Cf (x, `); i.e., f(x) = ` if and only if
Cf (x, `) is satisfiable. Then, ρ(f,x∗) can be computed as follows:

ρ(f,x∗) = min
` 6=`∗

ρ(f,x∗, `) (2)

ρ(f,x∗, `)
def
= inf{ε ≥ 0 | Cf (x, `) ∧ ‖x− x∗‖∞ ≤ ε satisfiable}. (3)

Solving (3) is typically intractable. To recover tractability, we approximate (3)
by constraining the search to a convex region Z(x∗) around x∗, which we call a
convex restriction. Furthermore, we devise an iterative approach to solving the
resulting linear program that produces an order of magnitude speed-up.

Improving robustness. We can use our algorithm to compute adversarial
examples. Given x∗, the value of x computed by the optimization procedure
used to solve (3) is an adversarial example for x∗ with ‖x − x∗‖∞ = ρ̂(f,x∗).
Then, we use fine-tuning to reduce a neural net’s susceptibility to adversarial
examples [2]. First, we use an algorithm A to compute adversarial examples for
each x∗ ∈ Xtrain and add them to the training set. Then, we continue training f
on a the augmented training set at a reduced training rate.

Empirical results. We evaluate our approach on a deep convolutional neural
net f0 for MNIST, comparing our algorithm ALP to the baseline AL-BFGS from [6].
First, we improve the robustness of f0 using adversarial examples computed by



(a) (b)

Fig. 1: The (unnormalized) adversarial frequency φ(f, ε), for f0 (black), fL-BFGS
(red), and fLP (blue), estimated using (a) AL-BFGS and (b) ALP.

AL-BFGS and ALP to obtain fL-BFGS and fLP, respectively. In Figure 1, we plot
the adversarial frequency φ(f, ε) as a function of ε, estimated using (a) AL-BFGS
and (b) ALP, for each f0 (black), fLP (red), and fL-BFGS (blue).

According to the baseline estimate of φ(f, ε) in Figure 1 (a), fL-BFGS is
similarly robust to fLP, and both are more robust than f0. However, according
to our estimate of φ(f, ε) in Figure 1 (b), fLP is substantially more robust
than fL-BFGS. In particular, the neural net fL-BFGS fine-tuned using the baseline
algorithm does not learn the adversarial examples found by our algorithm, whereas
the neural net fLP fine-tuned using our algorithm learns both the adversarial
examples found by our algorithm and those found by the baseline algorithm.

Finally, we have implemented our approach for the CIFAR-10 network-in-
network (NiN) neural net, which has an accuracy of 91.3%. NiN suffers severely
from adversarial examples—our estimate of its adversarial frequence is 61.5%. For
NiN fine-tuned using our algorithm, adversarial frequency is reduced to 59.6%,
though accuracy is also reduced to 90.4%.

Conclusion We have shown how to formulate and measure robustness of neural
nets. Future work includes devising better approaches for improving robustness,
and studying robustness properties beyond pointwise robustness.

References

1. Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis,
Aditya V. Nori, and Antonio Criminisi. Measuring neural net robustness with
constraints. In NIPS, 2016.

2. Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harness-
ing adversarial examples. In ICLR, 2015.

3. Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of
deep neural networks. In CAV, 2017.

4. Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.
Reluplex: An efficient smt solver for verifying deep neural networks. In CAV, 2017.

5. Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami. Practical black-box attacks against machine learning. In
ASIACCS, 2017.



6. Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In ICLR,
2014.


	Measuring Neural Net Robustness

