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Abstract. Neural nets have been shown to be susceptible to adversarial
examples, where a small perturbation to an input can cause it to become
mislabeled. We propose metrics for measuring the robustness of a neural
net and devise a novel algorithm for approximating them. We show
how existing approaches to improving robustness “overfit” to adversarial
examples generated using a specific algorithm.

Recent work [6] shows that it is often possible to construct an input mislabeled
by a neural net by perturbing a correctly labeled input by a tiny amount in a
carefully chosen direction. Lack of robustness can be problematic in a variety of
settings, such as changing camera lens or lighting conditions, successive frames
in a video, or adversarial attacks in security-critical applications [5].

Approaches have since been proposed to improve robustness [2]. However,
work in this direction has been handicapped by the lack of objective measures of
robustness. A typical approach to improving the robustness of a neural net f is to
use an algorithm A to find adversarial examples, augment the training set with
these examples, and train a new neural net f ′ [2]. Robustness is then evaluated
by using the same algorithm A to find adversarial examples for f ′—if A discovers
fewer adversarial examples for f ′ than for f , then f ′ is concluded to be more
robust than f . However, f ′ may have overfit to adversarial examples generated
by A—in particular, a different algorithm A′ may find as many adversarial
examples for f ′ as for f . Having an objective robustness measure is vital not
only to reliably compare different algorithms, but also to understand robustness
of production neural nets—e.g., when deploying a login system based on face
recognition, a security team may need to evaluate the risk of an attack using
adversarial examples.

Thus, it is critical that we develop algorithms for measuring the robustness
of neural nets [4,3]. In this paper, we propose scalable algorithms for measuring
robustness. Using our techniques, we show evidence that existing algorithms
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designed to improve the robustness of neural nets can overfit to adversarial
examples identified a specific algorithm.

Defining robustness. We begin by formalizing the notion of robustness in [2,6].
Consider a classifier f : X → L, where X ⊆ Rn is the input space and L =
{1, ..., L} are labels. Intuitively, f is robust at x∗ ∈ X if a “small” perturbation
to x∗ does not affect the assigned label. We are interested in perturbations
sufficiently small that they do not affect human classification; an established
condition is ‖x−x∗‖∞ ≤ ε for some parameter ε. We say f is (x∗, ε)-robust if for
every x such that ‖x− x∗‖∞ ≤ ε, f(x) = f(x∗). Then, the pointwise robustness
ρ(f,x∗) of f at x∗ is the minimum ε for which f fails to be (x∗, ε)-robust:

ρ(f,x∗)
def
= inf{ε ≥ 0 | f is not (x∗, ε)-robust}. (1)

Finally, the adversarial frequency

φ(f, ε)
def
= Prx∗∼D[ρ(f,x∗) ≤ ε]

measures how often f fails to be (x∗, ε)-robust. In other words, if f has high
adversarial frequency, then it fails to be (x∗, ε)-robust for many inputs x∗.

Computing robustness. We give a high-level overview of how we compute
robustness; see [1] for details. We compute ρ(f, ε) by expressing (1) as a system
C of linear constraints. For a neural net f with ReLU activations, the constraint
f(x) = ` can be expressed as constraints Cf (x, `); i.e., f(x) = ` if and only if
Cf (x, `) is satisfiable. Then, ρ(f,x∗) can be computed as follows:

ρ(f,x∗) = min
` 6=`∗

ρ(f,x∗, `) (2)

ρ(f,x∗, `)
def
= inf{ε ≥ 0 | Cf (x, `) ∧ ‖x− x∗‖∞ ≤ ε satisfiable}. (3)

Solving (3) is typically intractable. To recover tractability, we approximate (3)
by constraining the search to a convex region Z(x∗) around x∗, which we call a
convex restriction. Furthermore, we devise an iterative approach to solving the
resulting linear program that produces an order of magnitude speed-up.

Improving robustness. We can use our algorithm to compute adversarial
examples. Given x∗, the value of x computed by the optimization procedure
used to solve (3) is an adversarial example for x∗ with ‖x − x∗‖∞ = ρ̂(f,x∗).
Then, we use fine-tuning to reduce a neural net’s susceptibility to adversarial
examples [2]. First, we use an algorithm A to compute adversarial examples for
each x∗ ∈ Xtrain and add them to the training set. Then, we continue training f
on a the augmented training set at a reduced training rate.

Empirical results. We evaluate our approach on a deep convolutional neural
net f0 for MNIST, comparing our algorithm ALP to the baseline AL-BFGS from [6].
First, we improve the robustness of f0 using adversarial examples computed by
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Fig. 1: The (unnormalized) adversarial frequency φ(f, ε), for f0 (black), fL-BFGS
(red), and fLP (blue), estimated using (a) AL-BFGS and (b) ALP.

AL-BFGS and ALP to obtain fL-BFGS and fLP, respectively. In Figure 1, we plot
the adversarial frequency φ(f, ε) as a function of ε, estimated using (a) AL-BFGS
and (b) ALP, for each f0 (black), fLP (red), and fL-BFGS (blue).

According to the baseline estimate of φ(f, ε) in Figure 1 (a), fL-BFGS is
similarly robust to fLP, and both are more robust than f0. However, according
to our estimate of φ(f, ε) in Figure 1 (b), fLP is substantially more robust
than fL-BFGS. In particular, the neural net fL-BFGS fine-tuned using the baseline
algorithm does not learn the adversarial examples found by our algorithm, whereas
the neural net fLP fine-tuned using our algorithm learns both the adversarial
examples found by our algorithm and those found by the baseline algorithm.

Finally, we have implemented our approach for the CIFAR-10 network-in-
network (NiN) neural net, which has an accuracy of 91.3%. NiN suffers severely
from adversarial examples—our estimate of its adversarial frequence is 61.5%. For
NiN fine-tuned using our algorithm, adversarial frequency is reduced to 59.6%,
though accuracy is also reduced to 90.4%.

Conclusion We have shown how to formulate and measure robustness of neural
nets. Future work includes devising better approaches for improving robustness,
and studying robustness properties beyond pointwise robustness.
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