
Few-Shot Novel Concept Learning for Semantic Parsing

Soham Dan and Osbert Bastani and Dan Roth
{sohamdan,obastani,danroth}@seas.upenn.edu

University of Pennsylvania

Abstract

Humans are capable of learning novel con-
cepts from very few examples; in contrast,
state-of-the-art machine learning algorithms
typically need thousands of examples to do
so. In this paper, we propose an algorithm for
learning novel concepts by representing them
as programs over existing concepts. This way
the concept learning problem is naturally a
program synthesis problem and our algorithm
learns from a few examples to synthesize a
program representing the novel concept. In
addition, we perform a theoretical analysis of
our approach for the case where the program
defining the novel concept over existing one
is context-free. We show that given a learned
grammar-based parser and a novel production
rule, we can augment the parser with the pro-
duction rule in a way that provably generalizes.
We evaluate our approach by learning concepts
in the semantic parsing domain extended to
the few-shot novel concept learning setting,
showing that our approach significantly outper-
forms end-to-end neural semantic parsers.

1 Introduction

A key feature of human intelligence is few-shot
learning—namely, their ability to learn novel con-
cepts from as few as one or two examples. In
contrast, current deep learning approaches face sig-
nificant challenges with such tasks. This is a lim-
itation of deep learning across many applications,
since in many domains, there are a large number
of concepts, and for many, there are only a few
examples available for learning.

There has been substantial recent interest in
studying few-shot learning in the context of seman-
tic parsing (Lake, 2019; Lake and Baroni, 2018;
Loula et al., 2018), which is the task of mapping
natural language utterances to an executable mean-
ing representation (Mooney, 2007). This setting

http://cogcomp.org/page/publication_view/952

provides a rich opportunity for concept learning
since concepts can naturally be grounded in sym-
bolic representations in the form of programs. As a
consequence, there is an opportunity to learn novel,
unseen concepts in a compositional way: the novel
concept can be represented as a composition of ex-
isting concepts, and can then be composed with ex-
isting concepts to form more complex ones. While
this compositional structure exists in many natural
language tasks, it is explicit in semantic parsing.

As a concrete example, consider the novel con-
cept 4 times in the utterance run 4 times, where run
is an existing concept. The program representing 4
times is the program λx . (REPEAT 4 x), which is
composed with the program RUN representing run
to form the program (REPEAT 4 RUN).

In this paper, we propose a novel algorithm for
learning novel concepts for semantic parsing. At a
high level, leveraging the fact that concepts can be
represented as programs, our algorithm is based on
program synthesis (also known as program induc-
tion). In particular, given a set of input-output ex-
amples, synthesis algorithms search over the space
of possible programs to identify one that is consis-
tent with these examples; they can often find the
correct program from very few examples.

The key challenge in applying program synthe-
sis to our setting is that the given training examples
are for the whole semantic parsing task rather than
for the specific sub-program corresponding to the
novel concept. In more detail, we consider the
problem of learning a semantic parser from deno-
tations alone—i.e., each training example consists
of an utterance (the user’s input) labeled with the
execution of the corresponding program (the user’s
desired output) rather than the program itself. We
assume that the utterance contains a single new nat-
ural language concept (e.g., a word or phrase) that
we are trying to learn (i.e., synthesize a program
representing that word or phrase). To address this
issue, our algorithm proceeds as follows:

http://cogcomp.org/page/publication_view/952

Figure 1: A pictorial overview of our proposed algorithm for concept learning. Using a single teaching example,
our semantic parser is able to learn the 4 times concept and use it in unseen contexts.

• Sketch synthesis: Since we already know
the remaining concepts in the utterance, we
want to avoid synthesizing them as well. To
this end, our algorithm first synthesizes a
sketch (Solar-Lezama, 2008), which is an in-
complete program where one of its expres-
sions has been left as a hole that remains to be
filled in. This hole is supposed to be filled by
the novel concept we are trying to synthesize.

• Hole synthesis: Next, our algorithm enumer-
ates through possible sub-programs to use
to fill the hole, with the goal of identifying
one such that the entire program evaluates to
the user’s desired output. The resulting sub-
program is our synthesized representation of
the novel concept.

Finally, whenever the novel concept is encountered
in future examples, we can substitute it with the
synthesized sub-program.

Next, we perform a theoretical analysis of our
approach, which is designed to more generally elu-
cidate why an approach such as ours can enable
few-shot learning of novel concepts. In our anal-
ysis, we assume that a representation of the novel
concept has already been synthesized; instead, our
goal is to illustrate why augmenting the existing
model with this new concept can generalize well.
In particular, the main issue is that the novel con-
cept can result in a shift in the distribution of de-
cisions that must be learned by the model (e.g.,
application of parsing rules). We focus on the prob-
lem of parsing context-free grammars, which is
simpler since it is a classification problem instead
of a structured prediction problem. Then, we show
that assuming the learned model is grammar-based
(i.e., learn which production rules are in the gram-
mar), then augmenting it with the novel concept
(i.e., a novel production rule) can generalize well.

Finally, we experimentally evaluate our ap-
proach on two semantic parsing benchmarks,
SCAN (Lake and Baroni, 2018) and GeoQuery
(Zelle, 1996), extended to our problem of few-shot
novel concept learning. We demonstrate that while
end-to-end deep learning baselines fail to learn the
novel concepts, our approach does so effectively.

In summary, our key contributions are:
• We propose a novel algorithm, Substitution-

Driven Concept Learning (SDCL), for synthe-
sizing programmatic representations of novel
concepts in the context of semantic parsing.

• We prove generalization bounds on our ap-
proach adapted to context-free parsing; the
key challenge is bounding the distribution
shift induced by adding the novel concept.

• We empirically validate our approach on
the extended SCAN and GeoQuery datasets,
showing that SDCL substantially outperforms
end-to-end deep learning approaches.

Example. Consider Fig. 1. The user provides
a single example of the novel concept 4 times—
i.e., an utterance run 4 times and walk and its de-
notation RUN RUN RUN RUN WALK (but not
the program (REPEAT 4 RUN) WALK). First,
we infer the type of 4 times by substituting
it with other concepts; in particular, when 4
times is substituted with twice or thrice, we ob-
serve that the resulting sentence is grammatical.
For these substitutions, the semantic parser pro-
duces programs (REPEAT 2 RUN) WALK and
(REPEAT 3 RUN) WALK, respectively. Then, we
compute the difference of these programs to derive
the sketch (REPEAT ?? RUN) WALK. Finally,
we enumerate implementations of ??; filling ??
with 4 produces (REPEAT 4 RUN) WALK, whose
denotation is RUN RUN RUN RUN WALK, as

desired. In the future, given an unlabeled utter-
ance jump after walk 4 times, we produce sketch
(REPEAT ?? WALK) JUMP, substitute ?? with 4,
and return WALK WALK WALK WALK JUMP.

2 Related Work

Semantic parsing. Traditional semantic parsers
consist of a grammar, which defines the space
of derivations from the input utterances to out-
put logical forms, along with a model, which
ranks derivations in the grammar in order of likeli-
hood (Kwiatkowksi et al., 2010; Kate and Mooney,
2006; Artzi and Zettlemoyer, 2013). More recently,
deep learning approaches have treated semantic
parsing as a sequence-to-sequence problem directly
mapping the input to the output without use of a
grammar (Dong and Lapata, 2016; Jia and Liang,
2016); this formulation provides a high degree of
flexibility since it does not require designing a
grammar for every new domain. One promising re-
cent approach is to have the neural network decode
a sequence of grammar rules to produce the output
sequence (Krishnamurthy et al., 2017; Dasigi et al.,
2019; Yin and Neubig, 2018); this strategy only
requires a grammar over logical forms (which is
typically available), not one over utterances. In this
work, we investigate an important shortcoming of
deep learning approaches—namely, few-shot learn-
ing of novel concepts. We provide an algorithm
that enables learning novel concepts from a few ex-
amples in the context of deep learning approaches.

Systematicity in deep learning. Prior work has
demonstrated that neural networks to not possess
systematicity (Fodor and Pylyshyn, 1988; Lake
and Baroni, 2018; Lake et al., 2019; Loula et al.,
2018), a property where the capacity to learn cer-
tain concepts implies the capacity to learn novel,
structurally-related concepts. Lake and Baroni
(2018) empirically investigates novel concept learn-
ing on the SCAN dataset. They consider models
that have not seen the concept jump during training,
but only in isolation, where jump is represented by
the program JUMP, whose denotation is also JUMP.
At test time, the models have to correctly predict
the output sequence for jump in various contexts,
e.g., jump and look. Models are expected to be able
to do so since they have seen walk and look and
run and look during training, and are expected to
extrapolate these examples to jump. They find that
several sequence-to-sequence models perform very
poorly on this task. However, the kind of concepts

they use to assess generalization are very limited.
For instance, in SCAN, the jump primitive is an
independent concept with no relation to the exist-
ing concepts such as walk, look, run, after, twice,
around. In contrast, we consider a more general
notion of a novel concept as a program that may be
composed of existing concepts, and compare the
ability of different models as well as our approach
to learn such concepts from few examples.

Data augmentation. Recently, there have been
several approaches attempting to improve system-
aticity of deep neural networks by using data aug-
mentation. One approach, called data recombina-
tion (Jia and Liang, 2016), is to substitute concepts
with other words of the same type. However, their
approach assumes the type of the concept word
is known, whereas we do not make this assump-
tion. Furthermore, their approach is restricted to
shallow concepts similar to the jump concept in
(Lake and Baroni, 2018), and does not extend to
higher-order concepts. Another approach is “Good
Enough Compositional Data Augmentation” (An-
dreas, 2020), which uses overlap with other con-
cepts of the same type in the training data to per-
form data augmentation. In our setting, because
we only provide a single teaching example, there
is no context overlap with other concepts of the
same type in the training data, so their approach
is unable to produce any new examples; thus, they
perform the same as the end-to-end approach.

3 Substitution-Driven Concept Learning

In this section, we describe our neurosymbolic al-
gorithm for synthesizing programmatic representa-
tions of novel concepts from few examples.

3.1 Problem Formulation

We assume that we have already have a trained
semantics parser fθ : Σ∗ → Π, which maps utter-
ances x ∈ X = Σ∗ to programs π = fθ(x), along
with denotational semantics J·K : Π→ Y that maps
programs π to denotations y = JπK.

Now, we consider given a novel concept c, which
is a word (or phrase) that does not occur in the data
used to train fθ. In particular, we assume given
a utterance x ∈ x such that x = x0 c x1, but fθ
cannot be used to parse x. In addition, we assume
the user provides the desired denotation y ∈ Y—
i.e., y = JπK, where π = f∗(x) is the desired
program (which we are not given). Then, our goal

Algorithm 1 Substitution-Driven Concept Learn-
ing (SDCL) Algorithm

procedure LEARNCONCEPT(Semantic parser fθ , Known
concepts Ctrain, Example (x, y) with novel concept c)

π̂ ← SKETCHSYNTH(fθ, Ctrain, x)
h← HOLESYNTH(x, y, π̂)
return h

end procedure
procedure LEVERAGECONCEPT(Semantic parser fθ ,
Known concepts Ctrain, Utterance x with learned concept c,
Program hc for c)

π0 ??π1 ← SKETCHSYNTH(fθ, Ctrain, x)
return Jπ0 hc π1K

end procedure
procedure SKETCHSYNTH(fθ, Ctrain, x)

x0 c x1 ← x
E ← ∅
for c′ ∈ Ctrain s.t. TYPE(c′) = TYPE(c) do

πc′ ← fθ(x0 c
′ x1)

E ← E ∪ {(c′, πc′)}
end for
Compute (π0, π1) s.t. for all (c′, πc′) ∈ E,
πc′ = π0 hc′ π1 for some hc′ ∈ ΠTYPE(c′)

return π0 ??π1

end procedure
procedure HOLESYNTH(x, y, π̂)

x0 c x1 ← x
π0 ??π1 ← π̂
for h ∈ ΠTYPE(c) do

π ← π0 hπ1

if JπK = y then
return h

end if
end for

end procedure

is to infer the program π representing novel concept
c from the given example (x, y).

We assume access to two additional pieces of
information. First, we assume we have a repository
of other concepts c′ ∈ Ctrain, such that fθ can cor-
rectly parse utterances composed of these concepts.
More importantly, we also assume we know the
type of each concept c′ as well as the given concept
c; we describe a heuristic for inferring the type of
c below. In particular, the type of a concept c is
the type of the value Jf∗(c)K. This information
is used by our algorithm to substitute c in x with
other concepts c′ ∈ Ctrain of the same type as c; as
described below, these substitutions are needed to
help construct a sketch for x.

3.2 Overall Algorithm

Our algorithm, which we call Substitution-Driven
Concept Learning (SDCL), is summarized in Algo-
rithm 1. As can be seen, it is divided into two steps:
sketch synthesis (the SKETCHSYNTH subroutine)
and hole synthesis (the HOLESYNTH subroutine).

Sketch synthesis. At a high level, the sketch syn-
thesis subroutine computes a sketch π̂, which is
an incomplete program π̂ = π0 ??π1 with a hole
represented by the symbol ??. We use π̂ to denote
incomplete programs, and π to denote complete
programs. For simplicity, we represent programs
(and partial programs) as sequences, but in our im-
plementation, we represent them as trees.

To synthesize a sketch, this subroutine first sub-
stitutes the novel concept c in x = x0 c x1 with
each known concept c′ ∈ Ctrain that have the
same type as c, to obtain a modified utterance
x′ = x0 c

′ x1. Since the type of c′ is the same,
the resulting utterance x′ is valid, and furthermore,
all concepts in x′ are known; thus, we can run the
learned semantic parser on x′ to obtain a program
πc′ = fθ(πc). By compositionality, the concept c′

should parse to a program hc′ such that the overall
program πc′ omitting hc′ is independent of c′—i.e.,

πc′ = π0 hc′ π1

for some π0, π1. Here, hc′ is a complete program;
we have used h instead of π to indicate that it is
the representative of concept c′. Intuitively, the
pair (π0, π1) represent the portion of the program
corresponding to the context (x0, x1) of c′ in x′.

Finally, this subroutine returns the sketch π̂ =
π0 ??π1 for the original utterance x; in particular,
the hole ?? represents the missing portion of the
program that is supposed to be filled with the pro-
grammatic representation of concept c.

Hole synthesis. Next, our algorithm searches
over possible programs h that can be used to fill
the hole in π̂ = π0 ??π1. In particular, it enumer-
ates programs h of the same type as c, constructs
the complete program π = π0 hπ1, executes π to
obtain y′ = JπK, and checks if y = y′, where y is
the desired result provided by the user. If so, then
it returns h; otherwise, it continues its search.

The search order over programs h is important,
since multiple programs might evaluate to the de-
sired denotation y. A typical strategy is to search
for the smallest program h; intuitively, this choice
serves as regularization, since smaller programs
correspond to simpler functionalities. In this case,
we enumerate h using breadth first search (assum-
ing the possibilities are represented by a context-
free grammar over programs), which ensures that
we identify the smallest one.

Leveraging learned concepts. Finally, given a
new utterance x with novel concept c, we parse it

as follows. First, we synthesize a sketch π0 ??π1
for x as before. Then, we fill the hole ?? with
hc, where hc is the program we synthesized that
represents c. Finally, we obtain Jπ0 hc π1K.

3.3 Algorithm Details

Multiple examples. We have described our ap-
proach for using a single example (x, y) to learn
the novel concept; it can easily be extended to mul-
tiple examples (x1, y1), ..., (xn, yn). In particular,
we run sketch synthesis independently for each
example, obtaining sketches π̂1, ..., π̂n. Hole syn-
thesis (only run once) is given all of these sketches;
then, it replaces the condition Jπ0 hπ1K = y
with the condition

∧n
i=1(Jπi,0 hπi,1K = yi), where

π̂i = πi,0 ??πi,1 for each i ∈ {1, ..., n}. That is, it
ensures that h is consistent with all examples. Us-
ing multiple examples can reduce ambiguity (i.e.,
there may be multiple programs h that are consis-
tent with a single example (x, y)).

Grammaticality-based substitution. So far, we
have assumed that the type of the novel concept c
is known. We describe a strategy for inferring its
type; note that we continue to assume that the types
for existing concepts c′ ∈ Ctrain are known. At a
high level, we separately train a dedicated model to
detect whether a given substitution is grammatical.
In particular, for each type τ , let Cτtrain ⊆ Ctrain
denote the known concepts of type τ . Now, for
each type τ , we substitute c with each concept
c′ ∈ Cτtrain into x = x0 c x1 to obtain x′ = x0 c

′ x1.
Then, run a model pθ(x′) ∈ [0, 1] that predicts the
probability that x′ is grammatical. We choose the
type τ such that these substitutions are grammatical
with the highest confidence—i.e.,

τ∗ = arg max
τ

1

|Cτtrain|
∑

c′∈Cτtrain

pθ(x0 c
′ x1).

To train pθ, we generate training data using our
known concepts Ctrain, including both valid substi-
tutions (labeled 1) and invalid ones (labeled 0).

4 Generalization Bounds

In this section, we prove generalization bounds on
our approach adapted to context-free parsing.

4.1 Problem Formulation

We consider the problem of parsing—i.e., given a
sentence x ∈ X = Σ∗, decide whether x ∈ L(C∗).

Here, C∗ = (V,Σ, R, S) is an unknown context-
free grammar (CFG), where V are the nontermi-
nals, Σ are the terminals, R are the productions,
and S ∈ V is the start symbol.1 We assume thatC∗

is normalized—i.e., all productions are either unary
A → B or binary A → BD. For simplicity, we
consider fixed-length sentences (i.e., X = ΣK for
some K ∈ N); we also assume all productions in
C and C̃ are binary (i.e., there are no unary produc-
tions). In addition, we assume given a probability
distribution P(x) over sentences; then, our goal is
to achieve good performance for sentences x ∼ P .

We consider a novel concept in the form of a
single production r̃ = Ã → B̃D̃ added to C∗ to
obtain a modified CFG C̃∗ = (V,Σ, R̃, S)—i.e.,

R̃ = R ∪ {r̃}.

That is, C̃∗ equals C∗ but with an extra production
r̃. For our theoretical analysis, we assume given

• A learned model g : Σ∗ → {0, 1} such that
g(w) ≈ 1(w ∈ L(C∗)) (more precisely, they
are equal with high probability).

• The novel production r̃ = Ã→ B̃C̃.
Then, our goal is to augment g with r to obtain a
new classifier g̃ that works well for C̃∗ for x ∼ P .

4.2 Grammar-Based Approach

Next, we propose and analyze an algorithm for
augmenting a learned grammar-based parser with
the given novel production r̃.

Model. This strategy encodes the CFG as a func-
tion φ : W 3 → {0, 1}, where W = V ∪ Σ. The
corresponding CFG is Cφ = (V,Σ, Rφ, S), where

Rφ = {A→ BD ∈W 3 | φ(A→ BD) = 1}.

In other words, φ is the indicator function over all
|W |3 possible productions. Then, given a CFG
Cφ, we construct a classifier fφ : X → {0, 1} by
fφ(x) = 1(x ∈ Cφ). To implement this check,
we assume fφ runs a CYK parser on the input x =
σ1...σK—i.e., for each (i, j) ∈ [K]2 (where [K] =
{1, ...,K}) such that i ≤ j, it constructs the set
V i,j
φ,x ⊆ V inductively to be V i,i

φ,x = {σi}, and

V i,j
φ,x =

j−1⋃
k=i

{
A ∈ V

∣∣∣∣∣ ∃B ∈ V i,k
φ,x, D ∈ V

k+1,j
φ,x

s.t. φ(A→ BD) = 1

}
1The goal of semantic parsing is to compute the most prob-

able parse; we consider the corresponding decision problem.

for i < j. Then, fφ checks whether the start sym-
bol is contained in the parse of the input x—i.e.,

fφ(x) = 1(S ∈ V 1,K
φ (x))),

Algorithm. We consider an algorithm that takes
as input a pretrained model fφ designed to parse
C, along with the novel production r̃; then, this
algorithm returns the modified model fφ̃, where

φ̃(r) =

{
1 if r = r̃

φ(r) otherwise.

That is, this algorithm simply overrides φwhen r =
r̃, thus augmenting it with the novel production.

4.3 Theoretical Analysis
Bounded error assumption. To obtain general-
ization bounds, we need to assume the accuracy of
the given model fφ is bounded. Specifically, we as-
sume the accuracy of φ is bounded, and then bound
the accuracy of fφ in terms of the accuracy φ. In
particular, we say φ is ε-correct if

Pp(r)[φ(r) = φ∗(r)] ≥ 1− ε,

where φ∗(r) = 1(r ∈ R), and p(r) is the distribu-
tion over productions encountered by the CYK al-
gorithm when compute fφ(x) for a random sample
x ∼ P; see Appendix A.1. That is, φ is ε-correct
if it equals the ground truth φ∗ at least 1− ε of the
time. Similarly, we say fφ is ε-correct if

PP(x)[fφ(x) = f∗(x)] ≥ 1− ε,

where f∗(x) = 1(x ∈ L(C∗)). Now, we have:
Lemma 1. If φ is ε-correct, then the overall pars-
ing model fφ is K3|V |3ε-correct.
We give a proof in Appendix A.2.

Bounded shift assumption. In addition, we
need to ensure that the shift from R to R̃ does
not induce too large of a shift in terms of the distri-
bution over productions—i.e., the distribution p(r)
of productions encountered while parsing x ∼ P
using C∗ is not too different from the distribution
p̃(r) of productions encountered while parsing x
using C̃∗. To this end, we need to bound the degree
to which the novel production r̃ affects p(r). In
particular, we say r̃ is α-bounded if

EP(x)
[
B̃ ∈ V i,k

φ∗,x ∧ D̃ ∈ V
k+1,j
φ∗,x

]
≤ α,

for all i < k < j. In other words, when parsing
usingC∗, the probability that r̃ = Ã→ B̃D̃ would
apply is bounded by α. Then:

Lemma 2. If r̃ is α-bounded, then∑
r∈R
|p̃(r)− p(r)| ≤ K3|R|α.

We give a proof in Appendix A.3.

Main result. Finally, our main result bounds the
error of the modified model fφ̃ on C̃∗.

Theorem 1. If φ is ε-correct for C∗ and r̃ is α-
bounded, then fφ̃ is K3|V |3(ε+K3|R|α)-correct

for C̃∗—i.e., letting f̃∗(x) = 1(x ∈ L(C̃∗)), then

PP(x)[fφ̃(x) 6= f̃∗(x)] ≤ K3|V |3(ε+K3|R|α).

We give a proof in Appendix A.4. Intuitively, the
original error bound K3|V |3ε; this result has an
added factor of (K3|V |3)2α (since |R| ≤ |V |3), so
the error from the distribution shift grows roughly
quadratically compared to the original error.

5 Experiments

In this section, we provide empirical evidence that
our approach can perform few-shot novel concept
learning. We use two existing datasets, SCAN and
GeoQuery, which we have extended to our setting.

5.1 The HigherSCAN Dataset

Dataset. The SCAN dataset is a benchmark for
evaluating systematicity in neural networks (Lake
and Baroni, 2018; Loula et al., 2018). We extend
SCAN to include different categories of novel con-
cepts. The SCAN benchmark tests whether models
can learn to understand instructions involving a
novel primitive action such as jump without having
seen jump in any context during training. However,
jump is a terminal concept since it maps directly to
the output token JUMP. We augment SCAN with
higher-order novel concepts, where the novel con-
cepts are programs composed of primitive concepts,
and thus affect the structure of the output sequence.
We consider the following novel concepts:

• Extended Quantification: We introduce the
n-times input token, whose semantics are to
repeat a given action n times.

• Composite Actions: We introduce a new
input token whose denotation is a compos-
ite action—i.e., a sequence of primitive ac-
tions. For example, consider the novel con-
cept JjogK = WALK RUN. The input instruc-
tion jog twice and run should have denotation

to WALK RUN WALK RUN RUN. We in-
troduce several composite actions of varying
complexity (i.e., length of its denotation).

The dataset including novel concepts is generated
from the SCAN grammar augmented with these
concepts. The modified training set consists of the
original SCAN dataset, which does not include any
of our novel concepts, along with a single example
using the novel concept. The test set consists of
examples that use our novel concepts. The original
SCAN grammar generates 20910 unique examples.
In HigherSCAN, we have 7706 new utterances cor-
responding to each novel composite action concept,
and 11594 new utterances corresponding to each
novel extended quantification concept.2

Our approach. We first train the neural semantic
parser, which has a sequence-to-sequence encoder-
decoder architecture (same as the baseline de-
scribed below), on the original SCAN dataset.
Then, for each novel concept, we run SDCL (Al-
gorithm 1) with this semantic parser and a single
training example for that novel concept. To train
the grammaticality model, we randomly substitute
words of a each type with those of different types
in the original SCAN training examples to generate
ungrammatical sentences, sampling a number of
such ungrammatical sentences equal to the number
of SCAN training examples. Then, we train a one-
layered LSTM (with 50 hidden units) to predict the
probability an instruction is grammatical.

Baseline. We compare to an end-to-end approach
that uses a sequence-to-sequence neural network
as the semantic parser, trained on the modified
training set. We tried several architecture choices:
LSTM cells vs. GRU cells, one vs. two layers, 100
vs. 200 hidden units, and with vs. without atten-
tion. We report results for the one-layered LSTM
with 100 hidden units and with attention, which
performed best on our validation set.

In addition, we compare to two variants of our
approach SDCL: (i) one that uses oracle substitu-
tions (i.e., the type of x is known, and (ii) one that
uses confidence based substitutions. For (ii), we
try two approaches: (a) train a separate model to
predict whether the substitution x′ is grammatical
and (b) simply use the confidence of the semantic
parser—i.e., we take pθ(x′) to be the confidence of

2We sample 3000 examples for the test set, averaged over
5 draws. Importantly, there is no overlap between the test and
training sets even after substituting similar-typed concepts.

Approach 4-times 5-times jog gallop

SDCL 98.41 98.41 97.83 97.83
SDCL (parser confidence) 65.35 65.35 39.72 39.72
Seq2Seq 3.34 1.32 0.32 0.00

SDCL (oracle) 99.12 99.12 99.40 99.40

Table 1: One-shot concept learning of extended quan-
tification: 4-times, 5-times and composite actions: jog
(WALK RUN), gallop (WALK RUN WALK RUN).

our semantic parser in its predicted program for x′.
Also, we use the product of the confidences rather
than the average, which we find to work better.

Results. In Table 1, we compare the performance
of our algorithm SDCL to the baselines, for each of
the concept categories. If we know the type of the
novel concept (i.e., the oracle), then we are able to
achieve near perfect accuracy. Furthermore, using
a separate model trained to detect grammatical sen-
tences from ungrammatical ones is highly effective.
For the ablation; even the crude approach using
the parser confidence to determine the type of the
novel concept significantly outperforms end-to-end
learning for the one-shot concept learning task.

Next, we demonstrate that end-to-end models
cannot perform well even with a significantly larger
number of examples. In Fig. 2, we show the perfor-
mance of a sequence-to-sequence encoder-decoder
model on the extended quantification and compos-
ite actions novel concepts, as a function of the num-
ber of times the novel concept is seen during train-
ing. In particular, we vary the number of training
examples for the concept from {1, 2, 4, 8, 16, 32}.
To ensure the novel concept training examples are
balanced with the original SCAN dataset, we up-
weight the novel concept training examples. In
particular, we fix the total size of the novel con-
cept training set at 1600; when showing 8 different
training examples, each one is included 200 times.

As can be seen, sequence-to-sequence models
perform very poorly in the few-shot setting, and
performance gradually improves as more examples
of the novel concept are given.

One important observation is that both categories
of novel concepts can make the length of the out-
put program longer compared to examples in the
original training data, which poses a challenge for
end-to-end sequence models, especially when the
concept has been seen only in a few instructions
during training. Poor length extrapolation has also
been observed to cause poor generalization in a
different context (Lake and Baroni, 2018).

1.32
0.54 1.2

2.18

7.44 8.02

3.34
4.85

7.84

9.91

12.15

16.88

0

2

4

6

8

10

12

14

16

18

1 2 4 8 16 32

Pe
rc
en
ta
ge

5-times 4-times

0
1.8 1.72 3.27

14.22

20.97

0.32
2.6 1.86

10.85

30.82

35.89

0

5

10

15

20

25

30

35

40

1 2 4 8 16 32

Pe
rc
en
ta
ge

gallop jog

Figure 2: Accuracy as a function of the number of training examples for the extended quantification concepts
4-times and 5-times (left) and the composite action concepts gallop and jog from the HigherSCAN dataset.

5.2 The GeoQuery Dataset
Dataset. To evaluate the our approach beyond
the synthetic SCAN dataset, we consider a
modification of the GeoQuery dataset (Zelle,
1996) to include the extended quantification con-
cepts. In particular, extended GeoQuery has con-
cepts such as nth-longest/shortest/largest/smallest
river/mountain/state, etc. (we also change the cor-
responding predicates in the logical forms to in-
clude an argument n). As an example, the question
“What are the major cities in the smallest state in
the us?”, which has corresponding logical form

(A, (major(A), city(A), loc(A,B),

smallest(B, (state(B), loc(B,C),

const(C, countryid(USA))))))

is extended to the question “What are the major
cities in the nth smallest state in the US?”, which
coresponds to the logical form

(A, (major(A), city(A), loc(A,B),

smallest(n,B, (state(B), loc(B,C),

const(C, countryid(USA)))))).

The GeoQuery dataset has a train/test split of
480/280 examples. After introducing the extended
quantification concepts, the overall training set has
868 examples and the test set has 133 examples
(for each extended quantification concept).

Our approach. We extend the GeoQuery train-
ing set with the extended quantification examples
for n = {1, 2, 3}, and test on n = {4, 5}. First,
we train a neural semantic parser (with same ar-
chitecture as the baseline described below) on the
extended training set using supervised learning.3

3Learning the semantic parser from only weak supervision
(i.e., denotations instead of logical forms) is orthogonal to our
goals, and is well-studied (Krishnamurthy et al., 2017).

Approach 4-times 5-times

SDCL 71.42 71.42
Seq2Seq 14.96 14.96

SDCL (oracle) 71.42 71.42

Table 2: Comparison on the one-shot concept learning
task of extended quantification: 4-times and 5-times for
the extended GeoQuery dataset.

Then, we run SDLC with this semantic parser and
a single teaching example of novel concept, averag-
ing results over 5 different choices of this example.

Baselines. We compare to the end-to-end model
from (Jia and Liang, 2016), which is a single-
layer sequence-to-sequence encoder-decoder archi-
tecture with attention, with 200 hidden units and
trained for 30 epochs using stochastic gradient de-
scent (with a learning rate of 0.1 which is halved
after every 5 epochs starting from epoch 15). The
baseline model is trained on the extended training
set and the teaching example (repeated 24 times).

Results. Table 2 shows the accuracy of each ap-
proach on the extended quantification 4 times and 5
times concepts. As before, the end-to-end model is
unable to learn the novel concepts from the a single
training example, whereas SDCL is able to learn
the novel concepts with high accuracy. For this
dataset, the grammaticality model for substitution
is able to perfectly identify the correct type.

6 Conclusion

We have proposed a novel approach for few-shot
novel concept learning in semantic parsing. Our
approach, SDCL, leverages substitutions to infer a
sketch of the target program, and then uses program
synthesis to infer the sub-program corresponding
to the novel concept. Thus, SDCL incorporates
symbolic techniques that are able to learn from few

examples into flexible end-to-end deep learning
models. We have provided a theoretical analysis
of how SDCL enables few-shot learning. Finally,
we have empirically demonstrated that SDCL can
learn novel concepts from a single example on two
semantic parsing benchmarks, which we have ex-
tended to the novel concept learning setting.

Acknowledgements

Research was sponsored by the Army Research
Office and was accomplished under Grant Number
W911NF-20-1-0080. This work was supported by
Contract FA8750-19-2-0201 with the US Defense
Advanced Research Projects Agency (DARPA).
The views expressed are those of the authors and
do not reflect the official policy or position of the
Department of Defense, the Army Research Office
or the U.S. Government.

References
Jacob Andreas. 2020. Good-enough compositional

data augmentation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7556–7566.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1:49–62.

Pradeep Dasigi, Matt Gardner, Shikhar Murty, Luke
Zettlemoyer, and Eduard Hovy. 2019. Iterative
search for weakly supervised semantic parsing. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 2669–
2680.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43.

Jerry A Fodor and Zenon W Pylyshyn. 1988. Connec-
tionism and cognitive architecture: A critical analy-
sis. Cognition, 28(1-2):3–71.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22.

Rohit Kate and Raymond Mooney. 2006. Using string-
kernels for learning semantic parsers. In Proceed-
ings of the 21st International Conference on Compu-
tational Linguistics and 44th Annual Meeting of the

Association for Computational Linguistics, pages
913–920.

Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gard-
ner. 2017. Neural semantic parsing with type con-
straints for semi-structured tables. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1516–1526.

Tom Kwiatkowksi, Luke Zettlemoyer, Sharon Gold-
water, and Mark Steedman. 2010. Inducing proba-
bilistic ccg grammars from logical form with higher-
order unification. In Proceedings of the 2010 con-
ference on empirical methods in natural language
processing, pages 1223–1233.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In In-
ternational Conference on Machine Learning, pages
2873–2882. PMLR.

Brenden M Lake. 2019. Compositional generalization
through meta sequence-to-sequence learning. Ad-
vances in Neural Information Processing Systems,
32.

Brenden M Lake, Tal Linzen, and Marco Baroni. 2019.
Human few-shot learning of compositional instruc-
tions. In Proceedings of the 41st Annual Conference
of the Cognitive Science Society.

João Loula, Marco Baroni, and Brenden Lake. 2018.
Rearranging the familiar: Testing compositional
generalization in recurrent networks. In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 108–114.

Raymond J Mooney. 2007. Learning for semantic pars-
ing. In International Conference on Intelligent Text
Processing and Computational Linguistics, pages
311–324. Springer.

Armando Solar-Lezama. 2008. Program synthesis by
sketching. Citeseer.

Pengcheng Yin and Graham Neubig. 2018. Tranx: A
transition-based neural abstract syntax parser for se-
mantic parsing and code generation. arXiv preprint
arXiv:1810.02720.

John M Zelle. 1996. Learning to parse database queries
using inductive logic programming.

A Proofs

A.1 Preliminaries
To facilitate our analysis, we let Ri,jφ,x be the productions relevant to constructing V i,j

φ,x from V i,k
φ,x and

V k+1,j
φ,x (for i ≤ k < j)—i.e., Ri,iφ,x = ∅, and

Ri,jφ,x =

j−1⋃
k=i

{
A→ BD

∣∣∣∣∣ A ∈ V, B ∈ V i,k
φ,x,

D ∈ V k+1,j
φ,x ∈W

}
for i < j. Then, the set of all productions relevant to parsing input x is

Rφ,x =
⋃
i<j

Ri,jφ,x.

In addition, we let

πi,jφ,x(A) = 1(A ∈ V i,j
φ,x)

πi,jφ,x(r) = 1(r ∈ Ri,jφ,x)

πφ,x(r) = 1(r ∈ Rφ,x).

In general, we use X̃ to denote the variant of X defined using R̃ instead of R. Also, we omit φ when
φ = φ∗. For example, we have π̃x(r) = 1(r ∈ R̃φ∗,x). Finally, the distribution over productions used is

p(r) =
∑
x∈X

p(r | x) · P(x),

where

p(r | x) = Uniform(r;Rφ,x).

That is, we need to correctly predict all productions considered by the CYK algorithm to avoid an error.

A.2 Proof of Lemma 1
We use the notation established in Appendix A.1. First, we define N i,j

φ,x to be the number of times φ is

used to construct V i,j
φ,x; in particular, we have N i,i

φ,x = 0, and

N i,j
φ,x = |Ri,jφ,x| =

j−1∑
k=i

|V | · |V i,k
φ,x| · |V

k+1,j
φ,x | ≤ K|V |3

for i < j, where the inequality follows since |V i,i
φ,x| = 1 and |V i,j

φ,x| ≤ |V | for i < j (and assuming
|V | ≥ 1). Note that the total number of applications of φ when parsing input x is

Nφ,x = |Rφ,x| =
∑
i<j

N i,j
φ,x ≤ K

3|V |3.

Thus, we have

PP(x)[fφ(x) 6= f∗(x)] ≤ PP(x) [∃r ∈ Rφ,x . φ(r) 6= φ∗(r)]

≤
∑
x∈X

∑
r∈Rφ,x

1 (φ(r) 6= φ∗(r)) · P(x)

≤
∑
x∈X
|Rφ,x| · Pp(r|x) [φ(r) 6= φ∗(r)] · P(x)

≤ K3|V |3
∑
x∈X

Pp(r|x) [φ(r) 6= φ∗(r)] · P(x)

= K3|V |3 · Pp(r) [φ(r) 6= φ∗(r)]

≤ K3|V |3ε,

as claimed.

A.3 Proof of Lemma 2
We use the notation established in Appendix A.1. First, we show that

max
A∈V

max
j−i≤t

|π̃i,jx (A)− πi,jx (A)| ≤ max
j−i≤t

max
k

πi,kx (B̃)πk,jx (D̃) =: αx,

where j − i ≤ t denotes the set i ∈ {1, ...,K} and j ∈ {i, ..., i + t}, and we implicitly assume
k ∈ {i, ..., j − 1}. To this end, note that πi,ix (A) = 1(A = σi), where x = σ1...σK , and

πi,jx (A) = max
B,D∈V

max
k

πi,kx (B)πk,jx (D) · 1(A→ BD ∈ R)

πi,jx (A→ BD) = max
k

πi,kx (B)πk,jx (D) · 1(A→ BD ∈ R)

πx(A→ BD) = max
j−i≤K

πi,jx (A→ BD).

Now, we proceed by induction. In particular, we have

max
A∈V

max
j−i≤t

|π̃i,jx (A)− πi,jx (A)| ≤ max

{
max
A′∈V

max
j′−i′≤t−1

|π̃i′,j′x (A′)− πi′,j′x (A′)|,max
k

π̃i,kx (B̃)π̃k,jx (D̃)

}
≤ max

{
max
A′∈V

max
j′−i′≤t−1

|π̃i′,j′x (A′)− πi′,j′x (A′)|,max
k

πi,kx (B̃)πk,jx (D̃)

}
≤ max

{
max
A′∈V

max
j′−i′≤t−1

max
k′

πi
′,k′
x (B̃)πk

′,j′
x (D̃),max

k
πi,kx (B̃)πk,jx (D̃)

}
≤ max

j−i≤t
max
k

πi,kx (B̃)πk,jx (D̃)

= αx,

where the second inequality follows since if π̃i,kx (B̃) 6= πi,kx (B̃), then the first term in the max equals one
(and similarly if π̃k,jx (D̃) 6= πk,jx (D̃)), and the third inequality follows by the inductive hypothesis. Now,

max
r∈R

∣∣∣∣ π̃x(r)∑
r′∈R π̃x(r′)

− πx(r)∑
r′∈R πx(r′)

∣∣∣∣ ≤ max
r∈R
|π̃x(r)− πx(r)|

≤ max
r∈R

max
j−i≤t

|π̃i,jx (r)− πi,jx (r)|

≤ max
A∈V

max
j−i≤t

|π̃i,jx (A)− πi,jx (A)|

≤ αx,

where the first inequality follows since the denominators are unequal only if π̃x(r′) 6= πx(r′) for some
r′ ∈ R, since we are taking the max over r ∈ R on the right-hand side, and since all these values
are in {0, 1} so they can only be nonzero if they are unequal, the second inequality follows since
π̃x(r) 6= πx(r) only if π̃i,jx (r) 6= πi,jx (r) for some r ∈ R and j − i ≤ t, and the third inequality follows
since π̃i,jx (r) 6= πi,jx (r) only if π̃i,jx (A) 6= πi,jx (A) for all j − i ≤ t and A ∈ V . Finally, note that

p(r) =
∑
x∈X

Uniform(r;Rφ,x) · P(x) =
∑
x∈X

π̃x(r)∑
r′∈R π̃x(r′)

· P(x),

so

max
r∈R
|p̃(r)− p(r)| ≤

∑
x∈X

max
r∈R

∣∣∣∣ π̃x(r)∑
r′∈R π̃x(r′)

− πx(r)∑
r′∈R πx(r′)

∣∣∣∣ · P(x) ≤ EP(x)[αx].

Finally, we have

EP(x)[αx] = EP(x)
[

max
j−i≤t

max
k

πi,kx (B̃)πk,jx (D̃)

]
≤
∑
j−i≤t

∑
k

EP(x)
[
πi,kx (B̃)πk,jx (D̃)

]
≤ K3α,

so the claim follows.

A.4 Proof of Theorem 1
Note that

Pp̃(r)[φ̃(r) 6= φ̃∗(r)] = Pp(r)[φ̃(r) 6= φ̃∗(r)] +
∑
r∈R

1(φ̃(r) 6= φ̃∗(r)) · (p̃(r)− p(r))

≤ Pp̃(r)[φ(r) 6= φ∗(r)] +
∑
r∈R
|p̃(r)− p(r)|

≤ ε+K3|R|α,

where the second inequality follows since φ̃(r) = φ̃∗(r) if either r = r̃ or φ(r) = φ∗(r), so either way
φ(r) = φ∗(r) implies φ̃(r) = φ̃∗(r), and the third inequality follows by Lemma 2 and by the assumption
that φ is ε-correct. Thus, the claim follows by Lemma 1 and the assumption that r̃ is α-bounded.

