Interpreting Blackbox Models via Model Extraction

Osbert Bastani^{1,4}, Carolyn Kim², Hamsa Bastani^{3,4} ¹Massachusetts Institute of Technology, ²Stanford University, ³IBM Research, ⁴University of Pennsylvania

Summary

Motivation

- Despite having high accuracy, blackbox machine learning \bullet models lack interpretability.
- This is a concern when such models are used for consequential decisions, e.g., medical diagnosis.

Algorithm

- We propose interpreting blackbox models by extracting a decision tree that approximates the model.
- We avoid overfitting by actively sampling new data points and labeling them using the model.

• Related literature

- Directly learning interpretable models (Ustun-Rudin 2016)
- Interpreting specific test points (Ribeiro et al., 2016)
- Computing influence scores for features (Friedman 2001) or training points (Koh-Liang 2017)

Problem Formulation

• Inputs

- Blackbox classifier $f: \mathcal{X} \to \mathcal{Y}$
- Training set $(X, Y) \subseteq \mathcal{X} \times \mathcal{Y}$
- Depth *D* of the decision tree to be extracted

• Output

- An axis-aligned decision tree $T(X) \approx f(x)$
- Use *T* to understand *f*

Exact Greedy Decision Tree

Estimate input distribution

- Fit a Gaussian mixture model P to X
- Components of *P* are axis-aligned Gaussians
- Iteratively construct tree
 - Initialization: $T^* = \{N\}$ contains a single node
 - **Growth step:** Choose a leaf node N in T^* , and replace N with • an internal node and two new leaf nodes
- Single growth step
 - For each node N, let $P_N = P \mid (x \text{ satisfies } C_N)$, i.e., P conditioned on x flowing to N in T^*
 - Choose N to be the node with highest gain (according to P_N) if replaced as described below
 - Choose an axis-aligned branch that maximizes the gain
 - Choose labels for new leaf nodes to be the majority labels •

Estimated Greedy Decision Tree

- Approximation
 - Estimate gains above using *m* random samples $x \sim P_N$
 - To sample $x \sim P_N$, sample a component of P_N , and sample a
 - point from that component (which is a truncated Gaussian)
 - Corresponding label is y = f(x)
- **Theorem:** As $m \to \infty$, the estimated tree converges to T^*

Comparison to CART

- **Datasets:** 6 UCI datasets and 3 classical control problems
- Blackbox models: random forest and neural net
- **Tree sizes:** ranging from 16 to 64 nodes
- **Metric:** test set performance (F_1 score, MSE, or reward)

Example Use Cases

• Detect use of invalid features (e.g., response as a feature)

- We use a breast cancer dataset containing two response variables indicating recurrence. We trained a random forest where one response was incorrectly included as a feature for predicting the other. Then, we extract a decision tree.
- The invalid feature occurred in every extracted tree, and as the top branch in 6 of the 10 trees.

• Understand use of prejudiced features

- We use a student grade dataset where gender is a feature. We train a random forest to predict grade with gender as a feature, and extract decision trees.
- Gender occurs at the fourth or fifth level in 7 of 10 trees.
- Using the trees, we estimate that the gender variable has a large effect on 18.3% to 39.1% of students, with an effect size ranging from 0.44 to 0.77 grade points on this subgroup.

Comparing different models trained on the same dataset

- We train random forests and neural nets on a wine dataset.
- Random forests achieved an F_1 score of at least 0.961, whereas neural nets were bimodal; 5 had F_1 score of at least 0.955, and the remaining had an F_1 score of at most 0.741.
- In the extracted trees, the occurrence of the feature "chlorides" was highly correlated with poor performance.

Understanding a control policy

• The tree extracted from the Cartpole policy says to move the cart to the left exactly when

(pole velocity ≤ -0.286) V (pole angle ≤ -0.071)

• In other words, move the cart to the left when the pole is already on the left, or when the pole is moving quickly towards the left.

References

Ustun & Rudin. Supersparse linear integer models for optimized medical scoring systems. Machine Learning, 2016.

Ribeiro, Singh, & Guestrin. Why should I trust you?: Explaining the predictions of any classifier. KDD, 2016. Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics, 2001. Koh & Liang. Understanding black-box predictions via influence functions. ICML, 2017