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ABSTRACT
�e ability to interpret machine learning models has

become increasingly important now that machine learn-

ing is used to inform consequential decisions. We pro-

pose an approach called model extraction for interpret-

ing complex, blackbox models. Our approach approx-

imates the complex model using a much more inter-

pretable model; as long as the approximation quality is

good, then statistical properties of the complex model

are re�ected in the interpretable model. We show how

model extraction can be used to understand and de-

bug random forests and neural nets trained on several

datasets from the UCI Machine Learning Repository,

as well as control policies learned for several classical

reinforcement learning problems.

1 INTRODUCTION
Recent advances in machine learning have revolution-

ized our ability to use data to inform critical decisions,

such as medical diagnosis [8, 19, 27], bail decisions for

defendants [16, 17], and aircra� collision avoidance

systems [25]. At the same time, machine learning al-

gorithms have been shown to exhibit unexpected de-

fects when deployed in the real world; examples include

causality (i.e., inability to distinguish causal e�ects from

correlations) [8, 21], fairness (i.e., internalizing preju-

dices present in training data) [13, 15], and algorithm

aversion (i.e., lack of trust by end users) [11].

Interpretability is a promising approach to address

these challenges [12, 24]—we can help human users di-

agnose issues and verify correctness of machine learn-

ing models by providing insight into the model’s rea-

soning [3, 18, 20, 23, 26]. For example, suppose the user

is trying to train a model that does not depend on a

prejudiced feature (e.g., ethnicity). Omi�ing the feature

might not su�ce to avoid prejudice, since the model

could reconstruct that feature from other features [22].
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A be�er approach might be to train the model with

the prejudiced feature, and then assess the dependence

of the model on that feature. �is approach requires

the ability to understand the model’s reasoning process,

i.e., how model predictions are a�ected by changing the

prejudiced feature [12]. Similarly, the user may want to

determine whether dependence on a feature is causal,

or understand the high-level structure of the model to

gain con�dence in its correctness.

In this paper, we propose an technique that we call

model extraction for interpreting the overall reason-

ing process performed by a model. Given a model

f : X → Y , the interpretation produced by our al-

gorithm is an approximation T (x ) ≈ f (x ), where T is

an interpretable model. In this paper, we take T to be

a decision tree, which has been established as highly

interpretable [3, 20, 23]. Intuitively, ifT is a su�ciently

good approximation of f , then any issues in f should

be re�ected in T as well. �us, the user can understand

and debug f by examining T ; then, the original model

f can be deployed so that performance is not sacri�ced.

Previous model extraction approaches have focused

on speci�c model families [10, 28, 29], enabling them

to leverage the internal structure of the model. In con-

trast, our approach is blackbox, i.e., it only requires the

ability to obtain the output f (x ) ∈ Y corresponding to

a given input x ∈ X. �us, our approach works with

any model family and is independent of the implemen-

tation. Complimentary approaches to interpretability

focus on learning interpretable models [7, 26, 30] or

on explaining the model’s behavior on speci�c inputs

rather than the model as a whole [23].

�e key challenge to learning accurate decision trees

is that they o�en over�t and obtain poor performance,

whereas complex models such as random forests and

deep neural nets are be�er regularized [4]. For example,

random forests use ensembles of trees to avoid over�t-

ting to speci�c features or training points.
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�us, our algorithm uses active learning to construct

T from f —it actively samples a large number of train-

ing points, and computes the corresponding labels y =
f (x ). �e large quantity of data ensures that T does

not over�t to the small set of initial training points.

We prove that under mild assumptions, by generating

a su�cient quantity of data, the extracted tree T con-

verges to the exact greedy decision tree, i.e., it avoids

over��ing since the sampling error goes to zero.

We implement our algorithm and use it to inter-

pret random forests and neural nets, as well as con-

trol policies trained using reinforcement learning. We

show that our active learning approach substantially

improves over using CART [6], a standard decision

tree learning algorithm. Furthermore, we demonstrate

how the decision trees extracted can be used to debug

issues with these models, for example, to assess the

dependence on prejudiced features, to determine why

certain models perform worse, and to understand the

high-level structure of a learned control policy.

2 MODEL EXTRACTION
We describe our model extraction algorithm.

2.1 Problem Formulation
Given a training set Xtrain ⊆ X and blackbox access

to a function f : X → Y , our goal is to learn an in-

terpretable model T : X → Y that approximates f .

In this paper, we take T to be an axis-aligned decision

tree, since these models are both expressive highly in-

terpretable. For simplicity, we focus on the case of

classi�cation, i.e., Y = [m] = {1, ...,m}. We measure

performance using accuracy relative to f on a held out

test set, i.e.,
1

|Xtest |

∑
x ∈Xtest

I[T (x ) = f (x )].

2.2 Algorithm
Our algorithm is greedy, both for scalability and be-

cause it is a natural �t for interpretability, since more

relevant features occur higher in the tree.

Input distribution. First, our algorithm constructs a

distribution P over the input space X by ��ing a mix-

ture of axis-aligned Gaussian distributions to the train-

ing data using expectation maximization.

Exact greedy decision tree. We describe the exact greedy
decision tree T ∗. We cannot construct T ∗ since we treat

f as a blackbox; as we describe below, our algorithm

approximatesT ∗. Essentially,T ∗ is constructed greedily

as a CART tree [6], except the gain is computed exactly

according to P. For example, if the gain is the Gini

impurity, then it is computed as follows:

Gain( f ,CN ) = 1 −
∑
y∈Y

Prx∼P[f (x ) = y | CN ],

where CN are the constraints encoding which points

�ow to the node N in T ∗ for which a branch is cur-

rently being constructed. Similarly, the most optimal

leaf labels are computed exactly according to P.

Estimated greedy decision tree. Given n ∈ N, our al-

gorithm estimates Gain( f ,CN ) using n i.i.d. samples

x ∼ P | CN , where CN is a conjunction of axis-aligned

constraints. We brie�y describe how our algorithm ob-

tains such samples. It is straightforward to show that

the constraint CN can be simpli�ed so it contains at

most one inequality (xi ≤ t ) and at most one inequality

(xi > s ) per i ∈ [d]. For simplicity, we assume CN
contains both inequalities for each i ∈ [d]:

CN = (s1 ≤ x1 ≤ t1) ∧ ... ∧ (sd ≤ xd ≤ td ).

�en, the probability density function of P | CN is

pP |CN (x ) ∝
K∑
j=1

ϕ j

d∏
i=1

pN (µ ji ,σji ) |(si ≤xi ≤ti ) (xi ).

Since the Gaussians are axis-aligned, the unnormalized

probability of each component is

˜ϕ ′j =

∫
ϕ j

d∏
i=1

pN (µ ji ,σji ) |(si ≤xi ≤ti ) (xi )dx

= ϕ j

d∏
i=1

(
Φ

(
ti − µ ji

σji

)
− Φ

(
si − µ ji

σji

))
,

where Φ is the cumulative density function of the stan-

dard Gaussian distribution N (0, 1). �en, the compo-

nent probabilities are
˜ϕ = Z−1 ˜ϕ ′, where Z =

∑K
j=1

˜ϕ ′j .

To sample x ∼ P | CN , sample j ∼ Categorical( ˜ϕ), and

xi ∼ N (µ ji ,σji ) | (si ≤ xi ≤ ti ) (for each i ∈ [d]).

We use standard algorithms for sampling truncated

Gaussian distributions to sample each xi .

2.3 �eoretical Guarantees
�e extracted tree T converges to T ∗ as n → ∞:
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Theorem 2.1. Assume the exact greedy tree T ∗ is

well de�ned, and the probability density functionp (x ) is

bounded, continuous, and has bounded support. �en,

for any ϵ,δ > 0, there exists n ∈ N such that the tree

T extracted by our algorithm using n samples satis�es

Prx∼P[T (x ) = T ∗ (x )] ≤ ϵ , with probability at least 1−δ
over the training samples.

3 EVALUATION
We use our model extraction algorithm to interpret

several supervised learning models trained on datasets

from the UCI Machine Learning Repository [2], as well

as a learned control policy from OpenAI Gym [1], i.e.,

the learned control policy π : S → A.

3.1 Comparison to CART
First, we compare our algorithm to a baseline that uses

CART to train a decision tree approximating f on the

training set {(x , f (x )) | x ∈ Xtrain}. For both algo-

rithms, we restrict the decision tree to have 31 nodes.

We show results in Table 1. We show the test set perfor-

mance of the extracted tree compared to ground truth

(or for MDPs, estimated the reward when it is used as

a policy), as well as the relative performance compared

to the model f on the same test set. Note that our goal

is to obtain high relative performance: a be�er approx-

imation of f is a be�er interpretation of f , even if f
has poor performance. Our algorithm outperforms the

baseline on every problem instance.

3.2 Examples of Use Cases
We show how the extracted decision trees can be used

to interpret and debug models.

Use of invalid features. Using an invalid feature is a

common problem when training models. In particu-

lar, some datasets contain multiple response variables;

then, one response should not be used to predict the

other. For example, the breast cancer dataset contains

two response variables indicating cancer recurrence:

the length of time before recurrence and whether re-

currence occurs within 24 months. �is issue can be

thought of as a special case of using a non-causal fea-

ture, an important problem in healthcare se�ings. We

train a random forest f to predict whether recurrence

occurs within 24 months, where time to recurrence is

incorrectly included as a feature. �en, we extract a

decision tree approximating f of size k = 7 nodes, us-

ing 10 random splits of the dataset into training and

test sets. �e invalid feature occured in every extracted

tree, and as the top branch in 6 of the 10 trees.

Use of prejudiced features. We can use our algorithm

to evaluate how a model f depends on prejudiced fea-

tures. For example, gender is a feature in the student

grade dataset, and may be considered sensitive when

estimating student performance. However, if we sim-

ply omit gender, then f may reconstruct it from the

remaining features. For a model f trained with gender

available, we show how a decision tree extracted from

f can be used to understand how f depends on gender.

Our approach does not guarantee fairness, but it can

be useful for evaluating the fairness of f .

We extract decision trees T from the random forests

f trained on 10 random splits of the student grades

dataset. �e top features are consistently grades in

other classes or number of failing grades received in

the past. Gender occurs below these features (at the

fourth or ��h level) in 7 of 10 of the trees. We can

estimate the overall e�ect of changing the gender label:

∆ = Ex∼P[f (x ) | male] − Ex∼P[f (x ) | female].

When gender occurs, ∆ is between 0.31 and 0.70 grade

points (average 0.49) out of 20 total grade points. For the

remaining models, ∆ is between 0.11 and 0.32 (average

0.25). �us, the extracted tree includes gender when f
has a relatively large dependence on gender.

Furthermore, because T approximates f , we can use

it to identify a subgroup of students where f has par-

ticularly strong dependence on gender. In particular,

points that �ow to the internal node N of T branching

on gender are a subset of inputs whose label T (x ) ∈ Y
is determined in part by gender. We can use T to mea-

sure the dependence on gender within this subset:

∆N = Ex∼P[f (x ) | CNL ] − Ex∼P[f (x ) | CNR ],

where NL and NR are the le� and right children of N .

Also, we can estimate the fraction of students in this

subset using the test set, i.e., P =
∑

x ∈Xtest
I[x ∈ F (CN )].

Finally, P · ∆N /∆ measures the fraction of the overall

dependence of f on gender that is accounted for by the

subtree rooted at N . For models where gender occurs in

the extracted tree, the subgroup e�ect size ∆N ranged

from 0.44 to 0.77 grade points, and the estimated frac-

tion of students in this subroup ranged from 18.3% to

39.1%. �e two trees that had the largest e�ect size had
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Description of Problem Instance Absolute Relative
Dataset Task Samples Features Model f T Tbase T Tbase

breast cancer [31] classi�cation 569 32 random forest 0.966 0.942 0.934 0.957 0.945

student grade [9] regression 382 33 random forest 4.47 4.70 5.10 0.40 0.64

wine origin [14] classi�cation 178 13 random forest 0.981 0.925 0.890 0.938 0.890

wine origin [14] classi�cation 178 13 neural net 0.795 0.755 0.751 0.913 0.905

cartpole [5] reinforcement learning 100 4 control policy 200.0 190.0 35.6 86.8% 83.8%

Table 1: Comparison of the decision treeT extracted by our algorithm to the oneTbase extracted by the baseline. We
show absolute performance on ground truth and performance relative to the model f . For classi�cation (resp.,
regression), performance is F1 score (resp., MSE) on the test set. For reinforcement learning, it is accuracy on
the test set for relative performance, and estimated reward using the decision tree as the policy for absolute
performance. We bold the higher score between T and Tbase.

∆N of 0.77 and 0.43, resp., and P of 39.1% and 35.7%,

resp. �e identi�ed subgroup accounted for 67.3% and

65.6% of the total e�ect of gender, resp.

Having identi�ed a subgroup of students likely to

be adversely a�ected, the user might be able to train

a be�er model speci�cally for this subgroup. In 5 of

the 7 extracted trees where gender occurs, the a�ected

students were students with low grades, in particular,

the 27% of students who scored fewer than 8.5 points

in another class. �is �ne-grained understanding of f
relies on the extracted model, and cannot be obtained

using feature importance metrics alone.

Comparing models. We can use the extracted decision

trees to compare di�erent models trained on the same

dataset, and gain insight into why some models perform

be�er than others. For example, random forests trained

on the wine origin dataset performed very well, all

achieving an F1 score of at least 0.961. In contrast, the

performance of the neural nets was bimodal—5 had F1

score of at least 0.955, and the remaining had an F1

score of at most 0.741.

We examined the top 3 layers of the extracted de-

cision trees T , and made two observations. First, oc-

currence of the feature “chlorides” in T was almost

perfectly correlated with poor performance of the neu-

ral nets. �is feature occured in only one of the 10 trees

extracted from random forests, and in none of the trees

extracted from high performing neural nets. A weaker

observation was the branching of T on the feature “al-

cohol”, which is a very important feature—it is the top

branch for all but one of the 20 extracted decision trees.

For the high performing models, the branch threshold

t tended to be higher (749.8 to 999.6) than those for the

poorly performing models (574.4 to 837.3). �e la�er ob-

servation relies on having an extracted model—feature

in�uence metrics alone are insu�cient.

Understanding control policies. We can use the ex-

tracted decision tree to understand a control policy. For

example, we extracted a decision tree of size k = 7 from

the cartpole control policy. While its estimated reward

of 152.3 is lower than for larger trees, it captures a sig-

ni�cant fraction of the policy behavior. �e tree says

to move the cart to the right exactly when

(pole velocity ≥ −0.286) ∧ (pole angle ≥ −0.071),

where the pole velocity is in [−2.0, 2.0] and the pole

angle is in [−0.5, 0.5]. In other words, move the cart to

the right exactly when the pole is already on the right

relative to the cart, and the pole is also moving toward

the le� (or more precisely, not moving fast enough

toward the right). �is policy is asymmetric, focusing

on states where the cart is moving to the le�. Examining

an animation of simulation, this bias occurs because

the cart initially moves toward the le�, so the portion

of the state space where the cart is moving toward the

right is relatively unexplored.

4 CONCLUSIONS
We have proposed model extraction as an approach for

interpreting blackbox models, and shown how it can be

used to interpret a variety of di�erent kinds of models.

Important directions for future work include devising

algorithms for model extraction using more expressive

input distributions, and developing new ways to gain

insight from the extracted decision trees.
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Lozano-Pérez, and James Kuchar. Collision avoidance for

unmanned aircra� using markov decision processes. In AIAA
guidance, navigation, and control conference, page 8040, 2010.

[26] Berk Ustun and Cynthia Rudin. Supersparse linear integer

models for optimized medical scoring systems. Machine Learn-
ing, 102(3):349–391, 2016.
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