
Learning Neurosymbolic Generative Models via Program Synthesis

Halley Young 1 Osbert Bastani 1 Mayur Naik 1

Abstract
Generative models have become significantly
more powerful in recent years. However, these
models continue to have difficulty capturing
global structure in data. For example, images of
buildings typically contain spatial patterns such as
windows repeating at regular intervals, but state-
of-the-art models have difficulty generating these
patterns. We propose to address this problem by
incorporating programs representing global struc-
ture into generative models—e.g., a 2D for-loop
may represent a repeating pattern of windows—
along with a framework for learning these models
by leveraging program synthesis to obtain training
data. On both synthetic and real-world data, we
demonstrate that our approach substantially out-
performs state-of-the-art at both generating and
completing images with global structure.

1. Introduction
There has been much interest recently in generative models,
following the introduction of both variational autoencoders
(VAEs) (Kingma & Welling, 2014) and generative adver-
sarial networks (GANs) (Goodfellow et al., 2014). These
models have successfully been applied to a range of tasks,
including image generation (Radford et al., 2015), image
completion (IIzuka et al., 2017), texture synthesis (Jetchev
et al., 2017; Xian et al., 2018), sketch generation (Ha & Eck,
2017), and music generation (Dieleman et al., 2018).

Despite their successes, generative models still have diffi-
culty capturing global structure. For example, consider the
image completion task in Figure 1. The original image (left)
is of a building, for which the global structure is a 2D repeat-
ing pattern of windows. Given a partial image (middle left),
the goal is to predict the completion of the image. As can be
seen, a state-of-the-art image completion algorithm has trou-

1University of Pennsylvania, USA. Correspondence to: Halley
Young <halleyy@seas.upenn.edu>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

ble reconstructing the original image (right) (IIzuka et al.,
2017). Real-world data often contains such global structure,
including repetitions, reflectional or rotational symmetry, or
even more complex patterns.

In recent years, program synthesis (Solar-Lezama et al.,
2006) has emerged as a promising approach to capturing
patterns in data (Ellis et al., 2015; 2018; Valkov et al., 2018).
The idea is that simple programs can capture global struc-
ture that evades state-of-the-art deep neural networks. A key
benefit of using program synthesis is that we can design the
space of programs to capture different kinds of structure—
e.g., repeating patterns (Ellis et al., 2018), symmetries, or
spatial structure (Deng et al., 2018)—depending on the ap-
plication domain. The challenge is that for the most part,
existing approaches have synthesized programs that oper-
ate directly over raw data. Since programs have difficulty
operating over perceptual data, existing approaches have
largely been limited to very simple data—e.g., detecting 2D
repeating patterns of simple shapes (Ellis et al., 2018).

We propose to address these shortcomings by synthesizing
programs that represent the underlying structure of high-
dimensional data. In particular, we decompose programs
into two parts: (i) a sketch s ∈ S that represents the skeletal
structure of the program (Solar-Lezama et al., 2006), with
holes that are left unimplemented, and (ii) components c ∈
C that can be used to fill these holes. We consider perceptual
components—i.e., holes in the sketch are filled with raw
perceptual data. For example, the program

represents part of the structure in the original image x∗ in
Figure 1 (left). The code is the sketch, and the component
is a sub-image from the given partial image. Together, we
call such a program a neurosymbolic program.

Building on these ideas, we propose an approach called
Synthesis-guided Generative Models (SGM) that combines
neurosymbolic programs representing global structure with
state-of-the-art deep generative models. By incorporating
programmatic structure, SGM substantially improves the
quality of these models. As can be seen, the completion
produced using SGM (middle right of Figure 1) substantially
outperforms state-of-the-art.

Learning Neurosymbolic Generative Models via Program Synthesis

original image x∗ partial image xpart completion x̂ (ours) completion x̂ (baseline)

Figure 1. The task is to complete the partial image xpart (middle left) into an image that is close to the original image x∗ (left). By
incorporating programmatic structure, our approach (middle right) substantially outperforms state-of-the-art (IIzuka et al., 2017) (right).

SGM can be used for both generation and completion. The
generation pipeline is shown in Figure 2. At a high level,
SGM for generation operates in two phases:

• First, it generates a program that represents the global
structure in the image to be generated. In particular, it
generates a program P = (s, c) representing the latent
global structure in the image (left in Figure 2), where
s is a sketch and c is a perceptual component.

• Second, our algorithm executes P to obtain a struc-
ture rendering xstruct representing the program as an
image (middle of Figure 2). Then, our algorithm uses
a deep generative model to complete xstruct into a full
image (right of Figure 2). The structure in xstruct helps
guide the deep generative model towards images that
preserve the global structure.

The image-completion pipeline (see Figure 3) is similar.

Training these models end-to-end is challenging, since a pri-
ori, ground truth global structure is unavailable. To address
this shortcoming, we leverage domain-specific program syn-
thesis algorithms to produce examples of programs that rep-
resent global structure of the training data. In particular, we
propose a synthesis algorithm tailored to the image domain,
which extracts programs with nested for-loops that can rep-
resent multiple 2D repeating patterns in images. Then, we
use these example programs as supervised training data.

Our programs can capture rich spatial structure in the train-
ing data. For example, in Figure 2, the program structure
encodes a repeating structure of 0’s and 2’s on the whole
image, and a separate repeating structure of 3’s on the right-
hand side of the image. Furthermore, in Figure 1, the gen-
erated image captures the idea that the repeating pattern of
windows does not extend to the bottom portion of the image.

Contributions. We propose an architecture of generative
models that incorporates programmatic structure, as well
as an algorithm for training these models (Section 2). Our
learning algorithm depends on a domain-specific program
synthesis algorithm for extracting global structure from the
training data; we propose such an algorithm for the image
domain (Section 3). Finally, we evaluate our approach on

synthetic data and on a real-world dataset of building fa-
cades (Tyleček & Šára, 2013), both on the task of generation
from scratch and on generation from a partial image. We
show that our approach substantially outperforms several
state-of-the-art deep generative models (Section 4).

Related work. There has been growing interest in apply-
ing program synthesis to machine learning—e.g., for small
data (Liang et al., 2010), interpretability (Wang & Rudin,
2015; Verma et al., 2018), safety (Bastani et al., 2018), and
lifelong learning (Valkov et al., 2018). Most relevantly, there
has been interest in using programs to capture structure that
deep learning models have difficulty representing (Lake
et al., 2015; Ellis et al., 2015; 2018; Pu et al., 2018). For
instance, Ellis et al. (2015) proposes an unsupervised learn-
ing algorithm for capturing repeating patterns in simple line
drawings; however, not only are their domains simple, but
they can only handle a very small amount of noise. Simi-
larly, Ellis et al. (2018) captures 2D repeating patterns of
simple circles and polygons; however, rather than synthe-
sizing programs with perceptual components, they learn a
simple mapping from images to symbols as a preprocess-
ing step. The closest work we are aware of is Valkov et al.
(2018), which synthesizes programs with neural compo-
nents (i.e., components implemented as neural networks);
however, their application is to lifelong learning, not gener-
ation, and to learning with supervision (labels) rather than
to unsupervised learning of structure.

There has been related work on synthesizing probabilis-
tic programs (Hwang et al., 2011; Perov & Wood, 2014),
including applications to learning structured ranking func-
tions (Nori et al., 2015) and for learning design patterns (Tal-
ton et al., 2012). More recently, DeepProbLog (Manhaeve
et al., 2018) has extended the probabilistic logic program-
ming language ProbLog (De Raedt et al., 2007) to include
learned neural components.

Additionally, there has been work extending neural module
networks (Andreas et al., 2016) to generative models (Deng
et al., 2018). These algorithms essentially learn a collection
of neural components that can be composed together based
on hierarchical structure. However, they require that the

Learning Neurosymbolic Generative Models via Program Synthesis

sampled program P single for loop rendering structure rendering xstruct generated image x̂

Figure 2. SGM generation pipeline: (i) Sample a latent vector z ∼ p(z), and sample a program P = (s, c) ∼ pφ(s, c | z) (left: a single
sampled for loop). (ii) Execute P to obtain a structure rendering (middle left: the rendering of the single for loop shown on the left,
middle right: the structure rendering). (iii) Sample a completion x̂ ∼ pθ(x | s, c) of xstruct into a full image (right).

structure be available (albeit in natural language form) both
for training the model and for generating new images.

Finally, there has been work incorporating spatial structure
into models for generating textures (Jetchev et al., 2017);
however, their work only handles a single infinite repeating
2D pattern. In contrast, we can capture a rich variety of
spatial patterns parameterized by a space of programs—e.g.,
the image in Figure 1 generated by our approach contains
different repeating patterns in different parts of the image.

2. Generative Models with Latent Structure
We describe our proposed architecture for generative mod-
els that incorporate programmatic structure. For most of
this section, we focus on generation; we discuss how we
adapt these techniques to image completion at the end. We
illustrate our generation pipeline in Figure 2.

Let pθ,φ(x) be a distribution over a space X with unknown
parameters θ, φ that we want to estimate. We study the set-
ting where x is generated based on some latent structure,
which consists of a program sketch s ∈ S and a percep-
tual component c ∈ C, and where the structure is in turn
generated conditioned on a latent vector z ∈ Z—i.e.,

pθ,φ(x) =

∫
Z

∫
C

∑
s∈S

pθ(x | s, c)pφ(s, c | z)p(z)dcdz.

Figure 2 shows an example of a sampled program P =
(s, c) ∼ pφ(s, c | z) (left) and a sampled completion x̂ ∼
pθ(x | s, c) (right). To sample a completion, our model
executes P to obtain a structure rendering xstruct = eval(P)
(middle), and then uses pθ(x | s, c) = pθ(x | xstruct).

We now describe our algorithm for learning the parameters
θ, φ of pθ,φ, followed by a description of our choices of
architecture for pφ(s, c | z) and pθ(x | s, c).

Learning algorithm. Given training data {x(i)}ni=1 ⊆ X ,
where x(i) ∼ pθ,φ(x), the maximum likelihood estimate is

θ∗MLE, φ
∗
MLE = argmax

θ,φ

n∑
i=1

log pθ,φ(x
(i)).

Since log pθ,φ(x) is intractable to optimize, we use an ap-
proach based on the variational autoencoder (VAE). In par-
ticular, we use a variational distribution

qφ̃(s, c, z | x) = qφ̃(z | s, c)q(s, c | x),

which has parameters φ̃. Then, we optimize φ̃ while simulta-
neously optimizing θ, φ. Using qφ̃(s, c, z | x), the evidence
lower bound on the log-likelihood is

log pθ,φ(x) ≥ Eq(s,c,z|x)[log pθ(x | s, c)]
−DKL(q(s, c, z | x) ‖ pφ(s, c | z)p(z))

= Eq(s,c|x)[log pθ(x | s, c)] (1)
+ Eq(s,c|x),qφ̃(z|s,c)[log pφ(s, c | z)]

− Eq(s,c|x)[DKL(qφ̃(z | s, c) ‖ p(z))]
−H(q(s, c | x)),

where DKL is the KL divergence and H is information en-
tropy. Thus, we can approximate θ∗, φ∗ by optimizing the
lower bound (1) instead of log pθ,φ(x). However, (1) re-
mains intractable since we are integrating over all program
sketches s ∈ S and perceptual components c ∈ C. As we
describe next, our approach is to synthesize a single point
estimate sx ∈ S and cx ∈ C for each x ∈ X .

Synthesizing structure. For a given x ∈ X , we use pro-
gram synthesis to infer a single likely choice sx ∈ S and
cx ∈ C of the latent structure. The program synthesis al-
gorithm must be tailored to a specific domain; we propose
an algorithm for inferring for-loop structure in images in
Section 3. Then, we use these point estimates in place of
the integrals over S and C—i.e., we assume that

q(s, c | x) = δ(s− sx)δ(c− cx),

where δ is the Dirac delta function. Plugging into (1) gives

log pθ,φ(x) ≥ log pθ(x | sx, cx) (2)
+ Eqφ̃(z|sx,cx)[log pφ(sx, cx | z)]

−DKL(qφ̃(z | sx, cx) ‖ p(z)).

Learning Neurosymbolic Generative Models via Program Synthesis

partial image xpart synthesized program Ppart extrapolated program P̂

structure rendering x̂struct completion x̂ (ours) original image x∗

Figure 3. SGM image completion pipeline: (i) Given a partial image xpart (top left), use our program synthesis algorithm (Section 3) to
synthesize a program Ppart representing the structure in the partial image (top middle). (ii) Extrapolate Ppart to a program P̂ = fψ(Ppart)
representing the structure of the full image. (iii) Execute P̂ to obtain a rendering of the program structure x̂struct (bottom left). (iv)
Complete x̂struct into an image x̂ (bottom middle), which resembles the original image x∗ (bottom right).

where we have dropped the degenerate terms log δ(s− sx)
and log δ(c − cx) (which are constant with respect to the
parameters θ, φ, φ̃). As a consequence, (1) decomposes into
two parts that can be straightforwardly optimized—i.e.,

log pθ,φ(x) ≥ L(θ;x) + L(φ, φ̃;x)
L(θ;x) = log pθ(x | sx, cx)

L(φ, φ̃;x) = Eqφ̃(z|sx,cx)[log pφ(sx, cx | z)]

−DKL(qφ̃(z | sx, cx) ‖ p(z)),

where we can optimize θ independently from φ, φ̃:

θ∗ = argmax
θ

n∑
i=1

L(θ;x(i))

φ∗, φ̃∗ = argmax
φ,φ̃

n∑
i=1

L(φ, φ̃;x(i)).

Latent structure VAE. Note that L(φ, φ̃;x) is exactly
equal to the objective of a VAE, where qφ̃(z | s, c) is the
encoder and pφ(s, c | z) is the decoder—i.e., learning the
distribution over latent structure is equivalent to learning the
parameters of a VAE. The architecture of this VAE depends
on the representation of s and c. In the case of for-loop
structure in images, we use a sequence-to-sequence VAE.

Generating data with structure. The term L(θ;x) cor-
responds to learning a probability distribution (conditioned

on the latent structure s and c)—e.g., we can estimate this
distribution using another VAE. As before, the architecture
of this VAE depends on the representation of s and c. Rather
than directly predicting x based on s and c, we can leverage
the program structure more directly by first executing the
program P = (s, c) to obtain its output xstruct = eval(P),
which we call a structure rendering. In particular, xstruct is
a more direct representation of the global structure repre-
sented by P , so it is often more suitable to use as input to a
neural network. The middle of Figure 2 shows an example
of a structure rendering for the program on the left. Then,
we can train a model pθ(x | s, c) = pθ(x | xstruct).

In the case of images, we use a VAE with convolutional
layers for the encoder qφ and transpose convolutional lay-
ers for the decoder pθ. Furthermore, instead of estimating
the entire distribution pθ(x | s, c), we also consider two
non-probabilistic approaches that directly predict x from
xstruct, which is an image completion problem. We can
solve this problem using GLCIC, a state-of-the-art image
completion model (IIzuka et al., 2017). We can also use Cy-
cleGAN (Zhu et al., 2017), which solves the more general
problem of mapping a training set of structured renderings
{xstruct} to a training set of completed images {x}.

Image completion. In image completion, we are given
a set of training pairs (xpart, x

∗), and the goal is to learn a
model that predicts the complete image x∗ given a partial

Learning Neurosymbolic Generative Models via Program Synthesis

image xpart. Compared to generation, our likelihood is now
conditioned on xpart—i.e., pθ,φ(x | xpart). Now, we describe
how we modify each of our two models pθ(x | s, c) and
pφ(s, c | z) to incorporate this extra information.

First, the programmatic structure is no longer fully latent,
since we can observe the structure in xpart. In particular, we
leverage our program synthesis algorithm to help perform
completion. We first synthesize programs P ∗ and Ppart rep-
resenting the global structure in x∗ and xpart, respectively.
Then, we train a model fψ that predicts P ∗ given Ppart—i.e.,
it extrapolates Ppart to a program P̂ = fψ(Ppart) represent-
ing the structure of the full image. Thus, unlike generation,
where we sample a program P̂ = (s, c) ∼ pφ(s, c | z), we
use the extrapolated program P̂ = fψ(Ppart). Second, when
we execute P̂ = (s, c) to obtain a structure rendering xstruct,
we render it on top of the given partial image xpart. Finally,
we sample a completion x̂ ∼ pθ(x | xstruct) as before. Our
image completion pipeline is shown in Figure 3.

3. Synthesizing Programmatic Structure
Image representation. Since the images we work with
are very high dimensional, for tractability, we assume that
each image x ∈ RNM×NM is divided into a grid containing
N rows and N columns, where each grid cell has size M ×
M pixels (whereM ∈ N is a hyperparameter). For example,
this grid structure is apparent in Figure 3 (top right), where
N = 15, M = 17 and N = 9, M = 16 for the facade and
synthetic datasets respectively. For t, u ∈ [N] = {1, ..., N},
we let xtu ∈ RM×M denote the sub-image at the (t, u)
position in the N ×N grid.

Program grammar. Given this structure, we consider
programs that draw 2D repeating patterns of M ×M sub-
images on the grid. More precisely, we consider programs

P = ((s1, c1), ..., (sk, ck)) ∈ (S × C)k

that are length k lists of pairs consisting of a sketch s ∈ S
and a perceptual component c ∈ C; here, k ∈ N is a
hyperparameter. 1 A sketch s ∈ S has form

s = for (i, j) ∈ {1, ..., n} × {1, ..., n′} do
draw(a · i+ b, a′ · j + b′, ??)

end for

where n, a, b, n′, a′, b′ ∈ N are undetermined parameters
that must satisfy a · n+ b ≤ N and a′ · n′ + b′ ≤ N , and
where ?? is a hole to be filled by a perceptual component,
which is an M ×M sub-image c ∈ RM×M . 2 Then, upon

1So far, we have assumed that a program is a single pair P =
(s, c), but the generalization to a list of pairs is straightforward.

2For colored images, we have I ∈ RM×M×3.

executing the (i, j) iteration of the for-loop, the program
renders sub-image I at position (t, u) = (a · i+b, a′ · j+b′)
in the N ×N grid. Figure 3 (top middle) shows an example
of a sketch s where its hole is filled with a sub-image c,
and Figure 3 (bottom left) shows the image rendered upon
executing P = (s, c). Figure 2 shows another such example.

Program synthesis problem. Given a training image x ∈
RNM×NM , our program synthesis algorithm outputs the
parameters nh, ah, bh, n′h, a

′
h, b
′
h of each sketch sh in the

program (for h ∈ [k]), along with a perceptual component
ch to fill the hole in sketch sh. Together, these parameters
define a program P = ((s1, c1), ..., (sk, ck)).

The goal is to synthesize a program that faithfully represents
the global structure in x. We capture this structure using a
boolean tensor B(x) ∈ {0, 1}N×N×N×N , where

B
(x)
t,u,t′,u′ =

{
1 if d(xtu, xt′u′) ≤ ε
0 otherwise,

where ε ∈ R+ is a hyperparameter, and d(I, I ′) is a dis-
tance metric between on the space of sub-images. In our
implementation, we use a weighted sum of earthmover’s
distance between the color histograms of I and I ′, and the
number of SIFT correspondences between I and I ′.

Additionally, we associate a boolean tensor with a given
program P = ((s1, c1), ..., (sk, ck)). First, for a sketch
s ∈ S with parameters a, b, n, a′, b′, n′, we define

cover(s) = {(a · i+ b, a′ · j + b′) | i ∈ [n], j ∈ [n′]},

i.e., the set of grid cells where sketch renders a sub-image
upon execution. Then, we have

B
(s)
t,u,t′,u′ =

{
1 if (t, u), (t′, u′) ∈ cover(s)
0 otherwise,

i.e., B(s)
t,u,t′,u′ indicates whether the sketch s renders a sub-

image at both of the grid cells (t, u) and (t′, u′). Then,

B(P) = B(s1) ∨ ... ∨B(sk),

where the disjunction of boolean tensors is defined element-
wise. Intuitively, B(P) identifies the set of pairs of grid cells
(t, u) and (t′, u′) that are equal in the image rendered upon
executing each pair (s, c) in P . 3

Finally, our program synthesis algorithm aims to solve the
following optimization problem:

P ∗ = argmax
P

`(P ;x) (3)

`(P ;x) = ‖B(x) ∧B(P)‖1 + λ‖¬B(x) ∧ ¬B(P)‖1,
3Note that the covers of different sketches in P can overlap;

ignoring this overlap does not significantly impact our results.

Learning Neurosymbolic Generative Models via Program Synthesis

Algorithm 1 Synthesizes a program P representing the
global structure of a given image x ∈ RNM×NM .

Input: X = {x} ⊆ RNM×NM
Ĉ ← {xtu | t, u ∈ [N]}
P ← ∅
for h ∈ {1, ..., k} do
sh, ch = argmax(s,c)∈S×Ĉ `(Ph−1 ∪ {(s, c)};x)
P ← P ∪ {(sh, ch)}

end for
Output: P

where ∧ and ¬ are applied elementwise, and λ ∈ R+ is
a hyperparameter. In other words, the objective of (3) is
the number of true positives (i.e., entries where B(P) =
B(x) = 1), and the number of false negatives (i.e., entries
where B(P) = B(x) = 0), and computes their weighted
sum. Thus, the objective of (3) measures for how well P
represents the global structure of x. For tractability, we
restrict the search space in (3) to programs of the form

P = ((s1, c1), ..., (sk, ck)) ∈ (S × Ĉ)k

Ĉ = {xtu | t, u ∈ [N]}.

In other words, rather than searching over all possible sub-
images c ∈ RM×M , we only search over the sub-images
that actually occur in the training image x. This may lead
to a slightly sub-optimal solution, for example, in cases
where the optimal sub-image to be rendered is in fact an
interpolation between two similar but distinct sub-images in
the training image. However, we found that in practice this
simplifying assumption still produced viable results.

Program synthesis algorithm. Exactly optimizing (3) is
in general an NP-complete problem. Thus, our program
synthesis algorithm uses a partially greedy heuristic. In
particular, we initialize the program to P = ∅. Then,
on each iteration, we enumerate all pairs (s, c) ∈ S ×
Ĉ and determine the pair (sh, ch) that most increases the
objective in (3), where Ĉ is the set of all sub-images xtu for
t, u ∈ [N]. Finally, we add (sh, ch) to P . We show the full
algorithm in Algorithm 1.
Theorem 3.1. If λ = 0, then `(P̂ ;x) ≥ (1− e−1)`(P ∗;x),
where P̂ is returned by Algorithm 1 and P ∗ solves (3).

Proof. If λ = 0, then optimizing `(P ;x) is equivalent to
set cover, where the items are tuples

{(t, u, t′, u′) ∈ [N]4 | B(x)
t,u,t′,u′ = 1},

and the sets are (s, c) ∈ S × Ĉ. The theorem follows
from (Hochbaum, 1997).

In general, (3) is not submodular, but we find that the greedy
heuristic still works well in practice.

4. Experiments
We perform two experiments—one for generation from
scratch and one for image completion. We find substan-
tial improvement in both tasks. Details on neural network
architectures are in Appendix A, and additional examples
for image completion are in Appendix B.

4.1. Datasets

Synthetic dataset. We developed a synthetic dataset
based on MNIST. Each image consists of a 9 × 9 grid,
where each grid cell is 16× 16 pixels. Each grid cell is ei-
ther filled with a colored MNIST digit or a solid color back-
ground. The program structure is a 2D repeating pattern of
an MNIST digit; to add natural noise, we each iteration of
the for-loop in a sketch sh renders different MNIST digits,
but with the same MNIST label and color. Additionally,
we chose the program structure to contain correlations char-
acteristic of real-world images—e.g., correlations between
different parts of the program, correlations between the pro-
gram and the background, and noise in renderings of the
same component. Examples are shown in Figure 4. We give
details of how we constructed this dataset in Appendix A.
This dataset contains 10,000 training and 500 test images.

Facades dataset. Our second dataset consists of 1855
images (1755 training, 100 testing) of building facades.4

These images were all scaled to a size of 256 × 256 × 3
pixels, and were divided into a grid of 15 × 15 cells each
of size 17 or 18 pixels. These images contain repeating
patterns of objects such as windows and doors.

4.2. Generation from Scratch

Experimental setup. First, we evaluate our approach
SGM applied to generation from scratch. We focus on
the synthetic dataset—we found that our facades dataset
was too small to produce meaningful results. For the first
stage of SGM (i.e., generating the program P = (s, c)), we
use a LSTM architecture for the encoder pφ(s, c | z) and
a feedforward architecture for the decoder qφ̃(z | s, c). As
described in Section 2, we use Algorithm 1 to synthesize
programs Px = (sx, cx) representing each training image
x ∈ Xtrain. Then, we train pφ and qφ̃ on the training set of
programs {Px | x ∈ X}.

For the second stage of SGM (i.e., completing the struc-
ture rendering xstruct into an image x), we use a variational
encoder-decoder (VED)

pθ(x | s, c) =
∫
pθ(x | w) · qθ(w | xstruct)dw,

where qθ(w | xstruct) encodes a structure rendering xstruct

4We chose a large training set since our dataset is so small.

Learning Neurosymbolic Generative Models via Program Synthesis

Model Score

SGM (CycleGAN) 85.51
BL (SpatialGAN) 258.68
SGM (VED) 59414.7
BL (VAE) 60368.4

SGM (VED Stage 1 pφ(s, c | z)) 32.0
SGM (VED Stage 2 pθ(x | s, c)) 59382.6

Table 1. Performance of our approach SGM versus the baseline
(BL) for generation from scratch. We report Fréchet inception
distance for GAN-based models, and negative log-likelihood for
the VAE-based models

into a latent vector w, and pθ(x | w) decodes the latent
vector to a whole image We train pθ and qθ using the re-
construction error ‖x̂ − x∗‖. Additionally, we trained a
Cycle-GAN model to map structure renderings to complete
images, by giving the CycleGAN model unaligned pairs of
xstruct and x∗ as training data. We compare our VED model
to a VAE (Kingma & Welling, 2014), and compare our
CycleGAN model to a SpatialGAN (Jetchev et al., 2017).

Results. We measure performance for SGM with the VED
and the baseline VAE using the variational lower bound on
the negative log-likelihood (NLL) (Zhao et al., 2017) on a
held-out test set. For our approach, we use the lower bound
(2),5 which is the sum of the NLLs of the first and second
stages; we report these NLLs separately as well. Figure 4
shows examples of generated images. For SGM and Spa-
tialGAN, we use Fréchet inception distance (Heusel et al.,
2017). Table 1 shows these metrics of both our approach
and the baseline.

Discussion. The models based on our approach quantita-
tively improve over the respective baselines. The examples
of images generated using our approach with VED comple-
tion appear to contain more structure than those generated
using the baseline VAE. Similarly, the images generated
using our approach with CycleGAN clearly capture more
complex structure than the unbounded 2D repeating texture
patterns captured by SpatialGAN.

4.3. Image Completion

Experimental setup. Second, we evaluated our approach
SGM for image completion, on both our synthetic and the fa-
cades dataset. For this task, we compare using three image
completion models: GLCIC (IIzuka et al., 2017), Cycle-
GAN (Zhu et al., 2017), and the VED architecture described
in Section 4.2. GLCIC is a state-of-the-art image completion
model. CycleGAN is a generic image-to-image transformer.

5Technically, pθ(x | sx, cx) is lower bounded by the loss of
the variational encoder-decoder).

Original Images

SGM (CycleGAN)

Baseline (SpatialGAN)

SGM (VED)

Baseline (VAE)

Figure 4. Examples of synthetic images generated using our ap-
proach, SGM (with VED and CycleGan), and the baseline (a VAE
and a SpatialGAN). Images in different rows are unrelated since
the task is generation from scratch.

It uses unpaired training data, but we found that for our
task, it outperforms approaches such as Pix2Pix (Isola et al.,
2017) that take paired training data. For each model, we
trained two versions:

• Our approach (SGM): As described in Section 2 (for
image completion), given a partial image xpart, we
use Algorithm 1 to synthesize a program Ppart. We
extrapolate Ppart to P̂ = fψ(Ppart), and execute P̂ to
obtain a structure rendering xstruct. Finally, we train
the image completion model (GLCIC, CycleGAN, or
VED) to complete xstruct to the original image x∗.

• Baseline: Given a partial image xpart, we train the im-
age completion model (GLCIC, CycleGAN, or VED)
to directly complete xpart to the original image x∗.

Learning Neurosymbolic Generative Models via Program Synthesis

Original Image (Synthetic) Original Image (Facades)

SGM (GLCIC, Synthetic) SGM (GLCIC, Facades)

Baseline (GLCIC, Synthetic) Baseline (GLCIC, Facades)

Figure 5. Examples of images generated using our approach (SGM) and the baseline, using GLCIC for image completion.

Model Synthetic Facades
SGM BL SGM BL

GLCIC 106.8 163.66 141.8 195.9
CycleGAN 91.8 218.7 124.4 251.4
VED 44570.4 52442.9 8755.4 8636.3

Table 2. Performance of our approach SGM versus the baseline
(BL) for image completion. We report Fréchet distance for GAN-
based models, and negative log-likelihood (NLL) for the VED.

Results. As in Section 4.2, we measure performance using
Fréchet inception distance for GLCIC and CycleGAN, and
negative log-likelihood (NLL) for the VED, reported on a
held-out test set. We show these results in Table 2. We show
examples of completed image using GLCIC in Figure 5. We
show additional examples of completed images, including
those completed using CycleGAN and VED, in Appendix B.

Discussion. Our approach SGM outperforms the baseline
in every case except the VED on the facades dataset. We
believe the last result is since both VEDs failed to learn any
meaningful structure (see Figure 7 in Appendix B).

A key reason why the baselines perform so poorly on the
facades dataset is that the dataset is very small. Nevertheless,
SGM substantially outperforms the baselines even on the
larger synthetic dataset. Finally, generative models such as
GLCIC are known to perform poorly away from the edges of
the given partial image (IIzuka et al., 2017). A benefit of our
approach is that it provides global context for models such
as GLCIC that are good at performing local completion.

5. Conclusion
We have proposed a new approach to generation that incor-
porates programmatic structure into state-of-the-art deep
learning models. In our experiments, we have demonstrated
the promise of our approach to improve generation of high-
dimensional data with global structure that current state-of-
the-art deep generative models have difficulty capturing.

There are a number of directions for future work that could
improve the quality of the images generated using our ap-
proach. Most importantly, we have relied on a relatively
simple grammar of programs. Designing more expressive
program grammars that can more accurately capture global
structure could substantially improve our results. Examples
of possible extensions include if-then-else statements and
variable grids. Furthermore, it may be useful to incorporate
spatial transformations so we can capture patterns that are
distorted due to camera projection.

Correspondingly, more sophisticated synthesis algorithms
may be needed for these domains. In particular, learning-
based program synthesizers may be necessary to infer
more complex global structure. Devising new learning
algorithms—e.g., based on reinforcement learning—would
be needed to learn these synthesizers in conjunction with
the parameters of the SGM model.

Acknowledgements
We thank the anonymous reviewers for insightful feedback.
This research was supported by NSF awards #1737858 and
#1836936.

Learning Neurosymbolic Generative Models via Program Synthesis

References
Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. Neural

module networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 39–48,
2016.

Bastani, O., Pu, Y., and Solar-Lezama, A. Verifiable rein-
forcement learning via policy extraction. In NIPS, 2018.

De Raedt, L., Kimmig, A., and Toivonen, H. Problog: A
probabilistic prolog and its application in link discovery.
In Proceedings of the 20th International Joint Confer-
ence on Artifical Intelligence, IJCAI’07, pp. 2468–2473,
San Francisco, CA, USA, 2007. Morgan Kaufmann Pub-
lishers Inc. URL http://dl.acm.org/citation.
cfm?id=1625275.1625673.

Deng, Z., Chen, J., Fu, Y., and Mori, G. Probabilistic
neural programmed networks for scene generation. In
Advances in Neural Information Processing Systems, pp.
4032–4042, 2018.

Dieleman, S., van den Oord, A., and Simonyan, K. The chal-
lenge of realistic music generation: modelling raw audio
at scale. In Advances in Neural Information Processing
Systems, pp. 8000–8010, 2018.

Ellis, K., Solar-Lezama, A., and Tenenbaum, J. Unsuper-
vised learning by program synthesis. In Advances in neu-
ral information processing systems, pp. 973–981, 2015.

Ellis, K., Ritchie, D., Solar-Lezama, A., and Tenenbaum,
J. Learning to infer graphics programs from hand-drawn
images. In Advances in Neural Information Processing
Systems, pp. 6060–6069, 2018.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in neural
information processing systems, pp. 2672–2680, 2014.

Ha, D. and Eck, D. A neural representation of sketch draw-
ings. arXiv preprint arXiv:1704.03477, 2017.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In Advances in
Neural Information Processing Systems, pp. 6626–6637,
2017.

Hochbaum, D. S. Approximating covering and packing
problems: set cover, vertex cover, independent set, and
related problems. Approximation Algorithms for NP-
Hard Problem, pp. 94–143, 1997.

Hwang, I., Stuhlmüller, A., and Goodman, N. D. Induc-
ing probabilistic programs by bayesian program merging.
arXiv preprint arXiv:1110.5667, 2011.

IIzuka, S., Simo-Serra, E., and Ishikawa, H. Globally and lo-
cally consistent image completion. In ACM Trans. Graph.,
2017.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. Image-to-
image translation with conditional adversarial networks.
In 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 5967–5976. IEEE, 2017.

Jetchev, N., Bergmann, U., and Vollgraf, R. Texture synthe-
sis with spatial generative adversarial networks. 2017.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In ICLR, 2014.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332–1338, 2015.

Liang, P., Jordan, M. I., and Klein, D. Learning programs:
A hierarchical bayesian approach. In Proceedings of
the 27th International Conference on Machine Learning
(ICML-10), pp. 639–646, 2010.

Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T.,
and Raedt, L. D. Deepproblog: Neural probabilistic
logic programming. CoRR, abs/1805.10872, 2018. URL
http://arxiv.org/abs/1805.10872.

Nori, A. V., Ozair, S., Rajamani, S. K., and Vijaykeerthy, D.
Efficient synthesis of probabilistic programs. In PLDI,
volume 50, pp. 208–217. ACM, 2015.

Perov, Y. N. and Wood, F. Learning probabilistic programs.
In NIPS Probabilistic Programming Workshop, 2014.

Pu, Y., Miranda, Z., Solar-Lezama, A., and Kaelbling, L.
Selecting representative examples for program synthesis.
In International Conference on Machine Learning, pp.
4158–4167, 2018.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. In ICLR, 2015.

Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., and
Saraswat, V. Combinatorial sketching for finite programs.
In ASPLOS, volume 41, pp. 404–415. ACM, 2006.

Talton, J., Yang, L., Kumar, R., Lim, M., Goodman, N., and
Měch, R. Learning design patterns with bayesian gram-
mar induction. In Proceedings of the 25th annual ACM
symposium on User interface software and technology,
pp. 63–74. ACM, 2012.

Tyleček, R. and Šára, R. Spatial pattern templates for recog-
nition of objects with regular structure. In Proc. GCPR,
Saarbrucken, Germany, 2013.

http://dl.acm.org/citation.cfm?id=1625275.1625673
http://dl.acm.org/citation.cfm?id=1625275.1625673
http://arxiv.org/abs/1805.10872

Learning Neurosymbolic Generative Models via Program Synthesis

Valkov, L., Chaudhari, D., Srivastava, A., Sutton, C., and
Chaudhuri, S. Houdini: Lifelong learning as program
synthesis. In Advances in Neural Information Processing
Systems, pp. 8701–8712, 2018.

Verma, A., Murali, V., Singh, R., Kohli, P., and Chaudhuri,
S. Programmatically interpretable reinforcement learning.
In ICML, 2018.

Wang, F. and Rudin, C. Falling rule lists. In Artificial
Intelligence and Statistics, pp. 1013–1022, 2015.

Xian, W., Sangkloy, P., Agrawal, V., Raj, A., Lu, J., Fang,
C., Yu, F., and Hays, J. Texturegan: Controlling deep
image synthesis with texture patches. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 8456–8465, 2018.

Zhao, S., Song, J., and Ermon, S. Towards deeper un-
derstanding of variational autoencoding models. arXiv
preprint arXiv:1702.08658, 2017.

Zhu, J.-Y., Park, T., and Efros, A. Unpaired image-to-image
translation using cycle-consistent adversarial networks.
In ICCV., 2017.

Learning Neurosymbolic Generative Models via Program Synthesis

A. Experimental Details
A.1. Synthetic Dataset

To sample a random image, we started with a 9 × 9 grid, where each grid cell is 16 × 16 pixels. We randomly sample
a program P = ((s1, c1), ..., (sk, ck)) (for k = 12), where each perceptual component c is a randomly selected MNIST
image (downscaled to our grid cell size and colorized). To create correlations between different parts of P , we sample
(sh, ch) depending on (s1, c1), ..., (sh−1, ch−1). First, to sample each component ch, we first sample latent properties of ch
(i.e., its MNIST label {0, 1, ..., 4} and its color {red, blue, orange, green, yellow}). Second, we sample the parameters of sh
conditional on these properties. To each of the 25 possible latent properties of ch, we associate a discrete distribution over
latent properties for later elements in the sequence, as well as a mean and standard deviation for each of the parameters of
the corresponding sketch sh.

We then render P by executing each (sh, ch) in sequence. However, when executing (sh, ch), on each iteration (i, j) of the
for-loop, instead of rendering the sub-image ch at each position in the grid, we randomly sample another MNIST image
c
(i,j)
h with the same label as ch, recolor c(i,j)h to be the same color as ch, and render c(i,j)h . By doing so, we introduce noise

into the programmatic structure.

A.2. Generation from Scratch

SGM architecture. For the first stage of SGM (i.e., generating the program P = (s, c)), we use a 3-layer LSTM encoder
pφ(s, c | z) and a feedforward decoder qφ̃(z | s, c). The LSTM includes sequences of 13-dimensional vectors, of which 6
dimensions represent the structure of the for-loop being generated, and 7 dimensions are an encoding of the image to be
rendered. The image compression was performed via a convolutional architecture with 2 convolutional layers for encoding
and 3 deconvolutional layers for decoding.

For the second stage of SGM (i.e., completing the structure rendering xstruct into an image x), we use a VED; the encoder
qθ(w | xstruct) is a CNN with 4 layers, and the decoder pθ(x | w) is a transpose CNN with 6 layers. The CycleGAN model
has a discriminator with 3 convolutional layers and a generator which uses transfer learning by employing the pre-trained
ResNet architecture.

Baseline architecture. The architecture of the baseline is a vanilla VAE with the same as the architecture as the VED we
used for the second stage of SGM, except the input to the encoder is the original training image x instead of the structure
rendering xstruct. The baselines with CycleGAN also use the same architecture as SGM with CycleGAN/GLCIC. The Spatial
GAN was trained with 5 layers each in the generative/discriminative layer, and 60-dimensional global and 3-dimensional
periodic latent vectors.

A.3. Image completion.

SGM architecture. For the first stage of SGM for completion (extrapolation of the program from a partial image to
a full image), we use a feedforward network with three layers. For the second stage of completion via VAE, we use a
convolutional/deconvolutional architecture. The encoder is a CNN with 4 layers, and the decoder is a transpose CNN with 6
layers. As was the case in generation, the CycleGAN model has a discriminator with 3 convolutional layers and a generator
which uses transfer learning by employing the pre-trained ResNet architecture.

Baseline architecture. For the baseline VAE architecture, we used a similar architecture to the SGM completion step (4
convolutional and 6 deconvolutional layers). The only difference was the input, which was a partial image rather than an
image rendered with structure. The CycleGAN architecture was similar to that used in SGM (although it mapped partial
images to full images rather than partial images with structure to full images).

B. Additional Results
In Figure 6, we show examples of how our image completion pipeline is applied to the facades dataset, and in Figure 7, we
show examples of how our image completion pipeline is applied to our synthetic dataset.

Learning Neurosymbolic Generative Models via Program Synthesis

Original Image

Partial Image

Structure Rendering

SGM (GLCIC)

Baseline (GLCIC)

SGM (CycleGAN)

Baseline (CycleGAN)

SGM (VED)

Baseline (VED)

Figure 6. Examples of our image completion pipeline on the facades dataset.

Learning Neurosymbolic Generative Models via Program Synthesis

Original Image

Partial Image

Structure Rendering (Partial)

Structure Rendering (Extrapolated)

SGM (GLCIC)

Baseline (GLCIC)

SGM (CycleGAN)

Baseline (CycleGAN)

SGM (VED)

Baseline (VED)

Figure 7. Examples of our image completion pipeline on our synthetic dataset.

