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Abstract
As machine learning black boxes are increasingly
being deployed in real-world applications, there
has been a growing interest in developing post
hoc explanations that summarize the behaviors
of these black boxes. However, existing algo-
rithms for generating such explanations have been
shown to lack stability and robustness to distri-
bution shifts. We propose a novel framework for
generating robust and stable explanations of black
box models based on adversarial training. Our
framework optimizes a minimax objective that
aims to construct the highest fidelity explanation
with respect to the worst-case over a set of adver-
sarial perturbations. We instantiate this algorithm
for explanations in the form of linear models and
decision sets by devising the required optimiza-
tion procedures. To the best of our knowledge,
this work makes the first attempt at generating
post hoc explanations that are robust to a general
class of adversarial perturbations that are of prac-
tical interest. Experimental evaluation with real-
world and synthetic datasets demonstrates that our
approach substantially improves robustness of ex-
planations without sacrificing their fidelity on the
original data distribution.

1. Introduction
Over the past decade, there has been an increasing interest
in leveraging machine learning (ML) models to aid decision
making in critical domains such as healthcare and criminal
justice. However, the successful adoption of these models
in the real world relies heavily on how well decision makers
are able to understand and trust their functionality (Doshi-
Velez & Kim, 2017; Lipton, 2016). Decision makers must
have a clear understanding of the model behavior so they
can diagnose errors and potential biases in these models,
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and decide when and how to employ them. However, the
proprietary nature and increasing complexity of machine
learning models poses a severe challenge to understanding
these complex black boxes, motivating the need for tools
that can explain them in a faithful and interpretable manner.

Several different kinds of approaches have been proposed
to produce interpretable post hoc explanations of black box
models. For instance, LIME and SHAP (Ribeiro et al., 2016;
Lundberg & Lee, 2017b) explain individual predictions of
any given black box classifier via local approximations. On
the other hand, approaches such as MUSE (Lakkaraju et al.,
2019b) focus on explaining the high-level global behavior
of any given black box.

However, recent work has shown that post hoc explanation
methods are unstable i.e., small perturbations to the input
can substantially change the resulting explanations, and non-
robust to distribution shifts i.e., explanations constructed
using a given data distribution may not be be valid on oth-
ers (Ghorbani et al., 2019; Lakkaraju & Bastani, 2020). A
key reason as to why many post hoc explanation methods
are not robust is that they construct explanations by optimiz-
ing fidelity on a given covariate distribution p(x) (Ribeiro
et al., 2018; 2016; Lakkaraju et al., 2019b)—i.e., choose the
explanation that makes the same predictions as the black box
on p(x). To see why these approaches may fail to be robust,
consider a covariate distribution p(x1, x2) where x1 and x2

are perfectly correlated, and an outcome y = I[x1 ≥ 0].
Suppose we have a black box B∗(x1, x2) = I[x2 ≥ 0], and
an explanation Ê(x1, x2) = I[x1 ≥ 0]. Since x1 and x2 are
perfectly correlated, the explanation has perfect fidelity—
i.e.,

Pp(x1,x2)[Ê(x1, x2) = B∗(x1, x2)] = 1. (1)

Thus, Ê appears to be a good explanation of B∗. However,
if the underlying covariate distribution changes—e.g., to
p′(x1, x2) where x1 and x2 are independent, then Ê no
longer has high fidelity.

The lack of robustness is problematic because many of the
undesirable behaviors of black box models that can be di-
agnosed using interpretability relate to distribution shifts.
For instance, it has been shown that interpretability can
help users in assessing whether a model would transfer well
to a new domain (Ribeiro et al., 2016)—e.g., from one
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hospital to another (Bastani, 2018); Caruana et al. (2015)
show that experts use interpretable models to identify spuri-
ous relationships which do not hold if the underlying data
changes—e.g., if a patient has asthma, he is not likely to
die from pneumonia; these are intrinsically distribution shift
issues. Thus, for the explanations to shed light on these
kinds of issues in the black box, high fidelity on the original
distribution alone may be insufficient; instead, it also needs
to achieve high fidelity on the relevant shifted distributions.
To further complicate the problem, we often do not know in
advance what are the relevant distribution shifts. Therefore,
constructing explanations that are robust to a general class
of possible shifts is of great importance.

We propose a novel algorithmic framework, RObust Post
hoc Explanations (ROPE) for constructing black box expla-
nations that are not only stable but also robust to shifts in the
underlying data distribution. To the best of our knowledge,
our work is the first attempt at generating robust post hoc
explanations for black boxes. ROPE focuses on two notions
of robustness. The first is adversarial robustness (Ghor-
bani et al., 2019), which intuitively says that if the inputs
are adversarially perturbed (by small amounts), then the
explanation should not change significantly. The second
is distributional robustness (Namkoong & Duchi, 2016),
which is similar to adversarial robustness but considers per-
turbations to the input distribution rather than individual
inputs. While ROPE considers distributional and adversar-
ial robustness, these properties also improve stability. This
is due to the fact that one of the key reasons for instability of
explanations is that there may be multiple explanations with
equal fidelity on the original data distribution (Lakkaraju &
Bastani, 2020). In such cases, distributional and adversarial
robustness enable ROPE to choose among these explana-
tions.

First, we propose a novel minimax objective that can be used
to construct robust black box explanations for a given family
of interpretable models. This objective encodes the goal of
returning the highest fidelity explanation with respect to the
worst-case over a set of distribution shifts.

Second, we propose a set of distribution shifts that captures
our intuition about the kinds of shifts to which interpre-
tations should be robust. In particular, this set includes
shifts that contain perturbations to a small number of covari-
ates. For instance, robustness to these shifts ensure that the
marginal dependence of the black box on a single covariate
is preserved in the explanation, since the explanation must
be robust to changes in that covariate alone.

Third, we propose algorithms for optimizing this objec-
tive in two settings: (i) explanations such as linear models
with continuous parameters that can be optimized using
gradient descent, in which case we use adversarial train-
ing (Goodfellow et al., 2015), and (ii) explanations such as

decision sets with discrete parameters, in which case we
use a sampling-based approximation in conjunction with
submodular optimization (Lakkaraju et al., 2016).

We evaluated our approach ROPE on real-world data from
healthcare, criminal justice, and education, focusing on
datasets that include some kind of distribution shift—i.e.,
individuals from two different subgroups (e.g., patients from
two different counties). Our results demonstrate that the
explanations constructed using ROPE are substantially more
robust to distribution shifts than those generated by state-
of-the-art post hoc explanation techniques such as LIME,
SHAP, and MUSE. Furthermore, the fidelity of ROPE ex-
planations is equal or higher than the fidelity of the expla-
nations generated by state-of-the-art methods even on the
original data distribution, thus demonstrating that ROPE im-
proves robustness of explanations without sacrificing their
fidelity on the original data distributions. In addition, we
used synthetic data to analyze how the degree of distribu-
tion shift affects fidelity of the explanations constructed by
our approach and other baselines. Finally, we performed an
experiment where the “black box” models are themselves in-
terpretable, and showed that ROPE explanations constructed
based on shifted data are substantially more similar to the
black box than the explanations output by other baselines.

2. Related Work
Post hoc explanations. Many approaches have been pro-
posed to directly learn interpretable models (Breiman, 2017;
Tibshirani, 1997; Letham et al., 2015; Lakkaraju et al.,
2016; Caruana et al., 2015; Kim & Bastani, 2019); how-
ever, complex models such as deep neural networks and
random forests typically achieve higher accuracy than sim-
pler interpretable models (Ribeiro et al., 2016); thus, it is
often desirable to use complex models and then construct
post hoc explanations to understand their behavior.

A variety of post hoc explanation techniques have been pro-
posed, which differ in their access to the complex model
(i.e., black box vs. access to internals), scope of approx-
imation (e.g., global vs. local), search technique (e.g.,
perturbation-based vs. gradient-based), explanation fam-
ilies (e.g., linear vs. non-linear), etc. For instance, in addi-
tion to LIME (Ribeiro et al., 2016) and SHAP (Lundberg
& Lee, 2017a), several other local explanation methods
have been proposed that compute saliency maps which cap-
ture importance of each feature for an individual prediction
by computing the gradient with respect to the input (Si-
monyan et al., 2014; Sundararajan et al., 2017; Selvaraju
et al., 2017; Smilkov et al., 2017). An alternate approach is
to provide a global explanation summarizing the black box
as a whole (Lakkaraju et al., 2019a; Bastani et al., 2017),
typically using an interpretable model.
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There has also been recent work on exploring vulnerabili-
ties of black box explanations (Adebayo et al., 2018; Slack
et al., 2020; Lakkaraju & Bastani, 2020; Rudin, 2019; Dom-
browski et al., 2019)—e.g., Ghorbani et al. (2019) demon-
strated that post hoc explanations can be unstable, changing
drastically even with small perturbations to inputs. How-
ever, none of the prior work has studied the problem of
constructing robust explanations.

Distribution shift. Distribution shift refers to settings
where there is a mismatch between the training and test
distributions. A lot of work in this space has focused
on covariate shift, where the covariate distribution p(x)
changes but the outcome distribution p(y | x) remains the
same. This problem has been studied in the context of
learning predictive models (Quionero-Candela et al., 2009;
Jiang & Zhai, 2007). Proposed solutions include impor-
tance weighting (Shimodaira, 2000), invariant representa-
tion learning (Ben-David et al., 2007; Tzeng et al., 2017),
online learning (Cesa-Bianchi & Lugosi, 2006), and learn-
ing adversarially robust models (Teo et al., 2007; Graepel
& Herbrich, 2004; Decoste & Schölkopf, 2002). However,
none of these approaches are applicable in our setting since
they assume either that the underlying predictive model is
not a black box, that data from the shifted distribution is
available, or that the black box can be adaptively retrained.

Adversarial robustness. Due to the discovery that deep
neural networks are not robust (Szegedy et al., 2014), there
has been recent interest in adversarial training (Goodfellow
et al., 2015; Bastani et al., 2016; Sinha et al., 2018; Sha-
ham et al., 2018), which optimizes a minimax objective that
captures the worst-case over a given set of perturbations to
the input data. At a high level, these algorithms are based
on gradient descent; at each gradient step, they solve an
optimization problem to find the worst-case perturbation,
and then compute the gradient at this perturbation. For in-
stance, for L∞ robustness (i.e., perturbations of bounded
L∞ norm), Goodfellow et al. (2015) propose to approxi-
mate the optimization problem using a single gradient step,
called the signed-gradient update; Shaham et al. (2018)
generalizes this approach to arbitrary norms. We propose a
set of perturbations that capture our intuition about the kinds
of distribution shifts that explanations should be robust to;
for this set of shifts, we show how approximations along the
lines of these previous approaches correspond to solving a
linear program on every step to compute the gradient.

3. Our Framework
Here, we describe our framework for constructing robust
explanations. We assume we are given a black box model
B∗ : X → Y , where X ⊆ Rn is the space of covariates and
Y is the space of labels. Our goal is to construct a global
explanation for the computation performed by B∗. To con-

struct such an explanation, one approach would be to learn
an interpretable model that approximates B∗. In particular,
given a family E of interpretable models, a distribution p(x)
over X , and a loss function ` : Y × Y → R, this approach
constructs an explanation as follows:

Ê(x) = arg min
E∈E

Ep(x)[`(E(x), B∗(x))]. (2)

In other words, Ê minimizes the error (as defined by `)
relative to the black box B∗. Intuitively, if Ê is a good
approximation of B∗, then the computation performed by
B∗ should be mirrored by the computation performed by Ê.

The problem with Eq. 2 is that it only guarantees that Ê is
a good approximation of B∗ according to the distribution
p(x). If the underlying data distribution changes, then Ê
may no longer be a good approximation of B∗.

3.1. Robust Explanations

To construct explanations that are robust to shifts in the
data distribution p, we first consider the general setting
where we are given a set of distribution shifts that we want
our explanations to be robust to; we describe a practical
choice in Section 3.2. We initially focus on distributional
robustness; we connect it to adversarial robustness below.

Definition 3.1. Let p be a distribution over X , and let δ ∈
Rn. The δ-shifted distribution is pδ(x) = p(x− δ).

In other words, pδ places probability mass on covariates that
are shifted by δ compared to p.

Definition 3.2. Let p be a distribution over X . Given ∆ ⊆
Rn, the set of ∆-small shifts is the set {pδ | δ ∈ ∆} of
δ-shifted distributions.

For computational tractability, we assume:

Assumption 3.3. The set ∆ of shifts is a convex polytope.

Given a set of distribution shifts, our goal is to compute the
best explanation that is robust to these shifts:

Definition 3.4. Given ∆ ⊆ Rn, s0 ∈ N, and δmax ∈ R>0,
the optimal robust explanation for (s0, δmax)-small shifts is

Ê = arg min
E∈E

max
δ∈∆

Epδ(x)[`(E(x), B∗(x))]. (3)

That is, Ê optimizes the worst-case loss over shifts pδ . Com-
puting the worst-case over shifts pδ can be intractable; in-
stead, we use an upper bound on the objective in Eq. 3.

Lemma 3.5. We have

max
δ∈∆

Epδ(x)[`(E(x), B∗(x))]

≤ Ep(x)

[
max
δ∈∆

`(E(x+ δ), B∗(x+ δ))

]
.



Robust and Stable Black Box Explanations

Proof: Note that

max
δ∈∆

Epδ(x)[`(E(x), B∗(x))]

= max
δ∈∆

∫
X
`(E(x), B∗(x))p(x− δ)dx

= max
δ∈∆

∫
X
`(E(x′ + δ), B∗(x′ + δ))p(x′)dx′

≤
∫
X

max
δ∈∆

`(E(x′ + δ), B∗(x′ + δ))p(x′)dx′,

since the integrand increases pointwise.

This lemma gives us a surrogate objective that we can opti-
mize in place of the one in Eq. 3—i.e.,

Ê = arg min
E∈E

Ep(x)

[
max
δ∈∆

`(E(x+ δ), B∗(x+ δ))

]
. (4)

In particular, this approach connects distributional robust-
ness to adversarial robustness—Eq. 4 is the standard objec-
tive used to achieve adversarial robustness to input perturba-
tions δ ∈ ∆ (Goodfellow et al., 2015).

3.2. General Class of Distribution Shifts

Next, we propose a choice of ∆ that captures distributions
shifts we believe to be of importance in practical applica-
tions. We begin with a concrete setting that motivates our
choice, but our choice includes shifts beyond this setting.

In particular, consider the case where X = {0, 1}d is a
vector of indicators. Our intuition is that when examining
an explanation, users often want to understand how the
model predictions change when a handful of components of
an input x ∈ X change.

For instance, this intuition captures the case of counter-
factual explanations, where the goal is to identify a small
number of covariates that can be changed to affect the out-
come (Zhang et al., 2018). It also captures certain intuitions
underlying fairness and causality, where we care about how
the model changes when a covariate such as gender or eth-
nicity changes (Lakkaraju & Bastani, 2020; Rosenbaum &
Rubin, 1983; Pearl, 2009). Finally, it also encompasses the
shifts considered in measures of variable importance (Hastie
et al., 2001)—in particular, variable importance measures
how the explanation changes when a single component of
the input x is changed.

We can use the following choice to capture our intuition:

∆1 = {δ ∈ {−1, 0, 1}n | ‖δ‖0 ≤ s0}

for s0 ∈ N. However, this set is nonconvex. We can approx-
imate this constraint using the following set:

∆2 = {δ ∈ Rn | ‖δ‖0 ≤ s0 ∧ ‖δ‖∞ ≤ 1}.

In particular, the constraint ‖δ‖∞ ≤ 1 ensures that −1 ≤
δi ≤ 1 for each i ∈ {1, ..., n}. Finally, we can replace the
L0 norm with the L1 norm:

∆3 = {δ ∈ Rn | ‖δ‖1 ≤ s0 ∧ ‖δ‖∞ ≤ 1}. (5)

This overapproximation is a heuristic based on the fact that
the L1 loss induces sparsity in regression (Tibshirani, 1997).

More generally, we consider a shift from p to a distribution
p′ such that p′ places probability mass on the same inputs
x as p, except a small number of components of x are
systematically changed by a small amount:

∆̃(s0, δmax) = {δ ∈ Rn | ‖δ‖0 ≤ s0 ∧ ‖δ‖∞ ≤ δmax},

where s0 ∈ N and δmax ∈ R—i.e., δ ∈ ∆̃(s0, δmax) is a
sparse vector whose components are not too large. However,
∆̃(s0, δmax) is nonconvex. As above, for computational
tractability, we approximate it using

∆(s0, δmax) = {δ ∈ Rn | ‖δ‖1 ≤ s0 ∧ ‖δ‖∞ ≤ δmax}.

It is easy to see that ∆̃(s0, δmax) ⊆ ∆(s0, δmax), so this
choice overapproximates the set of shifts. In particular, this
choice ∆(s0, δmax) is a polytope, so it satisfies Assump-
tion 3.3. The set defined in Eq. 5 is ∆3 = ∆(s0, 1).

A particular benefit of ∆(s0, δmax) is that the marginal de-
pendencies of B∗ on a component xi of an input x ∈ X is
preserved in Ê—i.e., if we unilaterally change xi by a small
amount, B∗ and Ê change in the same way. Formally:

Proposition 3.6. Suppose Y = R, `(y, y′) = |y − y′|, and
∆ = ∆(s0, δmax), and consider an explanation Ê with error

Ep(x)

[
max
δ∈∆

`(Ê(x+ δ), B∗(x+ δ))

]
≤ ε.

Then, letting α be the the one-hot encoding of i (i.e., αi = 1
and αj = 0 if i 6= j), for any c ∈ R such that |c| ≤ δmax,

Ep(x)

[∣∣∣(Ê(x+ cα)− Ê(x))− (B∗(x+ cα)−B∗(x))
∣∣∣]

≤ 2ε.

Proof:

Ep(x)

[∣∣∣(Ê(x+ cα)− Ê(x))− (B∗(x+ cα)−B∗(x))
∣∣∣]

≤ Ep(x)

[∣∣∣Ê(x+ cα)−B∗(x+ cα)
∣∣∣]

+ Ep(x)

[∣∣∣Ê(x)−B∗(x)
∣∣∣]

≤ 2ε since cα ∈ ∆

As shown in Section 1, this property is not satisfied by
standard measures of fidelity, since an explanation with
perfect fidelity (i.e., Eq. 1) may use completely different
covariates from the black box.
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3.3. Constructing Robust Linear Explanations

We consider the case where E is the space of linear functions,
or more generally, any model family that can be optimized
using gradient descent. Then, we can use adversarial train-
ing to optimize Eq. 4 (Goodfellow et al., 2015; Shaham
et al., 2018). The key idea behind adversarial training is
to learn a model f∗ ∈ F that is robust with respect to a
worst-case set of perturbations to the input data—i.e.,

f∗ = arg min
f∈F

Ep(x,y)

[
max
δ∈∆

`(f(x+ δ), y)

]
.

We can straightforwardly adapt this formalism to our setting
by replacing F with E and y with B∗(x). In particular,
suppose that Eθ ∈ E is parameterized by θ ∈ Θ, where
Θ ⊆ Rd and J(θ;x) is defined as follows:

J(θ;x) = `(Eθ(x), B∗(x)).

Then, Eq. 4 becomes

θ̂ = arg min
θ∈Θ

Ep(x)

[
max
δ∈∆

J(θ;x+ δ))

]
. (6)

The adversarial training approach optimizes Eq. 6 by us-
ing stochastic gradient descent (Goodfellow et al., 2015;
Shaham et al., 2018)—for a single sample x ∼ p(x), the
stochastic gradient estimate of the objective in Eq. 6 is

∇θ max
δ∈∆

J(θ;x+ δ) ≈ ∇θJ(θ;x+ δ∗),

where

δ∗ = arg max
δ∈∆

J(θ, x+ δ). (7)

To solve Eq. 7, we use the Taylor approximation

J(θ;x+ δ) ≈ J(θ;x) +∇xJ(θ;x)>δ.

Using this approximation, Eq. 7 becomes

δ∗ = arg max
δ∈∆

J(θ, x+ δ)

≈ arg max
δ∈∆

{
J(θ;x) +∇xJ(θ;x)>δ

}
= arg max

δ∈∆
∇xJ(θ;x)>δ, (8)

where in the last line, we dropped the term J(θ;x) since it
is constant with respect to δ. Since we have assumed ∆ is a
polytope, Eq. 8 is a linear program with free variables δ.

3.4. Constructing Robust Rule-Based Explanations

Here, we describe how we can construct robust rule-based
explanations (Lakkaraju et al., 2016; Letham et al., 2015;
Lakkaraju et al., 2019b)—e.g., decision sets (Lakkaraju

et al., 2016; 2019b), decision lists (Letham et al., 2015),
decision trees (Quinlan, 1986). Any rule based model can
be expressed as a decision set (Lakkaraju & Rudin, 2017),
so we focus on these models.

Unlike explanations with continuous parameters, we can no
longer use gradient descent to optimize Eq. 4. Instead, we
optimize it using a sampling-based heuristic. We assume
we are given a distribution p0(δ) over shifts δ ∈ ∆. Then,
we approximate the maximum in Eq. 4 using k samples:

max
δ∈∆

F (δ) ≈ max
δj∼p0(δ)

F (δj),

where F (δ) is a general objective and j ∈ {1, ..., k}. In
particular, our optimization problem becomes

Ê = arg min
E∈E

Ep(x)

[
max

δj∼p0(δ)
`(E(x+ δj), B∗(x+ δj))

]
.

(9)

Next, a decision set

E = {(s1, c1), (s2, c2) · · · (sm, cm)} ⊆ S × C

is a set of rules of the form (s, c) where s is a conjunction of
predicates of the form (feature, operator, value) (e.g., age
≥ 45) and c ∈ Y is a label. Typically, we consider the case
where Y is a finite set. Existing algorithms (Lakkaraju et al.,
2019b; 2016) for constructing decision set explanations
primarily optimize for the following three goals: (i) maxi-
mizing the coverage of E—i.e., for x ∈ X , maximizing the
probability that one of the rules (s, c) ∈ E has a condition
s that is satisfied by x, (ii) minimizing the disagreement
between E and B∗—i.e., minimizing the probability that
E(x) 6= B∗(x), and (iii) minimizing the complexity of
E—e.g., E has fewer rules. In particular, these algorithms
optimize the following objective:

Ê = arg max
E⊆S×C

{−disagree(E) + λ · cover(E)} (10)

subj. to |E| ≤ α,

where

disagree(E) =

m∑
i=1

Pp(x)(si(x)→ B∗(x) 6= ci)

cover(E) = Pp(x)(∃(s, c) ∈ E s.t. s(x) = true).

Here, we let s(x) = true if x satisfies s and s(x) = false
otherwise. In disagree(E), the event in the probability says
if predicate si applies to x, then B∗(x) 6= ci.

To adapt this approach to solving Eq. 9, we modify the
disagreement to take the worst-case over δj ∼ p0(δ):

disagree(E)

=

m∑
i=1

Pp(x)

(
si(x)→ ∃δj ∼ p0(δ) . B∗(x+ δj) 6= ci

)
.
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where j ∈ {1, ..., k}. Here, we have used an approximation
where we only check if si applies to the unperturbed input
x; this choice enables our submodularity guarantee.

Theorem 3.7. Suppose that p(x) = Uniform(Xtrain), where
Xtrain ⊆ X is a training set, is the empirical training dis-
tribution. Then, the optimization problem Eq. 10 is non-
monotone and submodular with cardinality constraints.
Proof: To show non-monotonicity, it suffices to show that at
least one term in the objective Eq. 10 is non-monotone.
A function f : E → R is monotone if f(A) ≤ f(B)
for all decision sets A,B ∈ E such that A ⊆ B; other-
wise, f is non-monotone. We show that disagree is non-
monotone. By definition, every time a new rule is added,
the value of disagree either remains the same or increases,
since the newly added rule may potentially label new in-
stances incorrectly, but does not decrease the number of
instances already labeled incorrectly by previously chosen
rules. Thus, disagree(A) ≤ disagree(B) if A ⊆ B, so
−disagree(A) ≥ −disagree(B), which implies that the first
term in our optimization problem is non-monotone. Thus,
the entire linear combination is non-monotone.

Next, a non-negative linear combination of submodular func-
tions is submodular. Thus, to prove that the objective in
Eq. 10 is submodular, we need to: (i) introduce a (large
enough) constant C into the objective function to ensure
that C − disagree(E) is never negative,1 and (ii) prove that
each of the its terms are submodular. The cover term is
clearly submodular—i.e., more data points will be covered
when we add a new rule to a smaller set of rules compared
to a larger set. It is also easy to check that the disagree term
is modular/additive (and therefore submodular)—i.e., each
time a new rule is added to a decision set, the value of this
term simply increments by the number of those data points
for which si(x) = true and B∗(x+ δj) 6= ci for some j.

Lastly, the constraint in Eq. 10 is a cardinality constraint
since it ensures that the number of rules in the decision set
explanation does not exceed some given value α.

Since the objective of Eqn. 10 is non-monotone and sub-
modular with cardinality constraints (Theorem 3.7), ex-
actly solving it is NP-Hard (Khuller et al., 1999). So,
we use approximate local search algorithm (Lee et al.,
2009) to optimize Eq. 10. This algorithm provides the best
known theoretical guarantees for this class of problems—
i.e., (k+2+1/k+δ)−1, where k is the number of constraints
(k = 1 in our case) and δ > 0.

4. Experiments
As part of our evaluation, we first use real-world data to as-
sess the robustness of the post hoc explanations constructed

1Note that adding such a constant does not impact the solution
to the optimization problem.

using our algorithm and compare it to state-of-the-art base-
lines. Second, on synthetic data, we analyze how varying
the degree of distribution shift impacts the fidelity of our
explanations. Third, we ascertain the correctness of expla-
nations generated using our framework—in particular, in
cases where the black box is also an interpretable model
B∗ ∈ E , we study how closely the constructed explanations
resemble the ground truth black box model.

4.1. Experimental Setup

Datasets. We analyzed three real-world datasets from crim-
inal justice, healthcare, and education domains (Lakkaraju
et al., 2016). Links to datasets are included in the Appendix.
Our first dataset contains bail outcomes from two different
state courts in the U.S. 1990-2009. It includes criminal
history, demographic attributes, information about current
offenses, and other details on 31K defendants who were
released on bail. Each defendant in the dataset is labeled
as either high risk or low risk depending on whether they
committed new crimes when released on bail. Our second
dataset contains academic performance records of about
19K students who were set to graduate high school in 2012
from two different school districts in the U.S. It includes
information about grades, absence rates, suspensions, and
tardiness scores from grades 6 to 8 for each of these students.
Each student is assigned a class label indicating whether the
student graduated high school on time. Our third dataset
contains electronic health records of about 22K patients
who visited hospitals in two different counties in California
between 2010-2012. It includes demographic information,
symptoms, current and past medical conditions, and family
history of each patient. Each patient is assigned a class label
which indicates whether the patient has been diagnosed with
diabetes.

Distribution shifts. Each of our datasets contains two dif-
ferent subgroups—e.g., our bail outcomes dataset contains
defendants from two different states. We randomly choose
data from one of these subgroups (e.g., a particular state) to
be the training data, and data from the other subgroup to
be the shifted data. In particular, we apply each algorithm
on the training data to construct explanations, and evaluate
these explanations on the shifted data.

Our explanations. Our framework ROPE can be applied
in a variety of configurations. We consider four: (i) ROPE
logistic: We construct a single global logistic regression
model using our framework to approximate any given black
box. (ii) ROPE dset: We construct a single global decision
set using our framework to approximate any given black
box. (iii) ROPE logistic multi: We construct multiple local
explanations. In particular, we first cluster the data into
K subgroups (details below), and use ROPE to fit a robust
logistic regression model to approximate the given black box
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Algorithms Bail Academic Health

Train Shift % Drop Train Shift % Drop Train Shift % Drop

LIME 0.79 0.64 18.99% 0.68 0.57 16.18% 0.81 0.69 14.81%
SHAP 0.76 0.66 13.16% 0.67 0.59 11.94% 0.83 0.68 18.07%
MUSE 0.75 0.59 21.33% 0.66 0.51 22.73% 0.79 0.61 22.78%

ROPE logistic 0.61 0.59 3.28% 0.57 0.57 0.00% 0.70 0.68 2.86%
ROPE dset 0.64 0.61 4.69% 0.65 0.63 3.08% 0.73 0.69 5.48%

ROPE logistic multi 0.79 0.74 6.33% 0.70 0.69 1.43% 0.82 0.76 7.32%
ROPE dset multi 0.82 0.77 6.1% 0.73 0.71 2.74% 0.84 0.78 7.14%

Table 1. Fidelity values of all the explanations are reported on both training data and shifted data, along with percentage drop in fidelity
from training data to shifted data. Smaller values of percentage drop correspond to more robust explanations.

for each subgroup. We also compute the centroid of each
subgroup to serve as a representative sample. (iv) ROPE
dset multi: Similar to ROPE logistic multi, except that we
fit a decision set.

Baselines. We compare our framework to the follow-
ing state-of-the-art post hoc explanation techniques: (i)
LIME (Ribeiro et al., 2016), (ii) SHAP (Lundberg & Lee,
2017a), and (iii) MUSE (Lakkaraju et al., 2019b). LIME
and SHAP are model-agnostic, local explanation techniques
that explain an individual prediction of a black box by train-
ing a linear model on data near that prediction. LIME and
SHAP can be adapted to produce global explanations of any
given black box using a submodular pick procedure (Ribeiro
et al., 2016), which chooses a few representative points from
the dataset and combines their corresponding local models
to form a global explanation. In our evaluation, we use the
global explanations of LIME and SHAP constructed using
this technique. MUSE is a model-agnostic, global explana-
tion technique; it provides global explanations in the form
of two-level decision sets.

Parameters. In case of LIME, SHAP, ROPE logistic multi,
and ROPE dset multi, there is a parameter K which cor-
responds to the number of local explanations that need to
be generated; K can also be thought as the number of sub-
groups in the data. We use Bayesian Information Criterion
(BIC) to choose K. For a given dataset, we use the same
K for all these techniques to ensure they construct explana-
tions of the same size. For MUSE, we set all the parameters
using the procedure in Lakkaraju et al. (2019b); to ensure
these explanations are similar in size to the others, we fix the
number of outer rules to be K. Finally, when using ROPE
to construct rule-based explanations, there is a term λ in our
objective (Eq. 10); we fix λ = 5.

Black boxes. We generate post hoc explanations of deep
neural networks (DNNs), gradient boosted trees, random
forests, and SVMs. Here, we present results for a 5-layer
DNN; remaining results are included in the Appendix. Re-
sults presented below are representative of those for other
model families.

Metrics. We use fidelity to measure performance—i.e.,
the fraction of inputs x in the given dataset for which
Ê(x) = B∗(x) (Lakkaraju et al., 2019b). Fidelity is
straightforward to compute for MUSE, ROPE logistic, and
ROPE dset since they construct an explanation in the form of
a single interpretable model. However, the explanations con-
structed by LIME, SHAP, ROPE logistic multi, and ROPE
dset multi consist of a collection of local models. In these
cases, we need to determine which local model to use for
each input x. By construction, each local model Êi is as-
sociated with a representative input xi, for i ∈ {1, ...,K}.
Thus, we compute the distance ‖x − xi‖ for each i, and
return Êi∗(x) where xi∗ is closest to x.

4.2. Robustness to Real Distribution Shifts

We assess the robustness of explanations constructed using
each approach on real-world datasets. In particular, we
compute the fidelity of the explanations on both the training
data and the shifted data, as well as the percentage change
between the two. A large drop in fidelity from the training
data to the shifted data indicates that the explanation is not
robust. Ideally, explanations should have high fidelity on
both the training data (indicating it is a good approximation
of the black box model) and on the shifted data (indicating
it is robust to distribution shift).

Results for all three real-world datasets are shown in Table 1.
As can be seen, all the explanations constructed using our
framework ROPE have a much smaller drop in fidelity (0%
to 7%) compared to those generated using the baselines.
These results demonstrate that our approach significantly
improves robustness. MUSE explanations have the largest
percentage drop (21% to 23%), likely because MUSE re-
lies entirely on the training data. In contrast, both LIME
and SHAP employ input perturbations when constructing
explanations (Ribeiro et al., 2016; Lundberg & Lee, 2017b),
resulting in somewhat increased robustness compared to
MUSE. Nevertheless, LIME and SHAP still demonstrate a
considerable drop (13% to 19%), so they are still not very
robust. The reason is because these approaches do not opti-
mize a minimax objective that encodes robustness such as
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Figure 1. Impact of changes in covariate correlations (left), means (middle), and variances (right) on percentage drop in fidelities. Lower
values of percentage drop indicate higher robustness. Standard errors too small to be included.

ours. Thus, these results validate our approach.

In addition, Table 1 shows the actual fidelities on both train-
ing data and shifted data. As can be seen, the fidelities
of ROPE logistic and ROPE dset are lower than the other
approaches; these results are expected since ROPE logistic
and ROPE dset only use a single logistic regression and a
single decision set model, respectively, to approximate the
entire black box. On the other hand, ROPE logistic multi
and ROPE dset multi achieve fidelities that are equal or
better than the other baselines. These results demonstrate
that ROPE achieves robustness without sacrificing fidelity
on the original training distribution. Thus, our approach
strictly outperforms the baseline approaches.

4.3. Impact of Degree of Distribution Shift on Fidelity

Next, we assess how different kinds of distribution shifts
impact the fidelity of explanations constructed using our
framework and the baselines using synthetic data. We study
the effects of three different kinds of shifts: (i) changes
in the correlations between different components of the
covariates, (ii) changes in the means of the covariates, and
(iii) changes in the variances of the covariates.

Shifts in correlation. We first describe our study for shifted
data of type (i) above. We generate a synthetic dataset with
5K samples. The covariate dimension is randomly chosen
between 2 and 10. Each data point is sampled x ∼ N (µ,Σ),
where µi = 0, Σii = 1 and Σij = β, where β is uniformly
random in [−1, 1]—i.e., the correlation between any two
components of the covariates is β. The label for each data
point is chosen randomly. We train a 5 layer DNN B∗ on
this dataset, and construct explanations for B∗.

To generate shifted data, we generate a new dataset with the
same approach as above but using a different correlation
β′ = β + α, where we vary α. Then, we compute the per-
centage drop in fidelity of the explanations from the training
data to each of the shifted datasets. We show results aver-
aged over 100 runs in Figure 1 (left); the x-axis shows |α|,
and the y-axis shows the percentage drop. As can be seen,
MUSE exhibits the highest drop in fidelity, followed closely
by LIME and SHAP. In contrast, the ROPE explanations are

substantially more robust, incurring less than a 10% drop in
fidelity.

Mean shifts. For shifts of type (ii) above, we follow the
same procedure, except we use β = 0 for both the train-
ing and shifted datasets (i.e., uncorrelated covariates), and
choose µ randomly in [−5, 5]. To generate shifted data, we
use a different µ′ = µ + α. Results averaged across 100
runs are shown in Figure 1 (middle). ROPE is still the most
robust, though LIME and SHAP are closer to ROPE than
to MUSE. Explanations generated by MUSE are not robust
even to small changes in covariate means.

Variance shifts. For shifts of type (iii) above, we follow
the same procedure, except we use β = 0, and choose
Σii = σ, where σ is randomly chosen from [1, 10]. To
generate shifted data, we use a different σ′ = σ+α. Results
averaged across 100 runs are shown in Figure 1 (right). The
results are similar to the case of mean shifts.

4.4. Evaluating Correctness of Explanations

Finally, we evaluate the correctness of the constructed
explanations—i.e., how closely an explanation resembles
the black box. To this end, we first train “black box” mod-
els B∗ ∈ E that are interpretable using the training data
from each of our real-world datasets. Then, we construct
an explanation Ê for B∗ using the shifted data. If Ê re-
sembles B∗ structurally, then the underlying explanation
technique is generating explanations that are correct despite
being constructed based on shifted data.

Logistic regression black box. We first train a logistic re-
gression (LR) “black box” B∗, and then use LIME, SHAP,
ROPE logistic, and ROPE logistic multi to construct expla-
nations Ê for B∗. We define the coefficient mismatch to
measure the correctness. For ROPE logistic, it is computed
as ‖Ê − B∗‖—i.e., the L2 distance between the weight
vectors of Ê and B∗; smaller distances mean the explana-
tion more closely resembles the black box. The remaining
approaches construct multiple logistic regression models—
one Êi for each representative input xi, for i ∈ {1, ...,K}.
To measure the coefficient mismatch, we assign a weight
wi to each xi that equals the fraction of inputs x that are
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Algorithms Black Boxes

LR Multiple LR DS Multiple DS
Coefficient Coefficient Rule Feature Rule Feature
Mismatch Mismatch Match Match Match Match

LIME 4.37 5.01 – – – –
SHAP 4.28 4.96 – – – –
MUSE – – 4.39 11.81 4.42 9.23

ROPE logistic 2.69 4.73 – – – –
ROPE dset – – 6.23 15.87 4.78 11.23

ROPE logistic multi 2.70 2.93 – – – –
ROPE dset multi – – 6.25 16.18 7.09 16.78

Table 2. Correctness of explanations on the bail dataset: Smaller coefficient mismatch and larger rule/feature match are better—i.e., the
explanation more closely resembles the black boxes. ROPE dset multi and ROPE logistic multi uniformly outperform all the baselines.

assigned to xi (i.e., xi is the closest representative). Then,
we measure coefficient mismatch as

∑K
i=1 wi · ‖Êi −B∗‖.

We also consider the case where B∗ is a collection of multi-
ple logistic regression (Multiple LR) models—one B∗i for
each of the K subgroups. We construct explanations using
LIME, SHAP, ROPE logistic, and ROPE logistic multi, and
measure the coefficient mismatch as

∑K
i=1 wi · ‖Êi −B∗e‖;

In case of ROPE logistic, Êi = Ê.

Results for the bail dataset are shown in Table 2. When B∗

is a single logistic regression (LR), ROPE logistic and ROPE
logistic multi explanations achieve the best performance and
are about 38.2% more structurally similar to B∗ than the
baselines. When B∗ is multiple logistic regressions (Mul-
tiple LR), the coefficient mismatch of ROPE logistic multi
is at least 38.05% lower than the baselines. We obtained
similar results for the academic and health datasets.

Decision set black box. As before, we train a decision
set (DS) “black box” B∗ on the real-world training data,
and then construct an explanation Ê based on the shifted
data using MUSE, ROPE dset, and ROPE dset multi. We
consider two measures of correctness for ROPE dset: (i)
rule match: the number dr(Ê, B∗) of rules present in both
Ê and B∗, and (ii) feature match: the number of fea-
tures df (Ê, B∗) present in both Ê and B∗. As before, for
ROPE dset multi and MUSE, we use the weighted measure∑K
i=1 wi · d(Êi, B

∗), where d = dr and d = df for rule
match and feature match respectively. Higher rule and fea-
ture matches indicate that Ê better resembles B∗. We also
consider the case where B∗ consists of multiple decision
sets (Multiple DS)—one B∗i for each of the K subgroups.

On the bail dataset, ROPE dset multi has 42.3% (resp.,
60.4%) higher rule match than MUSE whenB∗ corresponds
to DS (resp., Multiple DS), and has at least 37% higher
feature match than the baselines.

5. Conclusions & Future Work
In this paper, we proposed a novel framework based on
adversarial training for constructing explanations that are ro-
bust to distribution shifts. Experimental results have demon-
strated that our framework can be used to construct expla-
nations that are far more robust to distribution shifts than
those constructed using other state-of-the-art techniques.
Our work paves way for several interesting future research
directions. First, it would be interesting to extend our tech-
niques to other classes of explanations such as saliency maps.
Second, it would also be interesting to design adversarial
attacks that can potentially exploit any vulnerabilities in our
framework to generate unstable and incorrect explanations.
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