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Abstract

A standard assumption in supervised learning is
that the training data and test data are from the
same distribution. However, this assumption of-
ten fails to hold in practice, which can cause the
learned model to perform poorly. We consider
the problem of detecting covariate shift, where
the covariate distribution shifts but the conditional
distribution of labels given covariates remains the
same. This problem can naturally be solved using
a two-sample test—i.e., test whether the current
test distribution of covariates equals the training
distribution of covariates. Our algorithm builds on
classifier tests, which train a discriminator to dis-
tinguish train and test covariates, and then use the
accuracy of this discriminator as a test statistic. A
key challenge is that classifier tests assume given a
fixed set of test covariates. In practice, test covari-
ates often arrive sequentially over time—e.g., a
self-driving car observes a stream of images while
driving. Furthermore, covariate shift can occur
multiple times—i.e., shift and then shift back later
or gradually shift over time. To address these chal-
lenges, our algorithm trains the discriminator on-
line. Additionally, it evaluates test accuracy using
each new covariate before taking a gradient step;
this strategy avoids constructing a held-out test set,
which can improve sample efficiency. We prove
that this optimization preserves the correctness—
i.e., our algorithm achieves a desired bound on
the false positive rate. In our experiments, we
show that our algorithm efficiently detects covari-
ate shifts on multiple datasets—ImageNet, IWild-
Cam, and Py150.

1PRECISE Center, University of Pennsylvania, USA.
2School of Cybersecurity and Privacy, Georgia Institute of
Technology, USA. Correspondence to: Sooyong Jang <sooy-
ong@seas.upenn.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

1. Introduction
A key challenge facing deep neural networks is their sen-
sitivity to changes in the data distribution. In particular,
supervised learning traditionally assumes that the training
and test data are from the same distribution (Vapnik, 1998),
but this assumption often fails in practice. For example,
an autonomous car using perception to identify obstacles
needs to be robust to shifts such as changes in the weather
and lighting conditions. We focus on covariate shift (Shi-
modaira, 2000), where there is a shift in the covariate distri-
bution p(x), and the conditional label distribution p(y | x)
remains unchanged. Covariate shift can reduce model per-
formance (Sugiyama & Müller, 2005), invalidate uncertainty
estimates (Ovadia et al., 2019; Park et al., 2020), and affect
model selection (Sugiyama et al., 2007).

One strategy is to devise an algorithm to detect covariate
shift; if detected, the algorithm can alert the user that pre-
dictions may be unreliable. Covariate shift detection can
be formulated as two-sample hypothesis test (Gretton et al.,
2012a; Rabanser et al., 2018; Liu et al., 2020), where the
goal is to determine whether two sets of examples are from
the same distribution. To test for covariate shift, we choose
the first sample to be the data used to train the model and
the second sample to be recent test data given as input to
the model. Then, the detector returns “covariate shift” if
the hypothesis test indicates that the two samples are from
different distributions and “no shift” otherwise.

We propose a detection algorithm based on classifier
tests (Lopez-Paz & Oquab, 2017; Cheng & Cloninger, 2019;
Kim et al., 2021), which use the accuracy of a classifier
trained to distinguish the two samples as the test statistic. In
particular, if the two samples are from the same distribution,
then the accuracy should be 1/2; otherwise, it should be
> 1/2. Since the test statistic follows a binomial distribu-
tion, we use the Clopper-Pearson interval (Clopper & Pear-
son, 1934) (an exact confidence interval for the unknown
success probability of the Binomial distribution) to derive
the cutoff. In contrast, prior work relies on asymptotics to
derive the cutoff, which results in approximations.

A key challenge is that the test examples are typically ob-
tained over time—e.g., an autonomous robot continuously
perceives its environment, and we want to detect if its dis-
tribution of observations shifts at any time. There are two
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key challenges to leveraging classifier tests in this setting.
First, they rely on training a classifier to distinguish training
and test examples; doing so on every step would be compu-
tationally intractable. Second, they rely on a held-out test
set to estimate the test statistic, but constructing such a set
online would reduce sample efficiency.

Rather than train a classifier at each step, our algorithm
trains a model online using stochastic gradient descent.
Then, rather than construct a held-out test set, our algo-
rithm evaluates the accuracy of the model online using each
example before taking a gradient step on that example. We
prove that this strategy results in an unbiased estimate of the
model accuracy; thus, the finite-sample guarantees on the
false positive rate provided by the sequential test continue
to hold. In addition, we prove bounds on the false negative
rate under mild conditions on the classifier (i.e., it achieves
nontrivial accuracy distinguishing the two distributions).

We evaluate our approach on both synthetic and natural
shifts on ImageNet (Russakovsky et al., 2015) , and natu-
ral shifts on two datasets from the WILDS datasets (Koh
et al., 2021). We demonstrate that our approach achieves
better sample efficiency than baseline algorithms; further-
more, it satisfies the desired false positive rate. Thus, our
algorithm is an effective strategy for sequential covariate
shift detection.

Contributions. We formulate (sequential) covariate shift
detection as a two-sample test, and propose a novel algo-
rithm to solve this problem (Section 3). Then, we prove
finite sample bounds on false positive rate and false negative
rate achieved by our algorithm (Section 4). Finally, we em-
pirically demonstrate that our algorithm effectively detects
shifts on ImageNet, IWildCam, and Py150 (Section 5 and
Appendix C).

Sequential detection vs. sequential tests. While we con-
sider the sequential setting, we deliberately choose not use
a sequential hypothesis test, since the covariate shift may
occur after a delay or gradually over time. A sequential test
only applies if all of the test data is shifted. Furthermore,
since we are not using sequential tests, the false positive rate
bound only holds per-step, not uniformly across all steps.
This is necessary: we cannot guarantee that we detect a co-
variate shift occurring at a later point in time if we constrain
the false positive to be bounded uniformly across all steps.
In our experiments, we show that the rate of false alarms
remains manageable while enabling our algorithm to detect
covariate shift in a number of interesting scenarios.

2. Related Work
Covariate shift. There has been work on training models
in the presence of covariate shift. In particular, in the unsu-
pervised domain adaptation setting (Ben-David et al., 2007;

Bickel et al., 2007; Ganin et al., 2016), the algorithm has
access to labeled examples from the source domain but only
unlabeled examples from the target domain, and the goal
is to train a model that achieves good performance on the
target domain. One strategy is to use importance weighting
to upweight source examples that are more similar to target
examples (Bickel et al., 2007). Another strategy is to first
learn an invariant representation (Ganin et al., 2016), which
is an embedding space where the source and target examples
are similar, and then train a model on this embedding space
using the source examples. If we detect covariate shift, one
solution is to retrain the model using these techniques.

Two-sample tests. We focus on classifier two-sample tests
(C2ST). In this approach, the idea is to train a binary clas-
sifier to distinguish source and target samples, compute a
real-valued score based on this classifier as the test statistic,
and then use a univariate two-sample test to determine the
cutoff for rejecting the null hypothesis (Friedman, 2004). A
natural test statistic is the classifier’s accuracy on a held-out
test set (Kim et al., 2021; Lopez-Paz & Oquab, 2017), or
the differences in the classifier’s logits (Cheng & Cloninger,
2019); we use the former. One way to compute the cut-
off is to use the asymptotic distribution of the test statis-
tic (Lopez-Paz & Oquab, 2017). Nonparametric tests such
as permutation tests can also be used (Kim et al., 2021).

Another kind of two-sample test is a kernel two-sample test.
Here, the idea is to use the maximum mean discrepancy
(MMD) between the two samples according to a given ker-
nel embedding as the test statistic (Gretton et al., 2012a;
Chwialkowski et al., 2015; Jitkrittum et al., 2016). The key
design decision is the choice of kernel. One strategy is to
use a nonparametric kernel such as Gaussian radial basis
functions (Gretton et al., 2012a); alternatively, the kernel
can also be optimized to minimize the false negative rate of
the resulting test (Gretton et al., 2012b). Recent work has
shown how to first learn a kernel function in the form of a
deep neural network, and then evaluate the MMD distance
on a held-out test set (Liu et al., 2020). The test statistic
can be chosen based on finite sample bounds or based on
its asymptotic distribution (Gretton et al., 2012a) or non-
parametric permutation tests (Liu et al., 2020). Lastly, the
previous classifier two-sample tests can be represented as a
special case of MMD (Liu et al., 2020).

Other shifts. In the context of concept drift (Gama et al.,
2014), there has been work detecting shifts in p(x, y)
(Gonçalves Jr et al., 2014; Vovk, 2020). Harmful shifts can
be detected as well (Podkopaev & Ramdas, 2021). However,
these works assume that ground truth labels are provided
for test examples, whereas our approach only requires unla-
beled test examples. The former is substantially easier, since
it suffices to check for drift in the distribution of prediction
errors, which is usually very simple (e.g., a Bernoulli distri-
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bution for the 0-1 loss), making it easy to test for drift. In
contrast, our approach checks for drift in high-dimensional
covariates distribution.

Sequential hypothesis testing. A closely related prob-
lem is sequential hypothesis testing, which adaptively de-
cides whether to reject the null hypothesis as samples be-
come available (Wald, 1945). These approaches can also
applied to two-sample testing (Balsubramani & Ramdas,
2015; Lhéritier & Cazals, 2018; 2019; Manole & Ramdas,
2021). However, as discussed above, they assume that each
distribution of the two samples does not change over time.
In contrast, we are interested in the setting where the test
examples might initially be from the same distribution as
the training examples, but then shift at a later point in time.
Sequential tests are not applicable to this setting.

Change point detection. A related problem is change point
detection (Page, 1954; Adams & MacKay, 2007; Boracchi
et al., 2018; Volkhonskiy et al., 2017; Vovk et al., 2021),
which detects the point at which a distribution changes.
However, change point detection focuses on detecting a
single shift, whereas our approach can detect gradual shifts.

3. Sequential Covariate Shift Detection
3.1. Problem Formulation

Let X be the covariate space, S be the source distribution
over X , and Tts:te = (Tts , Tts+1, . . . , Tte) be a sequence
of target distributions over X from time steps ts to te. On
time step t, we consider samples xt ∼ S and x′

t ∼ Tt; in
practice, S can be taken to be the uniform distribution over
the training set. We let Sw,t = (xt−w+1, xt−w+2, . . . , xt)
and Tw,t = (x′

t−w+1, x
′
t−w+2, . . . , x

′
t) denote the recent

examples in a time window of a given size w ∈ N. Note
that w can be different in source and target, but we use the
same w for simplicity.

Our goal is to detect covariate shift at any step t. More
precisely, we want to determine whether S ≠ T̄w,t, where

T̄w,t =

t∑
k=t−w+1

Tk
w

, (1)

i.e., whether the average target distributions over the pre-
vious w steps is shifted compared to S. For a fixed step
t, this problem is a two-sample test (Lehmann & Romano,
2006), where the null hypothesis is H0 : S = T̄w,t, and the
alternative is H1 : S ̸= T̄w,t. That is, a two-sample test f̂ is
designed to compute

f̂(Sw,t, Tw,t) ≈

{
1 if S ≠ T̄w,t

0 otherwise.

Our goal is to design a two-sample test f̂ for detecting co-
variate shift with this data stream. While we can in principle

use any two-sample test, our goal is to design one that is
both sample and computationally efficient while achieving
high accuracy for high-dimensional data such as images.
In addition, we want the test f̂ to come with finite sample
guarantees on the false positive rate. In particular, given
α ∈ R>0, if S = T̄w,t, we want to ensure

PSw,t∼Sw,Tw,t∼Tt−w+1:t

[
f̂(Sw,t, Tw,t;α) = 0

]
≥ 1− α.

Ideally, we also want to provide finite sample bounds on
the false negative rate; however, for classifier tests, we can
only do so under additional assumptions about the model
family used to try and distinguish S and T̄w,t. Intuitively,
we assume that (i) the model family has bounded complexity
(e.g., Rademacher complexity), and (ii) some model exists in
the family that achieves nontrivial accuracy at distinguishing
S and T̄w,t. Our goal is to ensure that if S ≠ T̄w,t, then

P
Sw,t∼Sw,

Tw,t∼Tt−w+1:t

[
f̂(Sw,t, Tw,t;α) = 1

]
≥ 1−M(α,w)

for Sw = S × · · · × S consists of w copies of S, and a
function M(α,w) that depends on the model family.

3.2. Algorithm Overview

Next, we describe our two-sample test. We build on clas-
sifier two-sample test (C2ST) (Lopez-Paz & Oquab, 2017;
Kim et al., 2021). The idea is to train a classifier ĝt to try
and distinguish Sw,t from Tw,t. Intuitively, if S and T̄w,t

are different distributions, then ĝt should achieve nontrivial
accuracy at distinguishing Sw,t from Tw,t (assuming the
model family is sufficiently expressive). Alternatively, if
S = T̄w,t, then ĝt necessarily achieves a trivial expected
accuracy of 1/2.

In particular, the accuracy of ĝt can be used as a test statistic
for the two-sample test. To choose the cutoff for reject-
ing the null hypothesis, we use the Clopper-Pearson (CP)
interval (Clopper & Pearson, 1934) to construct an inter-
val that contains the true accuracy ĝt with high probability
based on the accuracy of ĝt on a test set. More precisely,
the CP interval is an exact confidence interval around the
empirical estimate of the mean of a Bernoulli random vari-
able. Letting z1, ..., zn ∼ Bernoulli(µ∗) be i.i.d. samples
from a Bernoulli distribution with true mean µ∗, the (un-
normalized) estimate of its mean n · µ̂(z1:n) =

∑n
i=1 zi

has distribution Binomial(n, µ∗). Then, the CP interval
ΘCP(ŝ, n;α) ⊆ [0, 1] is an interval around µ̂ containing µ∗

with probability at least 1− α, i.e.,

Pŝ∼Binomial(n,µ∗)[µ
∗ ∈ ΘCP(ŝ, n;α)] ≥ 1− α, (2)

where the probability is taken over ŝ, α is a given confidence
level, and ΘCP is a function of the Binomial random variable
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ŝ = n · µ̂(z1:n). The CP interval is concretely defined by

ΘCP(ŝ, n;α) :=

[
inf
{
θ
∣∣∣ F (n− ŝ;n, 1− θ) ≥ α

2

}
,

sup
{
θ
∣∣∣ F (ŝ;n, θ) ≥ α

2

}]
,

where F (s;n, θ) is the cumulative distribution function
(CDF) of Binomial(n, θ). To compute the CP interval, we
can use the following equivalent formula:

ΘCP(ŝ, n;α) =

[
Q
(α
2
; ŝ, n− ŝ+ 1

)
,

Q
(
1− α

2
; ŝ+ 1, n− ŝ

)]
,

where Q(p, a, b) is the pth quantile of a Beta distribution
with parameters a, b (Hartley & Fitch, 1951; Brown et al.,
2001). Our algorithm uses the CP interval to determine
whether the accuracy of ĝt is nontrivial, i.e., > 1/2. In
particular, the accuracy of ĝt is the mean of the Bernoulli
random variable 1(ĝt(x) = y), where y is the ground truth
indicating whether x is from S or T̄w,t. Then, our algorithm
rejects if the CP interval does not contain 1/2, since this
condition implies that the accuracy of ĝt does not equal 1/2
with high probability. We describe this step in detail below.

The key challenge is what data to use as the test dataset to
estimate the accuracy of ĝt. The traditional strategy is to
split the available data into two parts: one to train ĝt and a
second held-out test set to estimate its accuracy (Lopez-Paz
& Oquab, 2017; Kim et al., 2021). However, this approach
reduces sample efficiency, which is problematic in our set-
ting since we often want to w to be small.

To address this challenge, our algorithm exploits the condi-
tional independence structure of classifier predictions. In
particular, as described below, our algorithm uses each ex-
ample xt to evaluate the accuracy of ĝt before using it to
train ĝt. In the next section, we prove that this strategy
maintains the independence of our estimate of the accuracy
of ĝt (Lemma 4.1), and that as a consequence, our algorithm
satisfies the desired false positive rate (for a single step t).

3.3. Algorithm Details

Sequential detection algorithm. At each time step t, we ob-
serve a source sample xt ∼ S and a target sample x′

t ∼ Tt.
In practice, we observe only new target samples, so we ran-
domly draw source samples from the fixed set of source
samples at each time step. By using these current samples
and previous samples, we detect covariate shifts by updating
the source-target classifier in online learning. In particular,
our algorithm consists of three steps: (1) source-target pre-
diction, (2) covariate shift detection, and (3) online source-

Algorithm 1 Sequential Calibrated Classifier Two-Sample
Test

1: Input: significance level α, window size w
2: for each time step t do
3: Draw examples xt ∼ S, x′

t ∼ Tt
4: Predict ŷt = ĝt(xt) and ŷ′t = ĝt(x

′
t)

{▷ Source-target prediction}
5: Detect covariate shift if 0.5 ̸∈ ΘCP(2wµ̂w,t, 2w;α)

{▷ Calibrated covariate shift detection}
6: Update ĝt using (xt, 0) and (x′

t, 1)
{▷ Online source-target classifier update}

7: end for

target classifier update. The following and Algorithm 1
include details.

Step 1. Source-target prediction. We predict source-target
labels on the current samples xt and x′

t using the current
source-target classifier ĝt. In particular, we denote pre-
diction on the source sample xt by ŷt, i.e., ŷt = ĝt(xt),
and denote prediction on the target sample x′

t by ŷ′t, i.e.,
ŷ′t = ĝt(x

′
t). These predictions and previous predictions are

used in covariate shift detection in the following step.

Step 2. Calibrated covariate shift detection. Let Qw,t be
a distribution over X × {0, 1}, where

Qw,t(x, y) :=
1

2
· S(x) · 1(y = 0) +

1

2
· T̄w,t(x) · 1(y = 1).

Then, z = 1(ĝt(x) = y) is a Bernoulli random variable
with distribution Bernoulli(µ∗

w,t), where

µ∗
w,t = P(x,y)∼Qw,t

[ĝt(x) = y] (3)

is the accuracy of ĝ at distinguishing whether an example
x is from distribution S or T̄w,t. The unbiased empirical
estimate of this accuracy is denoted by

µ̂w,t =
1

2w

t∑
i=t−w+1

(1 (ŷi = yi) + 1 (ŷ′i = y′i)) .

In fact, 2wµ̂w,t is a Binomial random variable with
Binomial(2w, µ∗

w,t); thus, the accuracy µ∗
w,t can

be estimated by the Clopper-Pearson (CP) interval
ΘCP(2wµ̂w,t, 2w;α) that includes the unknown parameter
µ∗
w,t with high probability, i.e.,

P [µ∗ ∈ ΘCP(2wµ̂w,t, 2w;α)] ≥ 1− α.

This property can be used for checking the accuracy of ĝt
might be 1/2. In particular, our algorithm returns “covariate
shift” if 1/2 ̸∈ ΘCP(2wµ̂w,t, 2w;α), and “no covariate shift”
otherwise, i.e.

f̂(Sw,t, Tw,t;α) = 1

(
1

2
̸∈ ΘCP (2w · µ̂w,t, 2w;α)

)
.



Sequential Covariate Shift Detection

Here, the Clopper-Pearson interval calibrates the empirical
accuracy µ̂w,t using the property of the Binomial distribu-
tion.

Step 3. Online source-target classifier update. Finally,
we update a binary classifier ĝt using new training examples
based on the source and target samples, i.e., (xt, 0) and
(x′

t, 1). In general, ĝt can be any model; we consider it
to be a neural network, in which case we can update its
parameters using stochastic gradient descent with respect to
the cross entropy loss.

4. Theoretical Guarantees
In this section, we describe our finite sample bounds on the
false positive and false negative rates of our covariate shift
detector f̂ ; the key to have valid bounds is proving the inde-
pendence on predictions ŷ1, . . . , ŷt (and ŷ′1, . . . , ŷ

′
t) to have

a valid Clopper-Pearson interval, since they are seemingly
dependent through the online learned classifier ĝt. First, our
key result shows that our estimate of the accuracy of ĝt is
valid—i.e., the predictions ŷi, . . . , ŷj are conditionally inde-
pendent (see Appendix A.1 for a proof), thus the accuracy
is the parameter of the Binomial distribution:

Lemma 4.1. If xi, . . . , xj are independent for any i, j ∈ N
where i < j, ŷi, . . . , ŷj are conditionally independent given
ĝi, . . . , ĝj−1.

Our next result says that our algorithm ensures the desired
bound α on the false positive rate (i.e., f̂ says “covariate
shift” when there is no covariate shift). To this end, we
exploit the following observation that any source-target clas-
sifier makes the expected accuracy of 1/2 if there is no
covariate shift. Intuitively, if S = T̄w,t, source-target clas-
sification is impossible (Lopez-Paz & Oquab, 2017; Liu
et al., 2020); we include this lemma for completeness (see
Appendix A.2 for a proof):

Lemma 4.2. Define T̄w,t as in Eq. (1) and µ∗
w,t as in Eq.

(3). If S = T̄w,t, we have µ∗
w,t = 1/2 for any source-target

classifier ĝt.

Since the expected accuracy of ĝt is 1/2 regardless of how
we design and learn ĝt, and how many samples are used to
learn ĝt, the Clopper-Pearson interval includes the true accu-
racy with high probability; thus the false positive rate of the
proposed covariate shift detector f̂ is effectively controlled
by the confidence level of the Clopper-Pearson interval, as
follows (see Appendix A.3 for a proof):

Theorem 4.3 (Bound on false positive rate). Define T̄w,t as
in Eq. (1). If S = T̄w,t, for any source-target classifier ĝt,
we have

P(Sw,t,Tw,t)∼Sw×Tt−w+1:t

[
f̂(Sw,t, Tw,t;α) = 0

]
≥ 1−α.

(4)

Note that our FPR bound is not time-uniform; we can ob-
tain time-uniform bounds by taking α to zero sufficiently
quickly; please refer to discussion in Appendix B.2.

Our next result provides a bound on the false negative rate;
we first observe that the Clopper-Pearson interval is in-
cluded in the interval by the Hoeffding’s bound. Intuitively,
the Clopper-Pearson interval represents a lower and upper
bound of the expected accuracy given an empirical accuracy
tailored to a Bernoulli random variable; the Hoeffding’s
bound can similarly bound the mean but in a more general
setup. Thus, the Clopper-Pearson interval can be smaller
(see Appendix A.4 for a proof).

Lemma 4.4. Let s ∼ Binomial(n, p) and F (s;n, p) is the
CDF of Binomial(n, p); we have

s

n
−

√
ln 2

α

2n
≤ inf

{
θ
∣∣∣ F (n− s;n, 1− θ) ≥ α

2

}
and

sup
{
θ
∣∣∣ F (s;n, θ) ≥ α

2

}
≤ s

n
+

√
ln 2

α

2n
.

Leveraging this, we have the following bound on false nega-
tive rate (see Appendix A.5 for a proof).

Theorem 4.5 (Bound on false negative rate). Define T̄w,t

as in Eq. (1) and µ∗
w,t as in Eq. (3). Assume a source-

target classifier ĝt achieves nontrivial accuracy, i.e., µ∗
w,t ≥

1/2+ϵ, where ϵ ∈ (0, 1/2], is the accuracy at distinguishing
S and T̄w,t. Let a(w,α) := 2w(1/2 +

√
log(2/α)/4w) and

b(w,α) := 2w(1/2 −
√

log(2/α)/4w). If S ̸= T̄w,t and w −
1− ⌊

√
w log(2/α)⌋ ≥ 0, then we have

P

[
f̂(Sw,t, Tw,t;α)=1

]
≥F

(
2w − ⌊a(w,α) + 1⌋; 2w, 1

2
− ϵ

)
+F

(
⌈b(w,α)− 1⌉; 2w, 1

)
.

In the false negative bound, the first term is dominant and
increases as w increases, which implies the sample size
needs to be increased to have a powerful shift detector;
the condition on w suggests that the bound is valid when
w ≥ 201 given α = 0.01. This theorem provides a partial
answer to the cold start performance which any test can
suffer from. To practically use our algorithm, we need to
know the amount of samples for a reliable detection. This
FNR bound offers a guideline for the required number of
samples for the given magnitude under certain assumptions.
We note that the assumption L(ĝt) := 1−µ∗ ≤ 1/2− ϵ can
be achieved under standard conditions. For instance, assume
that the model family G of source-target classifiers has finite
VC dimension (i.e., VC(G) < ∞), and that the optimal
model g∗ ∈ G has nontrivial inaccuracy L(g∗) = 1/2− ξ
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for some ξ ∈ R>0; then, with probability at least 1− δ with
respect to Sw,t and Tw,t and letting m = 2w, we have

L(ĝt)

≤ L(g∗) + 4

√
VC(G)(log(2m) + 1)

m
+

√
log(2/δ)

m

≤ 1

2
−

(
ξ − 4

√
VC(G)(log(2m) + 1)

m
−
√

log(2/δ)

m

)
︸ ︷︷ ︸

=:ϵ

,

where the second term (which we have taken to be ϵ) satisfies
ϵ > 0 for sufficiently large m (Vapnik, 1998).

5. Experiments
We evaluate the effectiveness of our algorithm at detect-
ing both natural and synthetic covariate shifts of varying
forms (e.g., gradual shifts and multiple shifts back and forth),
showing that it significantly outperforms natural baselines.
In this section, we show the experimental results on Ima-
geNet; see Appendix C for the results on IWildCam and
Py150. We have released our code for these experiments.1

5.1. Experiment Setup

Baselines. We compare our algorithm to six baselines; two
of them differ in the way they use the samples at each time
step, the third uses Wald’s sequential likelihood test (Wald,
1945), the fourth one is based on DeepKernel (Liu et al.,
2020), the the fifth one is based on KD-Switch (Lhéritier
& Cazals, 2019), and the last one is based on inductive
conformal martingales (Volkhonskiy et al., 2017; Eliades
& Papadopoulos, 2021). For the first two baselines, while
our approach uses all samples to construct the CP interval
around the accuracy of the source-target classifier ĝt as well
as to train ĝt, the baseline instead constructs a held-out
test set using every Hth sample. Then, only this held-out
test set is used to compute the CP interval, and only the
remaining samples are used to train ĝt. In our experiments,
we used values of H ∈ {2, 5}, denoted H2, H5, respectively.
For Wald’s test, we consider the Bernoulli random variable
with a probability p indicating whether the prediction of
the source-target classifier is correct for the given sample.
The hypothesis test is H0 : p = 0.5 vs. H1 : p = 0.5 + ϵ,
where ϵ = 0.2 in our experiments; we restart the test each
time it makes a decision. For Deep Kernel (DK), since it
requires training of the kernel parameters and the network
for extracting features, we use half of the samples for this
training process and conduct the test using the remaining
ones. For KD-Switch (KDS), we also restart the test when it
makes a decision as we do for Wald’s test. The last baseline,

1https://github.com/sooyongj/sequential_
covariate_shift_detection

inductive conformal martingale (ICM), uses source-target
classifier’s output as non-conformity score and a constant
betting function.

H2 and H5 are the online version of an existing classifier
two-sample test (C2ST) (Kim et al., 2021; Lopez-Paz &
Oquab, 2017), which splits the (fixed) training dataset into a
training set to train ĝt and a held-out test set to estimate the
accuracy of ĝt; thus, H controls the tradeoff between the
number of examples in the training set and held-out test set.

Source-target classifier. We use a fully-connected neu-
ral network with a single hidden layer (with 128 hidden
units) and with the ReLU activation functions as the source-
target classifier ĝt. We use a binary cross-entropy loss for
training in conjunction with an SGD optimizer with a learn-
ing rate of 0.01 (for natural shift experiments) and 0.001
(for synthetic shift experiments). Finally, since the inputs
are ImageNet images (Russakovsky et al., 2015), we use a
2048-dimensional feature vector generated by first running a
pretrained ResNet152 model (He et al., 2016) on the images,
and then using these features vectors for the covariates of
Sw,t and Tw,t.

Scenarios. We run each algorithm to test whether the tar-
get distribution in the given window is shifted with three
different scenarios: multiple shift (“M-shift”), gradually
increasing shift (“GI-shift”), and gradually increasing-then-
decreasing shift (“GID-shift”). Table 1 describes each sce-
nario. For example, the multiple shift scenario proceeds as
follows: (i) it starts with no covariate shift at the beginning;
(ii) after observing 25% target samples (i.e., 250th samples
for natural shift experiments and 2500th samples for syn-
thetic shift experiments), covariate shift is applied to all
target samples (with probability 1) by adding random per-
turbations for synthetic shift and by drawing samples from
a target distribution for natural shift; (iii) after 50% of target
samples, it reverts to no covariate shift; and (iv) finally after
observing 75% target samples, the covariate shift is applied
to the all target samples. Gradually increasing shift and grad-
ually increasing-then-decreasing shift scenarios start with
no covariate shift for the first 20% of target samples; then,
covariate shift is applied with some probability 0 < p < 1
by gradually changing p over time.

Stream data generation. For each shift (i.e., natural shift
and synthetic shift), we have a source dataset S and target
datasets Tt, from which we randomly draw source and target
samples for each time step t. In particular, we consider a
batch of samples for computational efficiency, where we
denote the batch size by B; we use B = 10 for our experi-
ments. That is, we wait for B samples to be collected from
the target distribution before checking for covariate shift and
the updating the source-target classifier; then, we begin col-
lecting the next batch. Finally, we evaluate each approach
using multiple random repetitions, which we denote by R

https://github.com/sooyongj/sequential_covariate_shift_detection
https://github.com/sooyongj/sequential_covariate_shift_detection


Sequential Covariate Shift Detection

Table 1: Scenario description for experiments. (a) “M-shift” is Multiple shift, (b) “GI-shift” is gradually increasing shift,
and (c) “GID-shift” is gradually increasing-then-decreasing shift.

(a) M-shift

Start position Description Prob.

0% No shift 0.0
25% Shift 1.0
50% No shift 0.0
75% Shift 1.0

(b) GI-shift

Start position Description Prob.

0% No shift 0.0
20% Shift 0.2
40% Shift 0.4
60% Shift 0.6
80% Shift 0.8

(c) GID-shift

Start position Description Prob.

0 No shift 0.0
20% Shift 0.4
40% Shift 0.8
60% Shift 0.4
80% No shift 0.0

(a) M-shift (b) GI-shift (c) GID-shift

Figure 1: Detection rate for natural shift with R = 100, w = 10, α = 1%. The black dashed line indicates shifted sample
ratio, i.e., the degree (or probability) of covariate shift.

(the value of R depends on each experiment).

5.2. Natural shift

Dataset. First, we consider a natural shift on ImageNet. To
construct such a shift, we consider the subset of dog classes;
in particular, 120 of the 1000 of the ImageNet classes are
of dogs (Khosla et al., 2011). Then, we randomly select
half (i.e., 60) of these classes to be the source dataset, and
the other half to be the target dataset; thus, the number
of source and target images is 2997 each (after removing
duplicated images). As a consequence, the source and target
datasets correspond to different dog breeds, which is a kind
of natural distribution shift.

Results. Figure 1 and Table 2 show results for the natural
shift experiment with w = 10 and α = 1%. Figure 1
illustrates detection rates of the seven algorithms with R =
100 repetitions (i.e., the fraction of repetitions that reported
“covariate shift” at each step). Table 2a shows the number of
shifted samples required to reach at least 80% of covariate
shift detection rate under the shift. Table 2b shows false
positive rate (FPR) after 50, 100, 150, and 200 samples with
R = 20000 repetitions.

Discussion. Figure 1 shows the detection rate of each algo-
rithm as each scenario progresses. In multiple shift (Figure
1a) and gradually increasing-then-decreasing shift (Figure

2We use R = 100 for KDS as it is computationally expensive.

Table 2: Natural shift results with (a) w = 10, α = 1%, and
R = 100, and (b) R = 200002. In (a), we bold the best
algorithm and underline the second-best algorithm. In (b),
we bold values that violate the desired α = 1%.

(a) Number of samples for
detection (≥ 80%)

Scn. Alg. Natural
shift

M-shift

Ours 190
H2 720
H5 -

Wald 640
DK 180

KDS -
ICM 660

GI-shift

Ours 620
H2 -
H5 -

Wald -
DK 790

KDS -
ICM -

GID-shift

Ours 310
H2 -
H5 -

Wald -
DK -

KDS -
ICM -

(b) FPR (%) at selected
time

Scn. Alg. 50 100 150 200

M-shift

Ours 0.27 0.53 0.73 0.77
H2 0.29 0.28 0.26 0.33
H5 0.34 0.52 0.51 0.56

Wald 0.60 0.47 0.27 0.27
DK 1.69 2.31 2.16 2.54

KDS 0.00 0.00 0.00 0.00
ICM 0.21 0.18 0.27 0.19

GI-shift

Ours 0.21 0.60 0.76 0.83
H2 0.21 0.25 0.29 0.36
H5 0.32 0.43 0.50 0.85

Wald 0.78 0.57 0.29 0.22
DK 2.11 2.67 2.22 3.29

KDS 0.00 0.00 0.00 0.00
ICM 0.22 0.22 0.18 0.19

GID-shift

Ours 0.30 0.53 0.70 0.95
H2 0.18 0.21 0.28 0.41
H5 0.36 0.56 0.53 0.81

Wald 0.77 0.58 0.34 0.23
DK 1.91 2.67 2.37 3.42

KDS 0.00 0.00 0.00 0.00
ICM 0.29 0.23 0.20 0.20

1c), covariate shift disappears after a certain point, all al-
gorithms correctly detect this change. However, as shown
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(a) M-shift (b) GI-shift (c) GID-shift

Figure 2: Detection rate for synthetic shifts with Gaussian noise perturbation, Severity = 2, R = 100, w = 10, α = 1%.
The black dashed line indicates shifted sample ratio, i.e., the degree (or probability) of covariate shift. The red dotted line
shows the accuracy of ResNet152 on the source and target samples in the given window.

Table 3: Synthetic shift results with (a) Severity = 2, w = 10, α = 1%, and R = 100, and (b) R = 200003. In (a), we bold
the best algorithm and underline the second-best algorithm. In (b), we bold values that exceed the desired α = 1%.

(a) Number of samples for detection

Scenario Alg. Contrast Defocus
Blur

Elastic
Transform

Gaussian
Blur

Gaussian
Noise

M-shift

Ours 230 200 220 210 180
H2 470 450 450 490 350
H5 410 410 410 460 310

Wald - - - - -
DK 150 90 110 90 110

KDS - - - - -
ICM 410 290 370 330 310

GI-shift

Ours 2100 2060 2090 2070 2080
H2 4050 3690 4050 4010 3670
H5 4360 4110 6010 4110 4110

Wald - - - - -
DK 6130 2210 4130 4090 4110

KDS - - - - -
ICM 4070 4070 4090 4070 4070

GID-shift

Ours 880 560 900 720 610
H2 2030 2010 2050 2010 2010
H5 2060 2060 2060 2060 2060

Wald - - - - -
DK 2170 190 2070 2050 2070

KDS - - - - -
ICM 2050 2030 2050 2030 2030

(b) FPR (%) at selected time

Scenario Alg. 500 1000 1500 2000

M-shift

Ours 0.75 0.99 0.95 0.97
H2 0.41 0.46 0.46 0.52
H5 0.78 0.73 0.85 0.67

Wald 0.07 0.11 0.04 0.01
DK 2.08 2.07 1.94 2.17

KDS 0.00 0.00 0.00 0.01
ICM 0.24 0.22 0.24 0.19

GI-shift

Ours 0.86 0.89 0.92 0.85
H2 0.62 0.54 0.60 0.50
H5 0.74 0.71 0.77 0.73

Wald 0.10 0.13 0.07 0.03
DK 2.04 2.08 1.93 2.14

KDS 0.00 0.00 0.00 0.00
ICM 0.18 0.16 0.15 0.22

GID-shift

Ours 0.87 0.95 0.92 0.89
H2 0.51 0.57 0.51 0.53
H5 0.73 0.75 0.85 0.89

Wald 0.09 0.08 0.04 0.02
DK 2.05 2.05 2.04 2.13

KDS 0.01 0.00 0.00 0.00
ICM 0.17 0.23 0.15 0.22

in Table 2a, our approach always requires fewer samples
to detect the shift, except for M-shift, where DK slightly
outperforms it (at the cost of an excessive FPR, as discussed
below). Whereas H5, KDS do not achieve 80% detection,
H2, Wald, DK, and ICM reach 80% only for some scenarios,
our approach always detects covariate shift at a rate higher
than 80%. Furthermore, for multiple shift, our algorithm
requires similar or fewer than half the number of samples
compared to H2, Wald, DK, and ICM. In summary, our
algorithm is significantly more sample efficient at detecting
covariate shift compared to the baselines, most likely since
it utilizes all samples for both training the source-target
classifier and constructing the CP interval. For FPR, all
algorithms except DK always satisfy the FPR bound (i.e.,
FPR ≤ α).

5.3. Synthetic shift

Dataset. Next, we consider a synthetic shift on ImageNet.
In particular, we split the original ImageNet validation set
into equal sized source and target datasets. To construct the
target dataset, we add synthetic perturbations on original
images. We (separately) consider five perturbation types
from Hendrycks & Dietterich (2019)—in particular, Con-
trast, Defocus Blur, Elastic Transform, Gaussian Blur, and
Gaussian Noise, with five different severity levels.

Results. The experiment results are shown in Figure 2 and
Table 3 for the experiments with the perturbation severity
of 2, window size w = 10, and significance level α =

3We use R = 100 for KDS as it is computationally expensive.
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1%. Table 3a shows the number of target samples required
by each algorithm to detect the first covariate shift in the
detection rate of at least 80%. Table 3b shows the false
positive rate (FPR) after 500, 1000, 1500 and 2000 samples
for each of the three scenarios. Figure 2 shows the detection
rates over multiple repetitions for each of the three scenarios
using the Gaussian noise perturbation. Results for other
perturbation types and severities are shown in Appendix C.

Discussion. As can be seen, our approach outperforms the
baselines in terms of sample efficiency for the covariate
shift detection as was the case of the natural shift. The
only exceptions are M-shift and Defocus Blur in the GID-
shift scenario, where the difference is not large compared to
other algorithms. Our algorithm requires about half as many
samples before detecting covariate shift compared to the
baselines. In terms of FPR, our approach always satisfies
the FPR bound. Finally, Figure 2 shows the accuracy drop
with the shifted samples. In particular, the red dotted line
shows the accuracy of ResNet152 on the examples in the
source and target samples of the given window; as can
be seen, the accuracy decreases as the degree of the shift
increases. Covariate shift detection can be successfully used
to notify a user that an accuracy drop may have occurred.

6. Conclusion
We have proposed a novel covariate shift detection algo-
rithm, which uses a classifier two-sample test to check
whether the current test examples differ in distribution com-
pared to the training examples. Our approach ensures sam-
ple efficiency by avoiding the need to split the dataset into
a training set and a held-out test set, and instead using all
the data to both train the source-target discriminator and
to evaluate its accuracy. We prove that even with this opti-
mization, our approach provides finite sample guarantees
on the false positive rate at a desired level; we also prove
bounds on the false negative rate under a mild conditions on
the trained classifier. Finally, we empirically demonstrate
that our proposed algorithm is significantly more sample
efficient compared to several baselines at detecting both
natural and synthetic shifts on ImageNet.
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A. Proofs
A.1. Proof of Lemma 4.1

· · · xi xi+1 xi+2 · · · xj

· · · ĝi ĝi+1 ĝi+2 · · · ĝj

· · · ŷi ŷi+1 ŷi+2 · · · ŷj

Figure 3: The dependency structure of random variables.

Figure 3 represents the graphical model over random variables, where observed random variables are colored in gray. We
prove the conditional independence using the d-separation (also called the Bayes ball algorithm) (Bishop, 2006), which is a
set of rules that can determine the conditional dependency between two random variables based on the graphical model and
observed random variables. In particular, ŷi+2 is conditionally independent to ŷk for all k ≤ i+ 1 since the path to ŷk is
blocked by ĝi+1 (i.e., ĝi+1 is observed). Similarly, ŷi+2 is conditionally independent to ŷk for all k ≥ i+ 3. This proves the
claim.

A.2. Proof of Lemma 4.2

For any source-target classifier ĝt, if S = T̄w,t, the following holds:

µ∗
w,t = P(x,y)∼Qw,t

[ĝt(x) = y]

=

∫ ∑
y∈{0,1}

1 (ĝt(x) = y)Qw,t(x, y)dx

=

∫ ∑
y∈{0,1}

1 (ĝt(x) = y)

(
1

2
· S(x) · 1(y = 0) +

1

2
· T̄w,t(x) · 1(y = 1)

)
dx

=
1

2

∫ ∑
y∈{0,1}

1 (ĝt(x) = y)S(x)1(y = 0) +
∑

y∈{0,1}

1 (ĝt(x) = y) T̄w,t(x)1(y = 1)dx

=
1

2

∫
1 (ĝt(x) = 0)S(x) + 1 (ĝt(x) = 1) T̄w,t(x)dx

=
1

2

∫
1 (ĝt(x) = 0)S(x) + 1 (ĝt(x) = 1)S(x)dx

=
1

2

∫
(1 (ĝt(x) = 0) + 1 (ĝt(x) = 1))S(x)dx

=
1

2

∫
S(x)dx

=
1

2
,

where the sixth equality holds since S = T̄w,t; the claim follows.
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A.3. Proof of Theorem 4.3

Denote the event that P(x,y)∼Qw,t
[ĝt(x) = y] = 1/2 by E, and let ŝw,t = 2wµ̂w,t. Then, we have

PSw,t,Tw,t

[
f̂(Sw,t, Tw,t;α) = 0

]
= PSw,t,Tw,t

[(
1

2
∈ ΘCP(ŝw,t, 2w;α)

)
∧
(
Px,y [ĝt(x) = y] =

1

2

)]
= PSw,t,Tw,t [E]PSw,t,Tw,t

[
1

2
∈ ΘCP(ŝw,t, 2w;α)

∣∣∣∣ E]
= PSw,t,Tw,t

[
1

2
∈ ΘCP(ŝw,t, 2w;α)

∣∣∣∣ E]
≥ 1− α,

where the first equality holds since S = T̄w,t and by Lemma 4.2, the third equality holds by Lemma 4.2, and the last
inequality holds by the property of the Clopper-Pearson interval and Lemma 4.1.

A.4. Proof of Lemma 4.4

We use the tail bound of the binomial distribution using the Hoeffding’s inequality—i.e.

F (s;n, p) ≤ exp

{
−2n

(
p− s

n

)2}
.

For the upper bound of the upper Clopper-Pearson interval, we have

sup
{
θ
∣∣∣ F (s;n, θ) ≥ α

2

}
≤ sup

{
θ

∣∣∣∣ exp{−2n
(
θ − s

n

)2}
≥ α

2

}

= sup

θ

∣∣∣∣∣∣ sn −

√
ln 2

α

2n
≤ θ ≤ s

n
+

√
ln 2

α

2n


=

s

n
+

√
ln 2

α

2n
. (5)

For the lower bound of the lower Clopper-Pearson interval, we have

inf
{
θ
∣∣∣ F (n− s;n, 1− θ) ≥ α

2

}
≥ inf

{
θ

∣∣∣∣ exp{−2n
(
θ − s

n

)2}
≥ α

2

}

= inf

θ

∣∣∣∣∣∣ sn −

√
ln 2

α

2n
≤ θ ≤ s

n
+

√
ln 2

α

2n


=

s

n
−

√
ln 2

α

2n
. (6)

Finally, (5) and (6) imply the claim.
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A.5. Proof of Theorem 4.5

Let the lower and upper bound of the Clopper-Pearson interval ΘCP be ΘCP and ΘCP, respectively. Recall that we denote the
CDF of a binomial distribution Binomial(n, p) by F (s;n, p). Then, we have

PSw,t,Tw,t

[
f̂(Sw,t, Tw,t;α) = 1

]
= PSw,t,Tw,t
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2
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2
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2
+ ϵ
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∗
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)]
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[(
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2
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∧
(
1

2
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∗
w,t, 2w;α)

)]
(7)
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2
+ ϵ

]
PSw,t,Tw,t

[
1

2
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w,t ≥

1

2
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[
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2
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∗
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where (7) and (8) hold due to PSw,t,Tw,t [µ
∗
w,t < 1/2 + ϵ] = 0 and PSw,t,Tw,t [µ

∗
w,t ≥ 1/2 + ϵ] = 1 from the assumption on

ĝt and S ≠ T̄w,t, respectively.

By Lemma 4.4, the first term is lower bounded as follows:
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]
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)
, (9)

where the last inequality holds since the binomial parameter 1
2 − ϵ makes the CDF F smallest.
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Similarly, the second term is lower bounded as follows:

PSw,t,Tw,t

[
ΘCP(2wµ

∗
w,t, 2w;α) <

1

2

∣∣∣∣ µ∗
w,t ≥

1

2
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]
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1

2
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[
2wµ̂w,t < b(w,α)

∣∣∣∣ µ∗
w,t ≥

1

2
+ ϵ

]
= PSw,t,Tw,t

[
2wµ̂w,t ≤ ⌈b(w,α)− 1⌉

∣∣∣∣ µ∗
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1

2
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]
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where the last inequality holds since the binomial parameter µ∗
w,t = 1 makes the CDF F smallest.

The claim follows by combining (9) and (10).

B. Additional Discussion
B.1. Multiple Epochs in Training

As shown in Algorithm 1, each example is used only once in updating the source-target classifier, baselines also follow this
setting in all experiments. We consider this single epoch update anticipating that our algorithms being used in the online
setting, where it is infeasible to take multiple passes over the training data. However, without consideration of the online
setting, each example can be used multiple times during training with the restriction that the example can be used only once
in the CP interval, which can improve the performance. As this strategy is orthogonal to our approach, it can be applied to
both ours and other baselines expecting the performance improvement.

B.2. Time-uniform bound

Our notions of FPR and FNR (e.g., in Thm. 4.3) are for a single, fixed t. We make this choice since we expect covariate
shift algorithms to run in production for extended periods of time, making it impractical to provide guarantees that hold
uniformly across time. Then, our approach bounds the rate at which false positives occur. In principle, we can achieve a
uniform bound by taking α to zero over time. For instance, to obtain a uniform bound of α, we can take αt = (6/π2) · α/t2
on step t (since

∑∞
t=1 1/t

2 = π2/6).

C. Additional Experimental Results
C.1. Natural shift - IWildCam

Dataset. In addition to ImageNet, we perform additional natural shift experiments on another image dataset, IWildCam from
WILDS dataset (Koh et al., 2021). WILDS dataset is a collection of datasets for distribution shift research and IWildCam is
one of such datasets which includes animal photos taken from different locations. This IWildCam has two different test sets;
denoted by Test (ID) and Test (OOD). Test (ID) is a collection of photos taken at the same locations as a training set while
Test (OOD) is from the different locations. We consider the shift from Test (ID) to Test (OOD) as a natural covariate shift.

Source-target classifier. We use the same source-target classifier setting as we do for ImageNet natural shift experiments in
terms of network architecture, loss, and learning rate. However, we use different model to extract features from IWildCam
images. We obtain the pretrained ResNet50 model, provided by the authors of the WILDS dataset paper (Koh et al., 2021),
and run the model for the feature extraction.

Results. The results are shown in Figure 4 and Table 4. Figure 4 displays the detection rate and Table 4 shows the number
of samples for detection (≥ 80%) and FPR at selected time points.

Discussion. The results are similar to other two experiments in the main paper. As shown in Figure 4 and Table 4, most
algorithms correctly react to the shifts, but our algorithm requires the smallest number of samples for detection. In addition,
all algorithms except DK satisfy the FPR bound.
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(a) M-shift (b) GI-shift (c) GID-shift

Figure 4: Detection rate for natural shift on IWildCam with R = 100, w = 10, α = 1%. The black dashed line indicates
shifted sample ratio, i.e., the degree (or probability) of covariate shift. Our approach achieves the high detection rate
(≥ 80%) with the smallest number of samples when covariate shift occurs. DK reaches the higher detection rate at the early
stage of covariate shift, which may be caused by the higher FPR (Table 4b).

Table 4: Natural shift on IWildCam results with (a) w = 10, α = 1%, and R = 100, and (b) R = 200004. In (a), we bold
the best algorithm, and underline the second-best one. In (b), we bold values that exceed the desired α = 1%. For all shifts,
our approach achieves the high detection rate (≥ 80%) with the smallest number of samples (Table 4a). All algorithms
except DK satisfy the FPR bound (Table 4b).

(a) Number of samples for
detection (≥ 80%)

Scn. Alg. Natural
shift

M-shift

Ours 670
H2 -
H5 -

Wald 1410
DK -

KDS -
ICM 4330

GI-shift

Ours 3650
H2 -
H5 -

Wald 4710
DK -

KDS -
ICM -

GID-shift

Ours 1620
H2 -
H5 -

Wald -
DK -

KDS -
ICM -

(b) FPR (%) at selected
time

Scn. Alg. 300 600 950 1200

M-shift

Ours 0.69 0.57 0.68 0.59
H2 0.30 0.35 0.40 0.34
H5 0.46 0.56 0.41 0.45

Wald 0.25 0.21 0.26 0.29
DK 1.98 1.91 1.93 1.85

KDS 0.00 0.00 0.00 0.00
ICM 0.18 0.17 0.17 0.22

GI-shift

Ours 0.66 0.62 0.53 0.57
H2 0.36 0.30 0.40 0.40
H5 0.48 0.51 0.51 0.51

Wald 0.17 0.27 0.26 0.29
DK 1.77 1.88 2.10 2.27

KDS 0.00 0.00 0.00 0.00
ICM 0.22 0.17 0.20 0.21

GID-shift

Ours 0.57 0.59 0.57 0.56
H2 0.33 0.40 0.41 0.36
H5 0.36 0.50 0.51 0.45

Wald 0.20 0.31 0.25 0.27
DK 1.91 1.82 2.02 2.51

KDS 0.00 0.00 0.00 0.00
ICM 0.24 0.21 0.15 0.19

C.2. Natural shift - Py150

Dataset. All of previous datasets are image datasets. For a more general set-up, we also consider the non-image dataset,
Py150 dataset from WILDS dataset. This dataset includes program code from multiple Github repositories, and it has two
different test sets: Test (ID) and Test (OOD). The difference between them is that Test (OOD) contains code from different
sets of repositories compared to the training set and Test (ID). Similar to IWildCam, a shift from one group of repositories to
another group of repositories is considered as a natural shift.

Source-target classifier. We follow the same source-target classifier setting with other natural shift experiments (ImageNet,
IWildCam). However, as this dataset is not an image dataset, we use different way of extracting features. We first download

4We use R = 100 for KDS as it is computationally expensive.
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(a) M-shift (b) GI-shift (c) GID-shift

Figure 5: Detection rate for natural shift on Py150 with R = 100, w = 10, α = 1%. The black dashed line indicates shifted
sample ratio, i.e., the degree (or probability) of covariate shift. This shows the similar pattern with IWildCam experiments
(Figure 4). Our approach achieves the high detection rate (≥ 80%) with the smallest number of samples when covariate
shift occurs, and it has small FPR when no covariate shift occurs. DK reaches the higher detection rate at the early stage of
covariate shift, which may be caused by the higher FPR (Table 4b). DK does not show the notable change in GI-shift case,
and we believe that the hyper-parameter was not properly chosen.

Table 5: Natural shift on Py150 results with (a) w = 10, α = 1%, and R = 100, and (b) R = 200005. In (a), we bold the
best algorithm, and underline the second-best one. In (b), we bold values that exceed the desired α = 1%. For M-shifts, our
approach achieves the high detection rate (≥ 80%) with the smallest number of samples (Table 5a), and for the other two
shifts, all algorithms cannot reach the high detection rate. All algorithms except DK satisfy the FPR bound (Table 5b). We
believe that DK has high FPR because of inappropriate hyper-parameters.

(a) Number of samples for
detection (≥ 80%)

Scn. Alg. Natural
shift

M-shift

Ours 1570
H2 -
H5 -

Wald -
DK -

KDS -
ICM -

GI-shift

Ours -
H2 -
H5 -

Wald -
DK -

KDS -
ICM -

GID-shift

Ours -
H2 -
H5 -

Wald -
DK -

KDS -
ICM -

(b) FPR (%) at selected
time

Scn. Alg. 300 600 950 1200

M-shift

Ours 0.64 0.75 0.84 0.88
H2 0.33 0.40 0.41 0.37
H5 0.49 0.61 0.60 0.63

Wald 0.24 0.24 0.33 0.41
DK 11.86 13.93 16.90 14.36

KDS 0.00 0.00 0.00 0.00
ICM 0.22 0.22 0.15 0.16

GI-shift

Ours 0.61 0.73 0.76 0.77
H2 0.28 0.31 0.43 0.46
H5 0.45 0.51 0.66 0.83

Wald 0.18 0.22 0.29 0.34
DK 11.87 13.87 16.98 14.77

KDS 0.00 0.00 0.00 0.00
ICM 0.19 0.18 0.20 0.24

GID-shift

Ours 0.50 0.78 0.85 1.00
H2 0.21 0.37 0.45 0.45
H5 0.41 0.65 0.62 0.73

Wald 0.18 0.30 0.32 0.38
DK 12.32 14.12 16.83 14.34

KDS 0.00 0.00 0.00 0.00
ICM 0.19 0.20 0.21 0.26

the pretrained CodeGPT model (Lu et al., 2021), provided by the authors of WILDS dataset paper (Koh et al., 2021), and
run the model and average the embeddings from the model to obtain the final features.

Results. Figure 5 shows the detection rate and Table 5 displays the number of required samples for high detection rate
(≥ 80%) and the FPR for the Py150 experiment results.

Discussion. The Py150 results are similar to other experiments with one exception of DK. In M-shift, all algorithms correctly
reacts to shift changes. However, in GI-shift and GID-shift, DK does not show notable change in the detection rate even

5We use R = 100 for KDS as it is computationally expensive.
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though sample shift probability changes over time. We believe this is because DK does not have appropriate hyper-parameter
for this experiment. In terms of the require number of samples, our algorithm requires the smallest number of samples for
M-shift, but all algorithm fail to achieve the high detection rate for GI-shift and GID-shift. All algorithms except DK satisfy
the FPR bound, and we believe that the aforementioned DK’s hyper-parameter issue results in this high FPR.

C.3. Detection Rate

This section shows the additional detection rate plots for the different perturbations, severities, and window sizes (w)
including figures in the main paper.

C.3.1. M-SHIFT

Figure 6 - Figure 15 display the detection rate plot for M-shift scenario with different settings. These all different settings
show the similar pattern with the figures in the main paper.
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 6: Contrast with R = 100, w = 10, α = 1%. As the severity increases, all algorithms achieve higher detection
rate, and the accuracy of the original classifier drops more. Only DK tends to reach high detection rate with less number of
samples when the severity is low. But, DK violates the FPR bound when no covariate shift occurs.
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 7: Defocus blur with R = 100, w = 10, α = 1%. Defocus blur shows the same pattern with Contrast perturbation
results (Figure 6).
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 8: Elastic transform with R = 100, w = 10, α = 1%. Elastic transform shows the same pattern with Contrast
perturbation results (Figure 6).
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 9: Gaussian blur with R = 100, w = 10, α = 1%. Gaussian blur shows the same pattern with Contrast perturbation
results (Figure 6).
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 10: Gaussian noise with R = 100, w = 10, α = 1%. Gaussian noise shows the same pattern with Contrast
perturbation results (Figure 6).
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 11: Contrast with R = 100, w = 20, α = 1%. Compared to w = 10 (Figure 6), algorithms detect shifts with less
fluctuations, but they show slow reaction to shift change, i.e., near 5000th samples.
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 12: Defocus blur with R = 100, w = 20, α = 1%. Defocus blur shows similar pattern with Contrast perturbation
results (Figure 11).
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 13: Elastic transform with R = 100, w = 20, α = 1%. Elastic transform shows similar pattern with Contrast
perturbation results (Figure 11).
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 14: Gaussian blur with R = 100, w = 20, α = 1%. Gaussian blur shows similar pattern with Contrast perturbation
results (Figure 11).
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(a) Severity = 1 (b) Severity = 2

(c) Severity = 3 (d) Severity = 4

(e) Severity = 5

Figure 15: Gaussian noise with R = 100, w = 20, α = 1%. Gaussian noise shows similar pattern with Contrast
perturbation results (Figure 11).
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C.3.2. GI-SHIFT

This section includes the plots for GI-shift scenario with different perturbation, window sizes (w), and fixed severity.
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(a) Contrast (b) Defocus blur

(c) Elastic transform (d) Gaussian blur

(e) Gaussian noise

Figure 16: GI-shift with R = 100, w = 10, α = 1%. All algorithms detect shifts more as the sample shift probability
increases. Especially, our algorithm achieves the high detection rate with the shift probability of 40 %.
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(a) Contrast (b) Defocus blur

(c) Elastic transform (d) Gaussian blur

(e) Gaussian noise

Figure 17: GI-shift with R = 100, w = 20, α = 1%. Compared to w = 10 (Figure 16), all algorithms show less
fluctuations in the detection rate.
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C.3.3. GID-SHIFT

Similar to the previous two sections, this section includes figures for the GID-shift scenario with different perturbation with
severity 2, and different window sizes (w).
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(a) Contrast (b) Defocus blur

(c) Elastic transform (d) Gaussian blur

(e) Gaussian noise

Figure 18: GID-shift with R = 100, w = 10, α = 1%. All algorithms show the highest detection rate when the sample
shift probability is 100 %. But, only our algorithm reaches the high detection rate even when the shift probability is 40 %.
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(a) Contrast (b) Defocus blur

(c) Elastic transform (d) Gaussian blur

(e) Gaussian noise

Figure 19: GID-shift with R = 100, w = 20, α = 1%. Compared to w = 10 (Figure 18), all algorithms show the better
detection rate with less fluctuations, but, they trigger false positive when the shift disappears, i.e., at 8000th samples.
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C.4. Number of Samples for Detection

This section presents the required number of samples for detecting covariate shift over repetitions (Rate ≥ 80%) with
different perturbations, severities, and window sizes (w).

C.4.1. M-SHIFT

Table 6: Number of samples for detection with R = 100, w = 20. The bold and underlined numbers means the best
and second best results, respectively. DK always requires the smallest number of samples for high detection rate, and our
approach shows second-best result except when severity is 5. However, DK violates the FPR bound as shown in the previous
experiments.

Severity Algorithms Contrast Defocus
Blur

Elastic
Transform

Gaussian
Blur

Gaussian
Noise

1

Ours 300 250 430 360 250
H2 530 430 970 770 410
H5 460 410 1010 710 360

Wald - - - - -
DK 250 150 290 230 190

KDS - - - - -
ICM 470 330 990 570 350

2

Ours 250 220 240 230 210
H2 430 390 390 410 350
H5 360 360 360 360 310

Wald - 2410 - - -
DK 190 110 150 130 150

KDS - - - - -
ICM 350 250 310 290 250

3

Ours 220 200 230 170 170
H2 330 330 370 290 270
H5 310 310 360 260 260

Wald - 1150 - 990 1770
DK 150 70 150 90 90

KDS - - - - -
ICM 270 190 290 190 210

4

Ours 170 170 200 140 140
H2 270 290 310 230 230
H5 260 260 260 210 210

Wald 830 850 - 710 1390
DK 70 50 110 70 50

KDS - - - - -
ICM 190 170 210 150 150

5

Ours 160 150 170 110 120
H2 250 250 230 190 190
H5 210 210 210 160 160

Wald 410 610 1330 470 770
DK 30 50 50 50 30

KDS - - - - -
ICM 110 130 150 110 110
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C.4.2. GI-SHIFT

Table 7: Number of samples for detection with R = 100, w = 20. The bold and underlined numbers mean the best and
second best results, respectively. Our approach always shows the best result while the second best is either H2 or DK.

Algorithms Contrast Defocus
Blur

Elastic
Transform

Gaussian
Blur

Gaussian
Noise

Ours 2100 2040 2100 2040 2050
H2 2890 2150 2610 2170 2190
H5 4110 4010 4110 4010 4010

Wald - - - - -
DK 4150 2130 2310 2230 2310

KDS - - - - -
ICM 4050 4050 4050 4050 4050

C.4.3. GID-SHIFT

Table 8: Number of samples for detection with R = 100, w = 20. The bold and underlined numbers mean the best and
second best results, respectively. Mostly, DK shows the best result while our approach comes next. However, DK violates
the FPR bound as shown in the previous experiments.

Algorithms Contrast Defocus
Blur

Elastic
Transform

Gaussian
Blur

Gaussian
Noise

Ours 620 430 530 470 450
H2 1890 990 1670 1170 1030
H5 2010 2010 2060 2010 2010

Wald - - - - -
DK 2110 250 370 330 350

KDS - - - - -
ICM 2030 2010 2050 2030 2030


