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Abstract
Social interaction quality ratings derived from short natural con-
versations can differentiate children with and without autism at
the group level. In this work, we explored conversations be-
tween children and an unfamiliar adult who rated their social in-
teraction success on six dimensions. Using hand-crafted acous-
tic and lexical features, we built different classifiers to predict
children’s dimensional conversation quality. The best classi-
fier achieved 61% accuracy, which outperformed human raters
(49%). Follow-up analyses revealed that a subset of features
determined communication quality scores. Additionally, we ex-
tracted acoustic features using a pretrained audio transformer
and improved our prediction to 68%. This study suggests that
automatically predicting conversation quality could be an inex-
pensive and objective way to monitor intervention progress in
children with communication challenges, and could be used to
identify intervention targets for improving conversational suc-
cess.
Index Terms: autism spectrum disorder, conversational audio
analysis, machine learning classification and interpretation

1. Introduction
Autism spectrum disorder (ASD) is a neurodevelopmental con-
dition characterized by social communication challenges, and
the presence of repetitive behaviors and restricted interests [1].
Autism is lifelong, but early detection and intervention during
childhood has been shown to improve outcomes for some indi-
viduals on the spectrum [2]. As a highly heterogeneous condi-
tion, autism can look very different from one individual to the
next [3]. In some instances, autism is straightforward to iden-
tify; in other cases, co-occurring conditions and unique presen-
tations make it more complicated to accurately diagnose [4].
Long wait lists for expert assessment are a critical barrier to
speedy identification and early intervention for autistic children
[5], leading to calls for inexpensive, objective automatic screen-
ing systems that could provide pre-assessments, thus shortening
clinical wait lists [6]. Prior studies designed to detect autism
using automated approaches have either relied on features pro-
duced by experts, or derived predictors from long structured in-
teraction sessions (≥ 30 minutes), which are difficult to scale
quickly and inexpensively in local community settings [7, 8].

Autistic individuals often have subtle speech and language
differences that manifest during conversations with other people
[9] and may disrupt social interaction [10]. Recent work [11]
demonstrates that first impressions made by children during
short “get-to-know-you” conversations with non-expert adults
can provide a convenient and quick way to gauge social com-
munication differences in boys with autism - although this ap-
proach may be less accurate for girls. Providing a tool to evalu-

ate dimensional interaction quality1 during short conversations
holds promise as a way to streamline the identification and as-
sessment of communication difficulties in children, including
autistic children. However, it is unclear which ingredients of a
conversation predict better or worse first impressions. Pinpoint-
ing specific linguistic features that contribute to the perception
of “social success” during natural conversations could help clin-
icians develop personalized supports for children that may oth-
erwise experience subjective distress during social interactions
due to subtle speech and language differences.

One recent study used a naturalistic conversation between
a child and a young adult to build an automatic classification
system to detect autism [12]. At the same time, recent devel-
opments in deep learning—such as transformer architectures—
have shown promising performance in extracting contextual
acoustic representations for audio classification or autism detec-
tion [13, 14, 15]. However, prior studies did not aim to predict
the social quality of children’s conversations, as perceived by
listeners, which is critical for the goal of monitoring response
to social skills interventions. The current work takes a step in
this direction.

The goal of this study is to produce a tool that uses acous-
tic and lexical features to predict conversation quality based on
brief samples from children with and without autism, and young
adult conversation partners. We aim to (1) predict perceptions
of conversation quality (low, medium, high) using hand-crafted
features and several popular classifier types, (2) identify impor-
tant hand-crafted features that contribute to the sense of “con-
versational success”, and (3) predict conversation quality using
representations extracted from pretrained transformers.

2. Sample Characteristics
2.1. Dataset

Our dataset consisted of 72 five-minute “get-to-know-you” con-
versations (audio recordings with corresponding transcripts) be-
tween a child participant and a young adult confederate. Thirty-
five participants were diagnosed with autism by an expert clin-
ician, and thirty-seven participants were categorized as neu-
rotypical or typically developing (TD). Autism and TD groups
were matched on key demographic characteristics, including
age, sex ratio, and full-scale IQ score as shown in Table 1.

For all “get-to-know-you” conversations, no instructions
or topics were given beforehand, and all speakers, including
autistic children, were verbally fluent native English speakers.
Confederates were not aware of children’s diagnostic status,
and were assigned to conversations based on availability. This

1We interchangeably use interaction quality and conversation qual-
ity in the paper.
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study was overseen by the Institutional Review Board at Chil-
dren’s Hospital of Philadelphia (CHOP), and parental consent
and children’s verbal assent were obtained.

Autism TD
Number 35 37

Age (mean/std) 11.11/2.84 9.54/2.61
Sex M: 22 F:13 M: 23 F: 14

ADOS
Soc Aff (mean/std) 9.96/3.36 1.24/1.28

RRB (mean/std) 2.17/1.49 0.21/0.54
Overall (mean/std) 12.13/3.62 1.45/1.42

Table 1: Demographic and clinical characteristics of partici-
pants. ADOS: Autism Diagnostic Observation Schedule - 2nd
Edition, Module 3 [16], Soc Aff: Social affect subscore of the
ADOS-2, RRB: repetitive behaviors and restricted interests sub-
score of the ADOS-2.

2.2. Conversation Score

After the 5-minute conversation was complete, confederates
filled out a modified version of the Conversation Rating Scale
questionnaire [17], which included six different conversation
ratings (Table 2). The sum of the first five items was computed,
with questions 4 and 5 reverse-scored so that higher scores indi-
cated better perceived conversation quality; and this was called
the conversation score. The sixth score, which focused on eye
contact during conversations, was excluded, since it could not
be predicted using audio and transcript data only. We show the
statistics of the conversation score in Figure 1 and the correla-
tions between different scores in Figure 2.

Description Rating
Scale

1. The other person was
interested in what I had to say. 1-7

2. This person was warm and friendly. 1-7
3. The conversation flowed smoothly. 1-7

4. The other person acted
bored by our conversation. 1-7

5. The other person created
a sense of distance between us. 1-7

6.
The other person made
appropriate eye contact

with me during our conversation.
1-7

Table 2: Conversation Rating Scale

We split the dataset into 3 classes given by the sum of the con-
versation score: low quality2 (10-20, n = 13), medium quality
(20-30, n = 37), high quality (30-35, n = 22). There were two
reasons for considering such a split: 1) the distribution of con-
versation scores was positively skewed and the split balanced
it, 2) it ensured a more easily interpretable clinical meaning,
because only conversations that received high scores across all
scales could be considered high-quality conversations.

3. Methodology
3.1. Hand-crafted Features

To extract features from conversations, we first separated audio
files and transcripts by speaker. Then, we extracted two sets
of features: lexical features based on expert knowledge, and

2There was no conversation that had a score below 10.

Figure 1: Box-plot of the conversation score sum (first 5 con-
versation ratings).

Figure 2: Correlation heatmap of conversation scores. Note
that we reverse coded questions 4 and 5.

acoustic features used in previous studies [12, 18, 19], see Table
3. Following previous work [12, 18, 20], we computed acoustic
features using openSMILE [21] with the eGeMAPSv02 config-
uration [22]. The 88 extracted features were high-level statistics
including voice probability, mel-frequency cepstral coefficients
(MFCCs), pitch, etc. The total number of hand-crafted fea-
tures was 100. We further selected features based on their Pear-
son correlation with the outcome to mitigate over-fitting issues.
Feature selection occurred after the train-test splits, and the cut-
off threshold was 0.21, chosen via a hyper-parameter search.
The mean number of hand-crafted features chosen was 33.

3.2. Deep learning-based acoustic features

As an alternative to hand-crafted acoustic features, we also
extracted deep learning-based acoustic features, and concate-
nated them with the hand-crafted lexical features. We extracted
acoustic features using the Audio Spectrogram Transformer
(AST) [13], which was pretrained on the AudioSet dataset. We
preprocessed the audio waveform of the participants follow-
ing [13]: the input audio was split into 25ms frames first, and
then the Hamming window function was applied to each frame.
We applied the Short Time Fourier Transform (STFT) and con-
verted the resulting power spectrum to filter banks on a Mel
scale. The AST had the spectrogram of participant-only audio
as the input (a 30-second clip). We froze the pretrained AST
model to extract deep learning-based acoustic representations.
We experimented with using audio from both the participant
and confederate or only the confederate, but this led to a lower
performance compared to using audio from the participant only.

4. Experiments
In our experiments using hand-crafted features, we compared
five different classifiers: support vector machines (SVM), k-
Nearest Neighbors (kNN), Gradient Boosting (GB), Decision
Trees (Tree), and Random Forests (Forest), implemented in the
scikit-learn package [23]. For deep learning-based features, we
fused the acoustic features and hand-crafted lexical features by
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Lexical Features Description

Filler/Pause count Number of pause filler ( e.g. ‘um,
hmm, uhm” ) (Participant)

Laugh count Number of laugh (Participant)
No count Number of ‘no’ (Participant)
Question count Number of questions (Participant)

Short vs Whole Ratio of one-word sentences
to all sentences (Participant)

Average length Average length (in number of words)
of sentences (Both)

Word ratio Ratio of the role’s words
to total number of words (Both)

Sentence ratio Ratio of the role’s turn
to total number of turns (Participant)

Backchannel
count

Number of backchannel utterances
(Participant)

Acoustic Features Description

Percent of Silence Silence time / Total time
(Participant)

openSMILE Pitch and voice quality related features
Table 3: Summary of hand-crafted features. Participant: indi-
cates features are from participant side only; Confederate: in-
dicates features are from confederate side only; Both: indicates
features are from both role

concatenation and trained a linear neural network model us-
ing the SGD optimizer [24] for 80 epochs with a learning rate
of 0.005. The training ran on an NVIDIA Quadro RTX 6000
GPU with 24GB of RAM. In addition to predicting conversa-
tion quality (Sec 4.1), we also used our selected features (both
hand-crafted and deep learning-based) to perform autism pre-
diction for participants (Sec 4.4). We evaluated our classifiers
using 5-fold cross-validation, and reported the mean value and
standard deviation across the folds.

4.1. Conversation Score Results

4.1.1. Using Hand-crafted Features

The classification accuracy results in Table 4 show that our
hand-crafted features were able to predict conversation qual-
ity (low, medium, high) with relatively high accuracy for this
three-way classification problem. SVMs achieved the highest
accuracy (61%) on interaction quality prediction. We also ob-
served that both acoustic and lexical features were necessary for
the best accuracy.

Acc (%) SVM kNN GB Tree Forest
Lexical 47.67

(±11.91)
48.67
(±0.08)

43.0
(±9.91)

41.33
(±4.99)

46.33
(±11.57)

Acoustic 59.67
(±12.67)

60.00
(±10.33)

55.33
(±4.00)

40.67
(±9.98)

52.67
(±7.42)

Lexical+
Acoustic

61.0
(±10.73)

58.33
(±8.82)

44.67
(±9.33)

42.00
(±8.33)

52.67
(±9.52)

Table 4: Results of conversation quality prediction using hand-
crafted features. We experimented with lexical features, acous-
tic features, or both. Acc denotes Accuracy.

4.1.2. Using Deep-learning Features

Table 5 shows that features extracted by AST attained a higher
accuracy in predicting conversation quality than hand-crafted
features. The results also demonstrate that including both lexi-
cal and acoustic features was essential for optimizing conversa-
tion quality prediction.

Class Accuracy(%)
Lexical 54.0 (±13.06)

Acoustic 62.67 (±11.62)
Lexical + Acoustic 68.0 (±8.84)

Table 5: Prediction of conversation quality using lexical fea-
tures and acoustic features extracted using an AST transformer.

4.2. Human Evaluation

We performed human evaluation as a baseline to evaluate our
automatic conversation predictor. Three non-expert undergrad-
uate student raters listened to the conversations and filled in the
conversation score survey. The sixth score was omitted. We av-
eraged the scores collected from the three raters and reported
human performance in Table 6. Our automatic conversation
predictor’s accuracy was approximately 12% and 19% higher
than human raters, using hand-crafted and deep learning fea-
tures, respectively. This demonstrates the feasibility of using
an automatic tool for assessing conversation quality in children
with and without autism. We also observed that the recall of
low-quality conversations by human raters was low, which was
similar to the tendency observed when using automatic conver-
sation predictors. We hypothesize that this happened because
the number of low-quality conversations is small compared to
the other two categories. Therefore, increasing our sample size
could be beneficial for improving our understanding of commu-
nication difficulties in children.

Class Precision Recall F1-score

Automated
Prediction

Low 60.00 46.15 52.17
Medium 70.45 83.78 76.54

High 66.67 54.55 60.00
Acc (%) 68.06

Human
Raters

Low 100.00 23.08 37.50
Medium 50.00 48.65 49.32

High 42.42 63.64 50.91
Acc (%) 48.61

Table 6: Comparison of machine learning method and human
raters for predicting conversation quality (low, medium, high).

4.3. Feature Analysis

To identify which features contributed the most to perceived
conversation quality, we computed the contributions of the
hand-crafted features in the SVM model using SHAP (SHapley
Additive exPlanations) [25], a technique for understanding the
behavior of machine learning models. We did not apply SHAP
to the transformer model despite its higher accuracy, because
analyzing the spectrogram feature-by-feature is not easily inter-
pretable. The feature analysis in Figure 3 suggests that the most
important features for predicting social interaction quality were
the participants’ loudness, pitch range in semitones, the num-
ber of questions produced by the participant, the ratio of short
vs. long sentences produced by the participant, and the number
of backchannel words produced during the participant’s turn.
These selected features could prove useful as targets in person-
alized interventions aimed at improving perceptions of social
interaction quality.

We also compared which features predict perceptions of
conversation quality in autistic children vs. TD children sep-
arately, by plotting the impact of hand-crafted features on con-
versation quality in Figures 4a and 4b. We observed that for
both groups, loudness, the number of questions asked by partici-
pants, short sentence ratio, and F0 semitone were important, but
with different feature importance scores. For autistic children,
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Figure 3: Feature importance by SHAP. The variables of the
selected acoustic features are from eGeMAPSv02 configuration.
The variables of selected lexical features are from Table 3.

the number of backchannel words produced was also an impor-
tant feature that impacted perceptions of conversation quality.

4.4. Autism Prediction

We used the extracted features designed for assessing conver-
sation scores to predict participants’ diagnostic status (autism
or TD). The results of autism prediction using hand-crafted fea-
tures are shown in Tables 7 and 8. We observed that the accu-
racy achieved using deep-learning extracted features was com-
parable to the performance from previous work [12]. This fur-
ther showed that our automatic conversation predictor was a rea-
sonable candidate to assist with autism prediction.

Acc (%) SVM kNN GB Tree Forest
Lexical 59.67 58.00 53.67 53.67 54.67
Acoustic 63.67 64.33 55.33 58.33 55.00

Lexical
+Acoustic 63.67 61.33 61.00 65.00 58.00

Table 7: Autism prediction using hand-crafted features. We ex-
perimented with lexical features, acoustic features, or both. Acc
denotes the overall prediction accuracy.

Class Precision Recall F1-score
TD 74.29 70.27 72.22

ASD 70.27 74.29 72.22
Acc (%) 72.22

Table 8: Autism prediction using both audio features extracted
by the AST transformer, and with lexical features. TD denotes
typically developing or neurotypical participants, and ASD de-
notes children with autism. Acc denotes prediction accuracy.

5. Discussion and Conclusion
The close relationship between social communication skills and
autism suggests that predicting conversation scores can facil-
itate clinical pre-screening, thus lowering critical barriers to
early identification and support. Here we propose a framework
for predicting perceived communication quality using short,
natural conversations between a child and a non-expert adult
interlocutor. We showed that a machine learning approach can
achieve reasonable prediction performance. This approach can
be used as an automatic and objective tool to monitor changes
in conversational competence, for children with and without
autism. Additionally, we utilized pre-trained transformers to
extract expressive acoustic representations to improve the per-
formance of conversation quality predictions. Our work also ap-

(a) Feature importance for autistic children.

(b) Feature importance for TD children.

Figure 4: Important features identified by SHAP for different
groups. The variables of the selected acoustic features are from
eGeMAPSv02 configuration. The variables of selected lexical
features are from Table 3.

plied interpretability approaches for understanding model pre-
diction with designed features. The selected features may be
used to assist experts as they design and implement social com-
munication support tools for autistic children. Our hand-crafted
feature-based and deep-learning-based approaches can poten-
tially be generalized to analyze the speech and conversation pat-
terns of children with other types of language difficulties. As
the aim of predicting conversation quality is to aid in the diag-
nosis and tracking of intervention progress in autistic children,
the results of this classifier will not be shared directly with the
children or their guardians and will only be evaluated by med-
ical professionals alongside other assessments if applied in a
clinical setting.

The limitations of our work include that we evaluated our
approach on a relatively small dataset. In future work, we will
analyze audio conversations between children and adults for
various clinical purposes. We will also extend our work by in-
tegrating automated speech recognition and speaker diarization
to create a complete pipeline for assessing the communication
quality of children in real-world settings.
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