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Abstract— In this paper, we present a learning approach to
goal assignment and trajectory planning for unlabeled robots
operating in 2D, obstacle-filled workspaces. More specifically,
we tackle the unlabeled multi-robot motion planning problem
with motion constraints as a multi-agent reinforcement learning
problem with some sparse global reward. In contrast with
previous works, which formulate an entirely new hand-crafted
optimization cost or trajectory generation algorithm for a
different robot dynamic model, our framework is a general
approach that is applicable to arbitrary robot models. Further,
by using the velocity obstacle, we devise a smooth projection
that guarantees collision free trajectories for all robots with
respect to their neighbors and obstacles. The efficacy of our
algorithm is demonstrated through varied simulations. A video
describing our method and results can be found here.

I. INTRODUCTION

In many applications in robotics such as formation fly-
ing [1], [2] or perimeter defense and surveillance [3], there
exist teams of interchangeable robots operating in complex
environments. In these scenarios, the goal is to have a team
of robots execute a set of identical tasks such that each
robot executes only one task, but it does not matter which
robot executes which task. One example of such a problem
is the concurrent goal assignment and trajectory planning
problem where robots must simultaneously assign goals and
plan motion primitives to reach assigned goals.

Solutions to this unlabeled multi-robot planning problem
must solve both the goal assignment and trajectory optimiza-
tion problems. It has been shown that the flexibility to freely
assign goals to robots allows for polynomial-time solutions
under certain conditions [4], [5], [6]. Nonetheless, there are
still significant drawbacks to existing approaches. Solutions
with polynomial-time complexities depend on minimum sep-
arations between start positions, goal positions, or robots and
obstacles [4], [5], [7]. Motion plans generated by graph-
based approaches for this problem such as those proposed
in [6], [8] are limited to simple real-world robots that have
approximately first-order dynamics. Closest to our work, [9]
proposes an algorithm to coordinate unlabeled robots with
arbitrary dynamics in obstacle-filled environments. However,
it assumes the existence of a single-robot trajectory optimizer
that can produce a candidate trajectory for a robot to any
given goal, which is in itself a difficult research problem.
Furthermore, the algorithm is a priority-based method that
depends on offsetting the times at which robots start travers-
ing their trajectories to guarantee collision avoidance. In
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Fig. 1: Learning Unlabeled Motion Planning Robots ob-
serve their own state and velocity, relative positions of all
goals and other entities within a sensing region. For robot
n, this information is compiled into a vector sn. Each robot
uses its own policy network to compute an action an. During
training, policy networks also exchange information i with
a centralized Q-network which uses information from all
robots to compute robot specific Q functions qn. These Q
functions are used by the individual robot functions to update
their policies. To guarantee safety, a model based policy runs
in the background.

the worst case, it degenerates into a completely sequential
algorithm where only one robot is moving at a time.

In light of these works, we propose a novel learning-based
framework for goal assignment and trajectory optimization
for a team of identical robots with arbitrary dynamics operat-
ing in obstacle-filled work spaces. Firstly, it is observed that
the unlabeled multi-robot planning problem can be recast
as a multi-agent reinforcement learning (MARL) problem.
Robots are given their own state, configuration of obstacles
and information about other robots within some sensing
radius and configuration of all goals in the environment. The
objective then is to learn policies that couple the assignment
and trajectory generation for each robot. It is important to
note that in such an approach, since we do not have goals
assigned beforehand, it is non-trivial to assign individual
rewards to each robot. Instead, we simply assign a global
reward to all robots that takes into account if all robots have
reached goals in a collision free manner. This global reward
then forces each robot to learn policies such that all robots
can reach a goal without colliding or having to communi-
cate with each other. Thus, by casting the concurrent goal
assignment problem as a MARL problem, we attempt to
learn policies that maximize this global reward in minimal
time. A centralized training, decentralized execution strategy
is used to train policies for each robot. This builds on a body

https://www.youtube.com/watch?v=ggTuBdAbrIU


of work in MARL that employ such a centralized training,
decentralized execution strategy [10], [11].

When utilizing a deep reinforcement learning (RL) model,
one loses optimality guarantees as well as any guarantees for
collision free trajectories. To ensure one still has collision
free trajectories, we make use of an analytical model based
policy that runs in the background and checks if the target
velocities produced by the robot are "safe". For each robot,
velocity obstacles are computed at every instant in time. The
velocity obstacle divides the set of all possible velocities into
safe and unsafe sets. If the velocity computed by the learned
model lies in the unsafe set, it is projected back into the
safe set. We also ensure that this projection preserves certain
properties such as smoothness of the transition function in
order to be compatible with the learning process. Thus, when
using this model based policy in conjunction with the policy
learned, we are guaranteed almost safe trajectories at every
instant and it is empirically shown that the computed policies
converge to the desired values.

Thus, the main contributions of our algorithm are : 1)
Capability to extend to arbitrary robot dynamics. We test with
both holonomic and non-holonomic robot models 2) There
is no need to re-train if the obstacles are moved around or
if the robot’s start and goal positions are changed. This is in
contrast to any model-based approach where one would need
to recompute the assignment and regenerate the trajectory.
3) It retains the safety guarantees of model-based methods,
4) We show experimentally that better performance based
on total time to reach goals is achieved than model based
methods alone.

II. PROBLEM FORMULATION

Consider a two dimensional Euclidean space with N
homogeneous disk-shaped robots of radius R indexed by n
and M goal locations indexed by m. Goal location m is
represented as a vector of its position (xm, ym) and heading
(θm) in the plane. Thus, goal m is :

gm = [xm, ym, θm] (1)

The full goal state vector, G ∈ SE(2)M is given as :

G = [g1, g2, . . . , gM ] (2)

Let robot n be equipped with a sensor with range Rs (Rs >
R). The data from the sensor is denoted as In. We assume
each robot has full information about the location of the
goals and full information about its own pose. Thus, the
observation of the nth robot at time t is then given as :

ont = [pn(t), vn(t), ωn(t), In,G] (3)

where pn(t) ∈ SE(2) is a vector of the position
(xn(t), yn(t)) and heading (θn(t)) of robot n in the plane
and is given as :

pn(t) = [xn(t), yn(t), θn(t)] (4)

The linear velocity of the robot at time t is denoted as vn(t)
and the angular velocity is denoted as ωn(t). Let S be the set
of states describing all possible configurations of all robots.

For each robot, given an action ant ∈ An where An describes
all possible actions for robot n, the state of the robot evolves
according to some stationary dynamics distribution with
conditional density p(ot+1|ot, at). These dynamics can be
linear or non-linear. Further let A = [A1,A2, . . .An] be
the set of all possible actions of all robot. We define some
arbitrary scalar δ > 0 such that the necessary and sufficient
condition to ensure collision avoidance is given as :

Ec(pi(t), pj(t)) > 2R+ δ,

∀i ̸= j ∈ {1, . . . N},∀t
(5)

where Ec is the euclidean distance. Lastly, we define the
assignment matrix ϕ(t) ∈ RN×M as

ϕij(t) =

{
1, if Ec(pi(t), gj) +Dc(pi(t), gj) ≤ ϵ

0, otherwise
(6)

where DC is the cosine distance and ϵ is some threshold. In
this work, we consider the case when N = M . The necessary
and sufficient condition for all goals to be covered by robots
at some time t = T is then:

ϕ(T )⊤ϕ(T ) = IN (7)

where I is the identity matrix. Thus, the problem statement
considered in this paper can be defined as :

Problem 1. Given an initial set of observations
{o1

t0 , . . . , oNt0} and a set of goals G, compute a set of
functions µn(on

t ) ∀n = 1, . . . , N, ∀t such that applying the
actions {at1, . . . , atN} := {µ1(o1

t ), . . . µN (oNt )} results in a
sequence of observations each satisfying Eqn. 5 and at final
time t = T satisfies Eqn. 7. In the next section we outline
our methodology to easily convert this problem to a Markov
game for MARL and outline our methodology to compute
policies such that the constraints in Eqn. 5 and Eqn. 7 are
satisfied.

III. LEARNING UNLABELED MULTI-ROBOT PLANNING

A. Markov Games for Multi-Robot Planning

One can reformulate the unlabeled multi-robot planning
problem describe in Problem 1 as a Markov game [12].
A Markov game for N robots is defined by a tuple
{S,A, T ,O,R, γ}. S describes the full true state of the
environment. We observe corresponds to the full state space
in the problem setup. Similarly we observe that the action
space A is the same as defined before in Problem 1. The
transition function T : S × A → S is equivalent to the
dynamics distribution p(ot+1|ot, at) describe in Section II.
In the Markov game, the environment is partially observed.
At every timestep, each robot can only observe some small
part of the environment. This is also defined in our problem
and for every timestep t we can simply set the observation
for robot On = ont , and O = {O1, . . . ,On}. γ is a discount
factor and can be set close to one. In the Markov game, each
robot n obtains a reward function as a function of robots state



and its action. We propose formulating a reward structure that
satisfies the constraints in Eqn. 5 and Eqn. 7.

r(t) =


α if ϕ(t)⊤ϕ(t) = IN
−β, if any collisions
0 otherwise

(8)

where α and β are some positive constants. It is important
to note that this reward structure is global and is given to all
robots {r(t) = r1(t),=, rn(t)}. By using a global reward
we remove the need for any carefully designed heuristic
function. In the Markov game, the solution for each robot n is
a policy πn(a

n|on) that maximizes the discounted expected
reward Rn =

∑T
t=0 γ

trn(t). Once again, we draw parallels
between the Markov game and Problem 1 and set µn = πn.
Thus, we can conclude the solution of the Markov game
for Multi-Robot Planning is the solution for the Unlabeled
multi-robot planning considered in Problem 1.

B. Learning Policies for Continuous Actions

Consider a single robot setting. The MDP assosciated
with a single robot is given as Mt(O,A, T1, r, γ) (T1 is
the transition function associated with just the robot under
consideration). The goal of any RL algorithm is to find a
stochastic policy π(ot|at; θ) (where θ are the parameters of
the policy) that maximizes the expected sum of rewards :

max
θ

Eπ(at|ot;θ)[
∑
t

rt] (9)

Policy gradient methods look to maximize the reward by
estimating the gradient and using it in a stochastic gradient
ascent algorithm. A general form for the policy gradient can
be given as:

ĝ = Et[∇θlogπθ(at|ot)Qπ
t (ot, at)] (10)

where Qπ(ot, at) represents the action value function (esti-
mate of how good it is to take an action in a state)

Qπ(ot, at) := Eot+1:∞,at+1:∞

[ ∞∑
l=0

rt+l

]
(11)

Bellman equations also give us the recursive rule for updating
the action value function given as :

(12)
Qπ(ot, at) = Eot+1:∞,at:∞

[
r(ot, at) +

γEot+1:∞,at+1:∞(Qπ(ot+1, at+1))
]

where r(ot, at) is the reward for executing action at in ot.
The gradient ĝ is estimated by differentiating the objective
wrt θ:

LPG(θ) = E[log(πθ(at|ot)Qπ(ot, at)] (13)

In order to extend this to continuous actions and continuous
deterministic policies, [13] propose the the Deep Deter-
ministic Policy Gradient (DDPG) algorithm for continuous
actions and deterministic policies. The algorithm maintains
an actor function (parameterized by θπ) that estimates the

deterministic continuous policy π. In addition, it also main-
tains a critic function (parameterized by θQ) that estimates
the action value function. The critic function is updated by
using the Bellman loss as in Q-learning [14] (Eqn. 12) and
the actor function is updated by computing the following
policy gradient :

ĝ = Et[∇θlogπθ(at|ot)∇aQ
π
t (ot, at)] (14)

The DDPG algorithm is an off-policy algorithm and samples
trajectories from a replay buffer of experiences stored in
a replay buffer. Similar to DQN [15] it also uses a target
network to stabilize training.

A natural question to ask at this point is, why not treat
every robot in the space as an entity operating independently
and learn this DDPG algorithm for each robot and in
fact this exact idea has been proposed in Independent Q-
Learning [16]. However, there are two major drawbacks to
this approach. When operating in high dimensional contin-
uous spaces with sparse rewards, the lack of information
sharing between the robots makes it difficult to learn any
co-ordination between robots. Further, as each robot’s policy
changes during training, the environment becomes non-
stationary from the perspective of any individual robot (in
a way that cannot be explained by changes in the robotss
own policy). This is the non-stationarity problem in multi-
agent learning.

C. Learning Continuous Policies for Multiple Robots

To overcome the aforementioned drawbacks in treating
each robot as an independent entity, a small modification
to the critic function (action-value) during training time
is needed. During training, the critic function for robot
n uses some extra information h from all other robots.
This has been proposed in [10], [11]. The modified ac-
tion value function for robot n can then be represented as
Qn((h1(t), . . . , hN (t)), (a1(t), . . . , aN (t))). The most naive
method is to simply set hn(t) = on(t).

Let policy for robot n parameterized by θn be
πθn
n . For brevity sake, let {h1(t), . . . , hN (t)} = H,

{a1(t), . . . , aN (t)} = A and Π = {πθ1
1 , . . . , πθN

N } Thus in
multi-robot case, the gradient of the actor function for robot
n is given as

ĝn = Et[∇θn logπθn
n (an(t)|on(t))∇an

Q̂Π
n (H,A)] (15)

where Q̂Π
n (H,A) is the centralized critic function for robot

n that takes in input all robot observations and all robot
actions and outputs a q value for robot n. The robot n then
takes a gradient of this q value with respect to to the action
an executed by robot n and this gradient along with the
policy gradient of robot n’s policy is used to update the
actor function for robot n. It is important to note that the
extra information from other robots actions is only used
during training to update the critic function. This gives
rise to centralized training but decentralized policies during
inference. Thus, we now have a policy gradient algorithm
that attempts to learn a policy for each robot such that
Problem 1 captured in Eqn. 9 is maximized.



D. Backup Policies for Safety

When using deep RL, one often loses any guarantees of
safety. Thus, when attempting to maximize the reward in
Eqn. 9, we have no guarantee that actions generated by our
actor network are collision free (satisfy constraint in Eqn. 5).
In real world applications of robotics this could be simply
infeasible. Instead, we propose use of a simple analytical
backup policy that ensures collision free trajectories.

We use the Velocity Obstacle concept introduced in [17].
While there exist more sophisticated algorithms for collision
avoidance such as ORCA [18] and NH-ORCA [19], we opt
for VO due to its simplicity. Consider a robot n, operating
in the plane with its reference point at pn and let another
planar obstacle b (another robot or a static obstacle), be at pb,
moving at velocity vb(t). The velocity obstacle V On

b (vb(t))
of obstacle b to robot n is the set consisting of all those
velocities vn(t) for robot n that will result in a collision at
some moment in time with obstacle b. The velocity obstacle
(VO) is defined as:

VOn
b (vb(t)) = {vn(t)|λ(pn, vn(t)− vb(t)) ∩ b

⊕
−n ̸= 0}

where
⊕

gives the Minkowski sum between object n and
object b, −n denotes reflection of object n reflected in its
reference point pn, and λ(pn, vn(t)−vb(t)) represents a ray
starting at pn and heading in the direction of the relative
velocity of robot n and b given by vn(t)− vb(t). [17] show
that the VO partitions the absolute velocities of robot n into
avoiding and colliding velocities. This implies that if vn(t) ∈
V On

b (vb(t)), then robot n and obstacle b will collide at some
point in time. If vn(t) is chosen such that it is outside the
VO of b, both objects will never collide and if vn is on
the boundary, then it will brush obstacle b at some point in
time.This concept is illustrated in Fig. 2.

Each robots actor network outputs a linear force and a
torque, i.e an(t) = {Fn(t), τn(t)}. The dynamics of the
robot then evolve according to :

[vn(t+ 1)] :=

[
Fn(t) + z

κ

]
(∆) (16)

[xn(t+ 1), yn(t+ 1)] := vn(t+ 1)∆ + [xn(t), yn(t)] (17)

Fig. 2: Velocity Obstacle Velocity obstacle VOn
b (vb(t)) of

obstacle b to robot n. When there exist multiple obstacles,
the VO is defined as the union of all velocity obstacles.

where z is some normally distributed noise z ∼ N (0, σ2), κ
is mass of the robot and is some fixed constant and ∆ is the
fixed time interval. Similarly, the rotational acceleration is
derived from the torque and integrated over twice to update
the orientation. For simplicity, say that the observation is set
to just the position and the velocity in the 2D plane, i.e ot =
[pt, vn(t)]. From Eqn. 16, we derive the stationary dynamics
distribution with conditional density as p(ot+1|ot, at) ∼
N (∆

2F(t)+xt

κ , σ2∆4

κ2 )
A fundamental assumption for the existence of the gradient

in Eqn. 14 (and by extension, Eqn. 15) is that the conditional
probability distribution p(ot+1 = ξ|ot, at) be continuous
wrt ot, at ∀ξ . We observe that in the case when the state
evolves according to Eqn. 16, the probability distribution is
simply a gaussian distribution and is continuous. In order to
incorporate the VO as a backup policy, we need to prove that
the new transition function is still continuous. From Eqn. 16,
we have the velocity of the robot. Further, from Eqn. 17
xt+1 = ∆vn(t) + xt. Since xt is a fixed, it suffices to find
the continuity of p(vn(t)) to conclude about the continuity of
p(ot+1|ot, at). Consider an obstacle B inside sensing range
of robot n. To ensure safety, at every timestep, we compute
the VO and check if the velocity vn(t) ∈ V On

B(vb(t)). In
case, the velocity computed by the actor network falls inside
the VO, we project the velocity back to the safe set V O′

(V O′ is the complement of the VO). The easiest projection
can be given as :

Pmin
V O′ (vn(t)) = {min

v̄
||vn(t)− v̄||: v̄ ∈ V O′} (18)

Thus, the safe velocity for robot n is then given as:

vsafe
n (t) = vn(t)1V O′(vn(t))+Pmin

V O′ (vn(t))(1−1V O′(vn(t))
(19)

where 1a(b) is the indicator function and is 1 if b ∈ a and
0 otherwise. However, an issue with such a projection is
that this gives us a discontinuous distribution for p(vsafe

n (t))
(probability) because now, there exists a set of values that
vsafe
n (t) never takes. Thus, this fails the assumption of smooth

transition functions necessary to compute deterministic pol-
icy gradients. Additionally, in most real world systems, it
is infeasible to make large changes to the velocity instanta-
neously.

To overcome this, we propose an alternate projection that
ensures a smooth distribution of vsafe

n (t). We note that at any
given time t, the RVO set, i.e the set of infeasible velocities
is always a continuous set. By exploiting this property, we
propose the following alternative projection:

P sig
V O′(vn(t)) =

vi − vk
1 + e−c(vn(t)−vj)

+ vk (20)

where vi, vj , vk are the first, middle and last elements of the
VO respectively and c is a hyperparameter that depends on
the how quickly the robots can change their velocities. This
is a shifted sigmoid projection and is visualized in Fig. 3.
Using the sigmoid projection, the safe velocity for robot n
is given as :

vsafe
n (t) = vn(t)1V O′(vn(t))+P sig

V O′(vn(t))(1−1V O′(vn(t))
(21)



Fig. 3: Min Projection vs Sigmoid Projection of velocity
When using the minimum projection given in Eq 18 the safe
velocity has a discontinuity. However, if we assume that the
event vn(t) = vj ±∆v occurs with very low probability, we
get p(vsafe

n (t)) a continuous function.

and from this we conclude that p(ot+1|ot, at) is a continuous
probability distribution thus enabling us to take the gradients
specified in Eqn. 15. We put all these parts into our system
for learning unlabeled multi-robot planning with motion
constraints and present the full algorithm in Algorithm 1
and in the rest of the paper we reference it as MARL+RVO

Algorithm 1 Learning Safe Unlabeled Multi-Robot Mo-
tion Planning (MARL+RVO)
Require: Initial random policy network and critic networks

for all robots Π Replay buffer D,
1: for episode = 1 to C (C >> 1) do
2: construct every robot’s initial state ont (Eq 3).
3: for t= 1 to max episode length do
4: for each robot, compute ant = πn(ont )
5: for each robot, guarantee safe ant (Eqn. 21)
6: for each robot, compute ont+1 and reward r(t).
7: Store on

t+1, a
n
t , on

t , r(t) in D
8: for robot = 1 to N do
9: Sample minibatch of samples from D

10: Compute bellman error using Eqn. 12
11: Update critic network using bellman error.
12: Compute policy gradient ĝn from Eqn. 15
13: Update actor network using SGD with ĝn

IV. EXPERIMENTAL RESULTS

The efficacy of our algorithm is tested in simulated
robotics experiments. We experiment by changing the num-
ber of robots, number of obstacles present in the environment
and the robot dynamics. In order to choose a meaningful
reward function that ensures all goals are covered we first
compute for each goal the distance to its nearest robot.
Then among this set of distances, we pick the maximum,
negate it and add it to the reward. This represents the part of
the reward function that forces all robots to cover all goals
(denoted by rD(t)). A similar strategy is adopted to ensure
that the cosine difference between orientations is minimized

(denoted by rr(t)). In order to not overly depend on the
projected velocity, we add in a negative penalty every time
the projection to the safe set needs to be computed. Thus,
we add a negative reward to all robots (denoted by rC(t)).
Thus, the overall reward given to each robot at time t is :

r(t) = λDrD(t) + λrrr(t) + λCrC(t) (22)

where λD, λr and λC are coefficients to balance each part of
the reward function. This global reward function is the same
for every robot operating in the environment. Maximizing
this global reward requires a collective effort from all robots.

It is important to note that during, inference time to guar-
antee safety, we do away with the soft projection introduced
in Eqn. 20 and instead use the min projection as given in
Eqn. 18. This is because during inference we no longer need
to take gradients and hence the transition function need not
be smooth continuous anymore.

A. Experimental Setup Details

For each robot, we setup an actor and critic network. The
actor network consists of a two layer fully connected multi-
layer perceptron (MLP). The critic network is also based
on a similar fully connected MLP. The number of units in
the hidden layers are varied depending on the size of the
problem being solved (additional units and hidden layers
when number of robots or obstacles are increased). For each
episode, we set a maximum episode length of 300 steps. To
update our networks, we use Adam and the learning rate
is varied depending on the experiment under consideration.
The discount factor (γ) is set to 0.95 We also make use of
a replay buffer to make sure dependencies between samples
are modelled. The size of the replay buffer is 105 and the
size of the minibatch sampled is 1024. The actions from the
neural networks represent accelarations for the robots.

The robots operate in a two dimensional space and do
not have access to the third dimension. The space under
consideration stretches from -1 unit to 1 unit in both the
X and Y direction. Each robot is considered homogeneous
and has nonzero mass. The radius of the robot is set to 0.05
units. At the start of every episode obstacles, goals and start
positions of robots are randomly populated. Radius of the
obstacles is 0.12 units and the goal regions have a radius
of 0.02 units. Robots are equipped with a sensor that returns
perfect information (no noise in sensor measurements) about
the pose and velocity of entities within the sensing range
which is set at radius of 0.2 units. While the learning
algorithm does not have an explicit assignment of goals in
the states or in the reward function, when using RVO to avoid
collisions, we need to greedily assign goals to agents based
on distance to nearest goal and break all ties by randomly
choosing goals. Once the RVO subprocess is done running,
we again have no notion of goal assignment. In our simulated
experiments (below) we set all units to meters.

B. Simulation Results

We first observe from Fig. 4 that the proposed
MARL+RVO algorithm is able to converge even when the



Fig. 4: Training curves for holonomic robots (with 2,3 and 4 Obstacles (Obs)). We observe that the proposed MARL+RVO
algorithm is able to converge and perform better than a centralized RL (C-PPO) policy. The global reward scale is different
for each plot since it is a function of the space the robots operate in. Each curve is produced by running three independent
runs of the algorithm. Darker line represents mean and shaded area represents mean ± standard deviation of mean.

Fig. 5: Training curves for non holonomic robots (with
2,3 and 4 Obstacles (Obs) When the robot dynamics are
changed, MARL+RVO is still able to converge without
making any changes to the loss function or the training
parameters.

number of robots and the number of obstacles are increased.
One of the key strengths of using a learning based solution
for concurrent goal assignment and planning is that the
algorithm can be used even when the dynamics of the
robot change. When robot dynamics are changed to that
of a non holonomic robot, we observe that our algorithm
still converges. This can be seen in Fig. 5. A simulated
experiment setup is shown in Fig 6. In Fig. 6 (left), a
simple instance is shown where all robots must execute
mostly straight line trajectories to arrive at goals. In Fig.
6 (center), an interesting interaction takes place between
Robots 1 and 2. Robot 2 takes a longer path curved path
around Robot 1. Lastly, in Fig. 6 (right) Robot 3 chooses to
take a longer path around the obstacles in order to not cutoff
Robot 2’s path. These locally sub optimal, globally optimal
behaviors are induced by using a global reward. We also
design a centralized RL controller that uses information from
all the agents and outputs a distribution for each agent. This
controller is trained using PPO [20] and also uses velocity
obstacles as a backup policy. We call this method Centralized
PPO (C-PPO). We observe that C-PPO is unable to converge
to an acceptable goal coverage policy.

In the RL framework, the policy attempts to maximize the
reward function in a fixed horizon of time T . Thus, inherently

the policy is being optimized for minimum time. To demon-
strate this we compare our algorithm with vanilla MADDPG
or MARL as described in [10], reciprocal velocity obstacles
[21] (RVO), and Goal Assignment and Planning (GAP) as
introduced in [9]. The RVO framework improves over VO.
However, it is not a full "goal assignment and planning"
framework and only generates collision free trajectories once
goals have been assigned to robots. To benchmark, we assign
goals in a greedy fashion. Each robot is assigned the goal
closest to it. GAP utilizes a similar assignment but needs a
discretization of the state space and a priority sequence for
robots/goals. This prioritization is assigned randomly and the
space is discretized into units of 0.1m. Out of these three
methods, only RVO, GAP and MARL+RVO are guaranteed
to produced collision free trajectories. For a fair comparison
in terms of time, we only consider those runs from MARL
where no collision occurred. Our results are shown in Fig.
7. It can be seen that MARL and MARL+RVO is faster
or almost comparable to GAP and RVO without needing
any of the requirements of (assigning goals/discretized state
space/priority sequence) GAP and RVO. Vanilla MARL is
faster than MARL+RVO but isn’t guaranteed to generate safe
trajectories as seen from Table I.

3 Robots 4 Robots 5 Robots
MARL 84 192 354
MARL+RVO 0 0 0

TABLE I: Number of collisions for 3 robots in presence
of 3 obstacles over 500 runs.

V. DISCUSSION

In this paper we propose to solve the concurrent goal
assignment and planning problem using MARL instead. Tra-
ditional approaches to solve this problem utilize a carefully
designed heuristic function which produces guaranteed safe
trajectories but breaks down if any of the assumptions are not
satisfied. These assumptions restrict the class of problems
that can be solved by traditional algorithms. By utilizing
RL, we remove any assumptions on the robot dynamics or



Fig. 6: Trajectory executed by 3 robots Trajectories executed by robots in three randomly generated episodes after training
is complete. In addition to robots reaching their goals in collision free manners, the proposed approach also aligns robots
to desired final goal orientations.

assumptions on the environment and instead use a global
reward function that forces robots to collaborate with each
other in order to maximize the reward. To overcome the lack
of any safety guarantees, we propose using a model based
policy in conjunction with the RL policy thus ensuring safe
collision free trajectories. We demonstrate the effectiveness
of our algorithm on simulations with varying number of
obstacles, varying number of robots and varying robot dy-
namics and show that our proposed algorithm works faster
and more robustly than traditional algorithms.

A. Caveats
While this work attempts to learn an approximate solution

for the unlabeled multi-robot problem, it has a few caveats.
One of the biggest drawbacks of our work is that there is
a significant engineering effort required in scaling up the
number of robots. When the number of robots is increased,

there are two major challenges that hamper MARL. The first
is that the input space of the critic function grows as the
number of robots increase. This increase in dimensionality
necessitates longer training times for the critic. It might
be possible to instead propose a local critic function that
only takes in information from nearby robots. This might be
possible by thinking of the robots as nodes on a graph and
leveraging advances in graph neural networks [22], instead of
using a fully connected network. The second problem is con-
cerned with the need for more exploration as the number of
robots increase. We observe from Fig 8 that the time required
to train the algorithm grows almost exponentially as the
number of robots are increased. While there exist massively
parallel methods [23], [24] and software libraries [25] to
scale up for reinforcement learning, scaling up the number of
robots still poses a significant computing challenge. Methods

Fig. 7: Time taken to reach goal (with 2,3 and 4 Obstacles (Obs)) over 500 runs. We compare with Multi-Agent
Reinforcement Learning (MARL), Reciprocal Velocity Obstacles (RVO), GAP [9] and our algorithm which combines the
RL and safety(MARL+RVO). For the RVO method, we assign each robot its nearest goal (in terms of euclidean distance).
GAP uses discrete nodes to search through space and hence its performance is contingent on the discretization of our
continuous space. We observe that with MARL gives the best time performance, but this performance is not guaranteed to
be collision free. Our method (MARL+RVO) trades-off time performance for guaranteed collision free trajectories.



Fig. 8: Training time to convergence. Training time for different configurations of robots and agents when trained on a
NVIDIA DGX-1 (Tesla V100, 32GB × 8)

attempting to learn hierarchical policies for agents such as
those in [26] might instead prove to be a suitable alternative.
Lastly, our choice of VO for collision avoidance while rooted
in its simplicity suffers from drawbacks many of which
have been improved over by methods presented in [18],
[27]. Adapting the projection step with more sophisticated
collision avoidance algorithms is something we intend to
explore in future work.
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