
An Interactive Approach to Mobile App Verification ∗

Osbert Bastani
Stanford University, USA
obastani@cs.stanford.edu

Saswat Anand
Stanford University, USA
saswat@cs.stanford.edu

Alex Aiken
Stanford University, USA
aiken@cs.stanford.edu

Abstract
Static explicit information flow analysis can help human au-
ditors find malware. We propose a process for eliminating
false positive flows due to imprecision in the reachability
analysis: the developer provides tests cases, and only tested
code is analyzed. Then, the app is instrumented so that ex-
ecuting untested code terminates the app. We use abductive
inference to minimize the instrumentation, and interact with
the developer to ensure that only unreachable code is instru-
mented. Our verification process successfully discharges 11
out of the 12 false positives in a corpus of 77 Android apps.

Categories and Subject Descriptors F.3.2 [Semantics of
Programming Languages]: Program analysis

Keywords abductive inference; specifications from tests

1. Introduction
When designing automated code analyses, there is a tradeoff
between manual effort discharging false positives and toler-
ating false negatives. Approaches in practice often rely on
precise, dynamic analyses at the expense of possible false
negatives, since static analyses produce too many false pos-
itives for the user to feasibly examine.

Current static approaches involve the user only at the
end (i.e., when displaying results). We believe that a small
amount of user input during intermediate steps of the static
analysis can significantly reduce the false positive rate. In
particular, many false positives are due to imprecision in

∗ This paper is based on [1], and in particular adopts the framework and
uses the experimental results of that paper. This material is based on re-
search sponsored by the Air Force Research Laboratory, under agreement
number FA8750-12-2-0020. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon.

1. void leak(boolean flag, String data) {

2. if (flag)

3. sendHTTP(data); }

4. void onCreate() {

5. leak(false, getLocation()); }

Figure 1. An example app PonCreate.

component analyses: 11 out of 12 false positives in an ex-
periement we performed using static information flow anal-
ysis were due to imprecision in the reachability analysis and
one was due to imprecision in the alias analysis. Imprecision
in these component analyses tend to be more local (com-
pared to information flows) and can be relatively easy for
the user to examine. Can we minimally query the user about
potential imprecision in component analyses and use the re-
sponse to the query to discharge false positives?

A static analysis can provide insight to the user about po-
tential imprecision; e.g., insufficient context sensitivity [4],
missing models [2, 5], or imprecise reachability informa-
tion [1]. We use abductive inference [3] to formulate a min-
imal query regarding this potential imprecision (e.g., “is
statement s unreachable?”); by minimizing the query, we en-
sure a reasonable workload for the user. We incorporate the
response to the query back into the static analysis and then
iteratively make new queries to the user until either we verify
the app or no new queries can be formulated.

We implement our approach to discharge false positives
due to unreachable code in a static (explicit) information
flow analysis; the information flows are used to find possible
malware. Our goal is to make queries to a potentially ma-
licious developer [1]. To prevent the developer from falsely
claiming “s is unreachable” (so the analysis incorrectly con-
cludes that some information flows are false positives), we
enforce such a response by instrumenting the app to termi-
nate if s is reached. Thus, the instrumented app is both con-
sistent with the developer’s responses and free of informa-
tion flows. To prevent the developer from falsely claiming
“s is reachable” (to avoid effort), we require that the devel-
oper provide a test executing s (proving that s is reachable)
with such a response. Using tests has additional benefits: it
leverages existing test suites, and tests can be provided to the
auditor should the app need to be manually examined.



Figure 2. Visualization of the interactive verification process. The steps of the process proceed along the x-axis, and the y-axis
describes the number of false positives remaining.

2. Our Approach by Example
Suppose a developer submits the app PonCreate shown in Fig-
ure 1. First, we run an information flow analysis on PonCreate;
the goal is to verify whether location flows to the Internet.
Our analysis removes statements in the program statically
shown to be unreachable. Reachability analysis can be very
imprecise; for example, unless it is path-sensitive, it would
not determine that line 3 is unreachable, in which case we
would find that location does flow to the Internet.

Our system searches for a cut, which is a subset E of
statements that can be removed from PonCreate so that the re-
sulting appPonCreate−E is free of information flows. The fol-
lowing choices of E are cuts: E3 = {3.sendHTTP(data)}
and E5 = {5.leak(...)}. However, E5 is undesirable
since line 5 is reachable, so the developer returns a test that
executes line 5. Our system executes the test and observes
that line 5 is reachable, so it computes a new cut with the
constraint that line 5 cannot be cut and returns E3. The de-
veloper accepts this cut, so we instrument PonCreate to ter-
minate if execution reaches line 3. Because E3 is a cut, the
instrumented app cannot leak location data, and because E3

is unreachable, PonCreate − E is semantically equivalent to
PonCreate and the instrumentation incurs no runtime overhead.

We compute cuts by reducing the problem to an integer
linear program (where the objective is to minimize the size
of the cut); see [1] for details.

3. Experimental Results
We demonstrate the effectiveness of our approach by veri-
fying a corpus of 77 Android apps to be free of malicious
information flows; our focus is on eliminating the false pos-
itives found by our static information flow analysis. We play
the role of the developer (determining reachable statements
by reading the bytecode). To reduce the number of iterations,
we query the developer on two cuts for each iteration instead
of one; only one of the two cuts must be valid (i.e., only con-
tain unreachable statements).

In Figure 2, we show two iterations of the interactive
process. The black bars show the cumulative number of
false positives remaining to be discharged at each point in
the process. We start with 12 false positives. In the first
iteration, for 7 out of the 12 false positives, at least one of
the two cuts was valid, so we accept the cut (allowing the
static analysis to discharge the false positive). We discharge
4 additional false positives in the second iteration. The one
remaining false positive is due to imprecise aliasing rather
than unreachable code, so no valid cut exists; the auditor
must manually examine this false positive.

4. Conclusion
We have described an approach for interacting with an audi-
tor (or developer) to eliminate false positives in static anal-
ysis. The static analysis knows the (local) sources of im-
precision that may cause false positive (global) information
flows. By making a small, carefully selected query to the au-
ditor regarding these local sources of imprecision, we can
discharge a significant number of false positive information
flows (92% in our experiments). We believe that our ap-
proach to handling false positives can significantly improve
the usability of static analysis.

References
[1] O. Bastani, S. Anand, A. Aiken. Interactively verifying

absence of explicit information flows in Android apps. In
OOPSLA, 2015.

[2] O. Bastani, S. Anand, A. Aiken. Specification inference using
context-free language reachability. In POPL, 2015.

[3] I. Dillig, T. Dillig, A. Aiken. Automated error diagnosis using
abductive inference. In PLDI, 2012.

[4] X. Zhang, R. Mangal, R. Grigore, M. Naik, H. Yang. On
abstraction refinement for program analyses in Datalog. In
PLDI, 2014.

[5] H. Zhu, T. Dillig, I. Dillig. Automated inference of library
specifications for source-sink property verification. In APLAS,
2013.


