
Automated Synthesis of Semantic Malware
Signatures using Maximum Satisfiability

Yu Feng
University of Texas at Austin

yufeng@cs.utexas.edu

Osbert Bastani
Stanford University

obastani@cs.stanford.edu

Isil Dillig
University of Texas at Austin

isil@cs.utexas.edu

Ruben Martins
University of Texas at Austin

rmartins@cs.utexas.edu

Saswat Anand
Google, Inc.

saswatanand@google.com

Abstract—This paper proposes a technique for automatically
learning semantic malware signatures for Android from very
few samples of a malware family. The key idea underlying our
technique is to look for a maximally suspicious common subgraph
(MSCS) that is shared between all known instances of a malware
family. An MSCS describes the shared functionality between
multiple Android applications in terms of inter-component call
relations and their semantic metadata (e.g., data-flow properties).
Our approach identifies such maximally suspicious common
subgraphs by reducing the problem to maximum satisfiability.
Once a semantic signature is learned, our approach uses a
combination of static analysis and a new approximate signature
matching algorithm to determine whether an Android application
matches the semantic signature characterizing a given malware
family.

We have implemented our approach in a tool called ASTROID
and show that it has a number of advantages over state-of-the-
art malware detection techniques. First, we compare the semantic
malware signatures automatically synthesized by ASTROID with
manually-written signatures used in previous work and show that
the signatures learned by ASTROID perform better in terms of ac-
curacy as well as precision. Second, we compare ASTROID against
two state-of-the-art malware detection tools and demonstrate its
advantages in terms of interpretability and accuracy. Finally,
we demonstrate that ASTROID’s approximate signature matching
algorithm is resistant to behavioral obfuscation and that it can
be used to detect zero-day malware. In particular, we were able
to find 22 instances of zero-day malware in Google Play that are
not reported as malware by existing tools.

I. INTRODUCTION

Due to the enormous popularity of Android as a mobile
platform, the number of applications (“apps”) available for
Android has skyrocketed, with 1.6 million apps being currently
available for download. Unfortunately, the soaring number
of Android users has also led to a rapid increase in the

number of Android malware, with 4,900 malware samples
being introduced every day [1]. Correspondingly, this upsurge
in Android malware has also led to a flurry of research for
automatically detecting malicious applications [2, 3, 4, 5, 6, 7].

Generally speaking, approaches for automated malware de-
tection can be classified as either signature-based or learning-
based. Signature-based techniques look for specific patterns in
the application to determine whether the app is malicious, and,
if so, which malware family the app belongs to [8, 2, 9, 10].
These patterns can either be syntactic (e.g., sequence of in-
structions) or semantic (e.g., control- or data-flow properties).
Signature-based approaches allow security analysts to quickly
identify the malicious component of an application; hence,
they are widely-used by several commercial anti-virus (AV)
companies. However, one key shortcoming of these techniques
is that they require a trained security analyst to manually write
suitable signatures that can be used to detect each malware
family. Unfortunately, this manual effort is typically time-
consuming and error-prone.

Learning-based techniques [3, 6, 11, 12, 4, 13, 14, 5]
aim to address this limitation by automatically learning a
malware classifier from data. These techniques extract various
features from the application and use standard machine learn-
ing algorithms to learn a classifier that labels apps as either
benign or malicious. Compared to signature-based techniques,
current learning-based approaches suffer from a number of
shortcomings:

• They produce results that are difficult to interpret (for
example, they typically cannot be used to determine the
malware family), which makes it difficult for a security
analyst to discharge false positives.

• They typically require a large number of samples from
each malware family, which is problematic for families
that have recently emerged or that are rare (58% of
malware families in [3] have fewer than 5 samples).

This paper aims to overcome these disadvantages of ex-
isting malware detectors by proposing a new technique to
automatically infer malware signatures. By identifying mal-
ware based on inferred signatures, our approach retains all
the advantages of signature-based approaches: it can pinpoint
the location of the malicious components as well as the

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-1891562-46-0
http://dx.doi.org/10.14722/ndss.2017.23379

corresponding malware family, and requires very few samples
(<5 in our evaluation). Furthermore, our approach can learn
semantic signatures that are resilient to low-level obfuscation
mechanisms and produces very few false alarms. Finally,
because our signature matching algorithm uses approximate
(rather than exact) matching, our algorithm is also resilient to
high-level obfuscation mechanisms that modify the program’s
control flow and data-flow properties.

The first key insight underlying our approach is to au-
tomatically identify a semantic pattern that (a) occurs in all
instances of a given malware family, and (b) is maximally
suspicious (i.e., maximizes the number of “suspicious” features
that are typically not found in benign apps). Here, criterion (a)
serves to minimize the number of false negatives: If the pattern
does not occur in all instances of the malware family, then
our signatures would not match all malicious apps, thereby
resulting in false negatives. In contrast, criterion (b) serves
to minimize false positives: By requiring that the identified
semantic pattern is maximally suspicious, we ensure that our
signatures are unlikely to flag benign apps as malicious.

The second key insight underlying our technique is to
automatically learn these semantic patterns by finding a maxi-
mally suspicious common subgraph (MSCS) of the malware in-
stances. An MSCS describes the shared functionality between
multiple Android applications in terms of inter-component
call relations and their semantic metadata (e.g., data-flow
properties, intent filters, API calls etc.). Our approach automat-
ically finds an MSCS by reducing the problem to maximum
satisfiability (MaxSAT). Intuitively, the MaxSAT problem aims
to maximize the amount of suspicious metadata while ensuring
that this functionality is shared between all instances of the
malware family. The solution to the MaxSAT problem can
then be directly translated into a semantic signature that
characterizes a specific malware family.

Our third and final insight is to utilize the proposed sig-
nature inference algorithm for approximate matching. Specif-
ically, given a database of malware signatures and a new
application A, we must decide whether A matches any of these
signatures. Rather than performing exact signature matching
as done in previous work [2], we employ a novel approximate
signature matching algorithm. The key idea is to generate a
new signature S assuming that A is an instance of family
F . We then decide if A is actually an instance of F based on
the similarity score between S and F’s existing signature. The
main advantage of this approach is that it makes our technique
even more resilient to obfuscations, including those that change
program behavior.

We have implemented the proposed technique in a tool
called ASTROID1 and evaluate it in a number of ways.
Our first experiment shows that the signatures automatically
inferred by ASTROID are competitive with (in fact, better
than) manually-written signatures used for evaluating previous
work [2]. We also compare ASTROID with two state-of-
the-art Android malware detectors, namely DREBIN [3] and
MASSVET [15], and show that ASTROID compares favorably
with these tools in terms of accuracy, false positives, and
interpretability. Third, we demonstrate that ASTROID’s approx-
imate signature matching algorithm is both resilient to various

1ASTROID stands for Automatic SignaTure findeR for andrOID

behavioral obfuscations and is also useful for detecting zero-
day malware. Specifically, in a corpus of apps collected from
Google Play, ASTROID identified 103 apps from more than
10 malware families for which we did not previously have
signatures. Furthermore, among these 103 apps, 22 of them
were previously unknown and are not reported as malware by
existing tools.

This paper makes the following key contributions:

• We propose a novel technique for inferring malware
signatures from few samples of a malware family.

• We formulate signature inference as the problem of find-
ing a maximally suspicious common subgraph (MSCS) of
a set of Android applications and show how to reduce
MSCS detection to maximum satisfiability.

• We propose a novel approximate signature matching
algorithm that leverages automated signature synthesis.

• We implement our approach in a tool called ASTROID and
evaluate it against manually written malware signatures,
other state-of-the-art malware detectors, and behavioral
obfuscation strategies.

II. BACKGROUND

In this section, we provide some background that is nec-
essary for understanding the rest of this paper.

A. Android Basics

An Android application consists of four kinds of com-
ponents, namely Activity, Service, BroadcastReceiver, and
ContentProvider. Every screen of an app corresponds to an
Activity. Services run in the background without a user in-
terface, ContentProviders store data, and BroadcastReceivers
react asynchronously to messages from other applications.

In Android, different components communicate with each
other through Intents, which are effectively messages that
describe operations to be performed. Components can receive
intents from other components or from the Android system;
thus intents form the basis of inter-component communication
(ICC) in Android. Intent objects can have several attributes,
three of which we discuss below:

• The optional target attribute explicitly specifies the spe-
cific component invoked by this Intent.

• The action attribute specifies the type of action that the
receiver of the Intent should perform.

• The data type attribute specifies the type of data that the
receiver of the intent is supposed to operate on.

An Intent whose target attribute is specified is called an explicit
Intent. In contrast, an implicit Intent does not have its target
attribute specified, so the Android system decides the targets
of an implicit intent I at run time by comparing I’s action and
data attributes against the intent filters of other components.
The intent filter of a component C specifies the action that C
is able to perform and the data it can operate on. Such intent
filters are declared in the app’s manifest, which is an XML file
containing information about the app.

2

HandPics

dongmanfeizhuliufengjinganimal

viewpics

AdActivityISniper

ProfileHighscoremoreGame

UserAct

zjReceiver
GameAct

MyReceiver

BoolServicezjService

activity0

activity2activity1

activity3

GoldDream Sample 1 (G1) GoldDream Sample 2 (G2)

Signature candidate (S1) Signature candidate (S2) Signature candidate (S3)

receiver0

service0

activity0

Fig. 1: Motivating example to illustrate our approach

B. Inter-component Call Graphs

Our technique uses the inter-component call graph (ICCG)
representation introduced in previous work [2]. The ICCG for
an Android app summarizes inter-component communication
within the app as well as any relevant metadata (e.g., dataflow
or API calls). More formally, an ICCG for an application A
is a graph (V,X, Y) where:

• V is a set of vertices, where each v ∈ V is a component
of A. The type of a vertex v, written T (v), is the type of
the component that v represents. Hence, we have:

T (v) ∈ T = {activity, service, receiver, provider}

• X is a set of edges representing inter-component call re-
lations. Specifically, (v, v′) ∈ X indicates that component
v may invoke component v′ either through an explicit or
implicit intent.

• Y is a set of labeled edges representing metadata. In
particular, (v, v′, d) ∈ Y indicates that components v and
v′ are related by metadata d.

Metadata edges Y in the ICCG indicate potentially suspi-
cious behaviors of the app. We explain three kinds of metadata
that will be used in this paper:

• Data flow information, denoted as src ; sink. In
particular, (v, v′, s ; s′) ∈ Y indicates that the source
s originating from component v flows to the sink s′ in
component v′. Sources represent confidential information
(e.g., IMEI number), and sinks represent externally visible
channels (e.g., Internet, SMS).

• Suspicious API calls, written .API. Specifically, an edge
(v, v, .f) ∈ Y indicates component v calls Android API
method f (e.g., exec).

• Suspicious actions, denoted as �Act, represent actions
that can be performed by a component. In particular,

(v, v, �Act) ∈ Y indicates that component Y can perform
action Act.

• Intent filters, denoted as ?o, represent the data type
that a given component can operate on. In particular,
(v, v, ?o) ∈ Y indicates that component v can operate
on data of type o (passed using intents).

For a given set of apps, the universe of labels from which
metadata can be drawn is fixed. In the rest of the paper, we
use D to indicate the domain of edge labels d in Y .

Example 1: Consider the ICCG labeled as Gold Dream
Sample 1 in Figure 1. Here, solid edges represent X , and
dashed edges with metadata represent Y . Nodes drawn as
rectangles are Activities, while ellipses indicate Broadcas-
tReceivers and hexagons denote Services. Since there is a
solid edge from zjReceiver to zjService, broadcast
receiver zjReceiver may call zjService. Furthermore,
since there is a dashed edge from zjService to itself labeled
as deviceId ; Internet, source deviceId flows to the Internet
within component zjService.

III. OVERVIEW

Suppose that Alice, a security auditor at an anti-virus
company, recently learned about a new malware family called
GoldDream [16]. Alice would like to update their anti-virus
tool to detect GoldDream instances. Alice wants to use a
learning-based tool to save work, but then she must man-
ually examine each app flagged by the tool due to high
false positive rates (which is time-consuming because the
explanations produced by these tools typically do not pinpoint
malicious functionalities). Furthermore, the malware family is
new, so Alice only has two samples, and current learning-
based approaches require many training samples to achieve
high accuracy. Defeated, Alice manually writes signatures to
detect GoldDream instances by reverse engineering common

3

malicious behaviors from the byte code of the two GoldDream
samples, and working to ensure that no benign apps are flagged
by her signatures.

ASTROID can greatly benefit Alice by automatically infer-
ring a signature characterizing the GoldDream family from as
few as two samples. In the top half of Figure 1, we show the
ICCGs of Alice’s two GoldDream samples. Observe that these
two samples have different component names and perform
very different functionalities—the ICCG on the left belongs
to a game, while the one on the right belongs to an app for
browsing pictures.

To detect the malice shared by these two samples, AS-
TROID searches for connected subgraphs of the two ICCGs that
are isomorphic to each other. In this case, there are multiple
such subgraphs; three are shown in the bottom half of Figure 1.
For instance, the red graph labeled Signature candidate (S1) is
isomorphic to the red subgraphs of G1 and G2. Similarly, the
yellow graph labeled Signature candidate (S2) is isomorphic
to the yellow subgraphs of G1 and G2. The key insight in
deciding between these candidates is to find the maximally
suspicious common subgraph (MSCS). Intuitively, an MSCS is
the signature candidate that maximizes the number of metadata
edges, where each edge is weighted by its suspiciousness.

Continuing our example, S2 does not exhibit any “suspi-
cious” behaviors such as suspicious information flows from
confidential sources to public sinks. On the other hand, S1
contains multiple suspicious behaviors, such as calling the
sendSMS API and leaking confidential data. Based on these
suspicious features, ASTROID decides that among the three
candidates S1-S3, the candidate S1 most likely encodes the
malicious behavior characterizing malware in the GoldDream
family.

Internally, ASTROID uses a MaxSAT solver to find MSCSs.
Since each suspicious behavior is encoded as a soft constraint,
an optimal satisfying assignment to the MaxSAT problem
corresponds to a maximally suspicious common subgraph of
the malware samples. Once ASTROID infers an MSCS of the
malware samples, it automatically converts this MSCS into a
signature. Hence, ASTROID allows a security auditor like Alice
to automatically detect future instances of the GoldDream
family without having to manually write malware signatures.

IV. SEMANTIC ANDROID MALWARE SIGNATURES

We now formally define our malware signatures and state
what it means for an app to match a signature. Intuitively, a
signature for a family F is an ICCG (V0, X0, Y0) that captures
semantic properties common to all malware in F . Ideally,
G0 = (V0, X0, Y0) would satisfy the following:

• G0 occurs as a subgraph (defined below) of the ICCG
GS = (VS , XS , YS) of every malware sample S ∈ F .
• G0 does not occur as subgraph of the ICCG GS =
(VS , XS , YS) of any sample S 6∈ F .

By “occurs as a subgraph”, we mean there exists an embedding
FS : V0 → VS such that the following properties hold:

• One-to-one. For every v, v′ ∈ V0 where v 6= v′, FS

cannot map both v and v′ to the same vertex, i.e.,
FS(v) 6= FS(v

′).

• Type preserving. For every v ∈ V0, FS must map v to a
vertex of the same type, i.e., T (v) = T (FS(v))

• Edge preserving. For every v, v′ ∈ V0, FS must map an
edge (v, v′) ∈ X0 to an edge in XS :

(v, v′) ∈ X0 ⇒ (FS(v), FS(v
′)) ∈ XS .

• Metadata preserving. For every v, v′ ∈ V0, FS must map
metadata (v, v′, d) ∈ Y0 to metadata in YS :

(v, v′, d) ∈ Y0 ⇒ (FS(v), FS(v
′), d) ∈ YS .

Example 2: Consider the candidate signature S1 with
ICCG (V0, X0, Y0) and the GoldDream sample G1 with ICCG
(V1, X1, Y1) from Figure 1. Now, let us consider the following
candidate embeddings F (a)

1 and F (b)
1 from V0 to V1:{

F
(a)
1 (receiver0) = zjReceiver

F
(a)
1 (service0) = zjService{
F

(b)
1 (receiver0) = zjReceiver

F
(b)
1 (service0) = GameAct.

Here, candidate F
(b)
1 is not a valid embedding because the

types of service0 and GameAct are not compatible, since
service0 is a service whereas GameAct is an activity.
Thus, F (b)

1 does not preserve types. Furthermore, F (b)
1 is also

invalid for another reason: There is an edge receiver0 →
service0 ∈ X0 in S1, but there is no corresponding edge
zjReceiver→ GameAct in G1. Therefore, F (b)

1 also does
not preserve edges. On the other hand, F (a)

1 satisfies all the
properties above and is a valid embedding.

Given signature G0 = (V0, X0, Y0) and app S with ICCG
GS = (VS , XS , YS), we say that G0 exactly matches (or
simply matches) S if G0 occurs as a subgraph of GS . In
other words, given a signature (V0, X0, Y0) and a sample S
with ICCG (VS , XS , YS), we can check whether (V0, X0, Y0)
matches S. If so, we have determined that S ∈ F ; otherwise,
S 6∈ F .

In general, our signature may not exactly capture the se-
mantic properties of the malware family F . As a consequence,
there may be samples S ∈ F such that (V0, X0, Y0) does not
match S (called false negatives), or samples S 6∈ F such that
(V0, X0, Y0) matches S (called false positives). In practice, a
signature should minimize both the false positive rate and the
false negative rate, even though there is a tradeoff between
optimizing these two values in practice. When detecting mal-
ware, we use approximate matching, which enables our tool to
detect partial matches; tuning the cutoff for what constitutes an
approximate match allows us to balance the tradeoff as desired.
See Section VII for details.

V. SIGNATURE INFERENCE PROBLEM

Our goal is to infer a signature from few samples of a
malware family. Suppose we are given n malware samples
from a single family F . Naı̈vely, we can search for any
signature that matches each of the n malware samples; then,
the resulting signature would intuitively have a low false
negative rate. However, even the empty signature fits this
criterion (since it can be embedded in any sample), but the
empty signature has a high false positive rate.

4

Instead, we want to maximize the amount of semantic
information contained in the signature. More precisely, we seek
to find a signature (V0, X0, Y0) that is:

• A common subgraph: (V0, X0, Y0) should match
each given sample i ∈ {1, ..., n}. Intuitively, the
common subgraph requirement seeks to minimize false
negatives. If the inferred signature S was not a common
subgraph of all the samples, then S would not match
some samples of F , meaning that we have false negatives.

• Maximally suspicious: (V0, X0, Y0) has maximal suspi-
ciousness |X0| +

∑
y∈Y0

wy , where weight wy indicates
indicates the relative importance of metadata edge y.
Intuitively, maximal suspiciousness seeks to minimize
false positives: The less frequently a metadata edge y
appears in benign apps (i.e., the more “suspicious” y
is), the higher the weight associated with it. Hence,
maximizing the suspiciousness score

∑
y∈Y0

wy makes
it less likely that a benign app will match the inferred
signature. We describe how the weights wy are chosen in
Section VI-C.

In summary, given a set of samples SF of malware
family F , we refer to the problem of computing a signature
(V0, X0, Y0) that is both maximally suspicious and a common
subgraph of all G ∈ SF as signature synthesis.

VI. SIGNATURE SYNTHESIS AS MAXSAT

As mentioned earlier, our approach reduces the signature
synthesis problem to MaxSAT [17]. Given a boolean formula
in conjunctive normal form (CNF), the MaxSAT problem is
to find satisfying assignments to the variables in the formula
that maximizes the number of clauses that evaluate to true. For
example, given the unsatisfiable formula

(x0 ∨ x1) ∧ (¬x0 ∨ x1) ∧ (x0 ∨ ¬x1) ∧ (¬x0 ∨ ¬x1),

the assignment {x0 7→ 0, x1 7→ 0} achieves the maximum of
three satisfied clauses.

In addition, we can specify that certain clauses must be
satisfied; these clauses are referred to as hard constraints and
the remaining clauses are referred to as soft constraints. We
encode the common subgraph requirement of the signature
synthesis problem using hard constraints. In contrast, since the
maximally suspicious requirement corresponds to optimizing
an objective function, we encode this requirement using soft
constraints that should be maximally satisfied.

A. Variables in Encoding

Before we describe how to reduce the signature synthesis
problem to MaxSAT, we introduce some terminology and
describe the propositional variables used by our encoding.

First, we denote the ICCG of a given sample i ∈ {1, ..., n}
of malware family F as (Vi, Xi, Yi). Recall that the common
subgraph criterion requires that the signature (V0, X0, Y0)
matches each i (i.e., we can find isomorphic embeddings
Fi : V0 → Vi). The first difficulty in encoding the common
subgraph requirement is that the number of vertices |V0| in
the signature is unknown. However, for each type r ∈ T , we
know that V0 cannot contain more vertices of type r than any

sample (since it must be embedded in each sample). Hence,
we can give an upper bound on the number of vertices of type
r in V0:

|{v ∈ V0 | T (v) = r}| ≤ mr.

Here, mr denotes the minimum number of vertices of type r
in any sample. This observation immediately gives us an upper
bound on the total number of vertices:

|V0| ≤ m =
∑
r∈T

mr.

Our approach is to fix a large set of vertices V , and then
think of V0 as an unknown subset of V in our encoding. Since
there are at most m vertices in the signature, it suffices to take
V = {v1, ..., vm}. Furthermore, for each type r, we assign
type r to exactly mr of the vertices in V . Now, we can think
of each embedding Fi as a partial function Fi : V → Vi,
where we require that the domain of Fi is the same for each
sample i. Then, V0 is exactly the common domain of the Fi’s,
and we have X0 ⊆ V0 × V0 as well as Y0 ⊆ V0 × V0 ×D.

Example 3: Consider the two GoldDream samples shown
in Figure 1. The first sample has only 6 activities, 1 service,
and 1 receiver, so mactivity = 6, mservice = mreceiver = 1, and

m = mactivity +mservice +mreceiver = 8.

Therefore, we take V = {v1, ..., v8}, with 6 activities v1, ..., v6,
1 service v7, and 1 receiver v8. Note that the vertices V0 used
in the candidate signature must be a subset of V , and X0 must
be a subset of V0 × V0.

In our description of the variables in our encoding, we use
indices i, j ∈ {1, ..., n} to enumerate over the samples and
k, h ∈ {0, 1, ..., n} to enumerate over both the samples and
the signature. Also, we use the indicator function:

I[C] =
{
1 if C holds
0 otherwise

.

For readability, we use the notation x(a, b, ...) to denote
a boolean variable xa,b,... indexed over a ∈ A, b ∈ B, and
so forth. Our constraint system is defined using the following
constants and free variables:

• Domain indicators. For every v ∈ V , a boolean variable
d(v) indicates whether v is in the domain of the embed-
dings Fi. These are all free variables.
• Embedding indicators. For each v ∈ V ,

fi(v, u) = I[Fi(v) = u].

In other words, fi(v, u) indicates whether the embedding
Fi maps v to u. These are all free variables.
• Type indicators. For each v ∈ Vk (or V if k = 0) and
r ∈ T , tk(v, r) indicates whether the type of v is r:

tk(v, r) = I[T (v) = r].

Since the types of all components are known, each
tk(v, r) is a boolean constant.
• Control-flow indicators. For each v, u ∈ Vk (or V if
k = 0), xk(v, u) indicates whether there is an edge (v, u)
in Xk:

xk(v, u) = I[(v, u) ∈ Xk].

5

For k = 0, these are free variables; the remainder are
constants (since the control-flow edges Xi are known).

• Metadata indicators: For every v, v′ ∈ Vk (or V if k =
0) and d ∈ D, yk(v, v′, d) indicates whether there is a
metadata (v, v′, d) ∈ Yk:

yk(v, v
′, d) = I[(v, v′, d) ∈ Yk].

For k = 0, these are free variables; the remainder are
constants (since the metadata edges Yi are known).

Each assignment to the free variables corresponds to a
candidate signature together with embeddings Fi into the
ICCG of each given sample i.

Example 4: Consider the ICCGs of samples from the
GoldDream malware family shown in Figure 1. Recall that,
given these samples, our algorithm uses V = {v1, ..., v8}. We
first describe the constants constructed by our algorithm, and
then the free variables.

The constants include type indicators both for the samples
and for the signature, as well as control-flow and metadata
indicators for the samples. For the signature, the non-zero type
indicators are

t0(v`, activity) = t0(v7, service)

= t0(v8, receiver) = 1,

for 1 ≤ ` ≤ 6, and the remaining type indicators are zero. For
the vertex zjReceiver in first sample G1, the type indicators
are:

t1(zjReceiver, receiver) = 1

t1(zjReceiver, service)

= t1(zjReceiver, activity)

= 0

For the outgoing edges from zjReceiver, the control-
flow indicators are

x1(zjReceiver, zjService)

= 1

and

x1(zjReceiver, zjReceiver)

= x1(zjReceiver, ISniper)

= x1(zjReceiver, moreGame)

= x1(zjReceiver, HighScore)

= x1(zjReceiver, Profile)

= x1(zjReceiver, UserAct)

= x1(zjReceiver, GameAct)

= 0

Assignments to the free variables correspond to candidate
signatures along embeddings F1 and F2 into the samples
G1 and G2 respectively. For example, consider the candidate
signature S1, along with the candidate embedding F

(a)
1 into

G1 described in Example 2, and the candidate embedding{
F

(a)
2 (receiver0) = MyReceiver

F
(a)
2 (service0) = BoolService

into G2. Then, the domain is represented as V0 =
{service0,receiver0}, so the assignments to the domain
indicators are

d(v`) 7→ 0 (for 1 ≤ ` ≤ 6)

d(v7) 7→ 1, d(v8) 7→ 1.

The assignments to the embedding indicators for F (a)
1 are

f1(v7,zjReceiver) 7→ 1, f1(v8,zjService) 7→ 1

f1(v7, w) 7→ 0 (for w 6= zjReceiver)

f1(v8, w) 7→ 0 (for w 6= zjService)

f1(v`, w) 7→ 0 (for 1 ≤ ` ≤ 6 and w ∈ V1)

The assignments to the control-flow indicators are

x0(v7, v8) 7→ 1, x0(v`, v`′) 7→ 0 (for (`, `′) 6= (7, 8)).

If instead the candidate embedding of the signature S1 into
the sample G1 were F (b)

1 (also described in Example 2), then
the assignments to the embedding indicators would become

f1(v7,zjReceiver) 7→ 1, f1(v8,GameAct) 7→ 1

f1(v7, w) 7→ 0 (for w 6= zjReceiver)

f1(v8, w) 7→ 0 (for w 6= GameAct)

f1(v`, w) 7→ 0 (for 1 ≤ ` ≤ 6 and w ∈ V1),

and assignments to the remaining free variables would be
unchanged.

B. Encoding of Common Subgraph

We now describe how to encode the requirement that
(V0, X0, Y0) should be a common subgraph of all the samples.
Recall from earlier that the common subgraph requirement
corresponds to our hard constraints.

• Constant domain. For every v ∈ V , the domain of Fi is
the same for each i:∧

i

{
d(v) =

∨
w∈Vi

fi(v, w)

}
Here, the conjunction over i states that d(v) should be
assigned to true if v is in the domain of the embedding
Fi. Therefore, this constraint ensures that each v is either
in the domain of Fi for every i, or not in the domain of
Fi for any i.

• Function property. For every v ∈ V and w,w′ ∈ Vi
where w 6= w′, Fi cannot map v to both w and w′.

(¬fi(v, w)) ∨ (¬fi(v, w′)).

• One-to-one. For every v, v′ ∈ V where v 6= v′ and w ∈
Vi:

(¬fi(v, w)) ∨ (¬fi(v′, w)).

• Type preserving. For every v ∈ V , w ∈ Vi, and r ∈ T ,
we have:

fi(v, w)⇒ (t0(v, r) = ti(w, r)).

6

• Control-flow preserving. For every v, v′ ∈ V and
w,w′ ∈ Vi:

fi(v, w) ∧ fi(v′, w′) ∧ x0(v, v′)⇒ xi(w,w
′).

• Metadata preserving. For every v, v′ ∈ V and d ∈ D,
we have:

fi(v, w) ∧ fi(v, w′) ∧ y0(v, v′, d)⇒ yi(w,w
′, d).

• No spurious control-flow. For every v, v′ ∈ V , the edges
X0 are a subset of V0 × V0:

x0(v, v
′)⇒ d(v), x0(v, v

′)⇒ d(v′)

• No spurious metadata. For every v, v′ ∈ V and d ∈ D,
the metadata Y0 are a subset of V0 × V0 ×D:

y0(v, v
′, d)⇒ d(v), y0(v, v

′, d)⇒ d(v′)

Example 5: Consider the ICCGs for the samples G1 and
G2 from the GoldDream family shown in Figure 1, along with
the candidate signature S1. In Example 4 we described the
constants in our MaxSAT encoding of the signature synthesis
problem, as well as the assignments to free variables corre-
sponding to the candidate signature S1 together with candidate
embeddings F (a)

2 and either F (a)
1 or F (b)

1 .

Recall that F (a)
1 satisfies the properties described in Sec-

tion IV (as does F (a)
2), whereas F (b)

1 is neither type preserving
nor edge preserving. In particular, the candidate embedding
F

(b)
1 has corresponding free variable assignments

x0(v7, v8) 7→ 1, f1(v7,zjReceiver) 7→ 1,

f1(v8,GameAct) 7→ 1.

These assignments violate the type preservation constraint

f1(v8,GameAct)

⇒ (t0(v8,activity) = t1(GameAct,activity))

because one of the subterms t0(v8,activity) = 0 but
t1(GameAct,activity) = 1, so F

(b)
1 does not satisfy the

type preservation constraints. In addition, these assignments
violate the control-flow preservation constraint

f1(v7,zjReceiver) ∧ f1(v8,GameAct) ∧ x0(v7, v8)
⇒ x1(zjReceiver,GameAct)

since the constant x1(zjReceiver,GameAct) = 0, so F (b)
1

is not control-flow preserving.

On the other hand, it is not difficult to verify that the
candidate signature S1 together with the candidate embeddings
F

(a)
1 and F

(a)
2 correspond to an assignment that satisfies the

constraints described above.

C. Encoding of Maximally Suspicious

Now, we describe how to encode the maximally suspi-
cious requirement, which is that the synthesized signature
(V0, X0, Y0) has a maximal suspiciousness |X0|+

∑
y∈Y0

wy ,
where the weight wy indicates the relative importance of
metadata edge y (as described in Section V). In particular,
we maximize the objective

O =
∑

v,v′∈V

x0(v, v
′) +

∑
v,v′∈V

∑
d∈D

w(v,v′,d)y0(v, v
′, d).

To choose the weights wy , we use the frequency of the
metadata in benign samples to assign weights to different kinds
of metadata. In particular, we define wy to be:

wy =
#{benign apps}+ 1

#{benign apps containing y}+ 1

In other words, wy is the inverse frequency with which
metadata edge y occurs in benign samples, computed on a
large corpus of benign apps (we add one to avoid division
by zero). The intuition is that metadata edges in the malware
samples that rarely occur in benign apps are more likely to
correspond to malicious behaviors.

However, some kinds of behaviors in Y0 are strictly more
dangerous than others. In particular, according to previous
literature [3, 7], suspicious intent filters are far more likely
to indicate malicious behavior than API calls, which are in
turn much more suspect than data-flows:

intent filters > API calls > data-flows.

Rather than simply optimizing the weighted sum, we first
prefer signatures that have the highest weighted sum restricted
to intent filters, regardless of other metadata. Ties are broken
by the weighted sum restricted to suspicious API calls, and
further ties are broken by the weighted sum restricted to data-
flows. The number of edges in X0 is considered last, since it is
already indirectly optimized by the other objectives. To incor-
porate this strict ordering on different kinds of metadata, we
group the sums in the objective according to the different kinds
of metadata and then encode the objective as a lexicographical
optimization problem in the MaxSAT solver [18].

VII. APPROXIMATE SIGNATURE MATCHING

In addition to making semantic malware detection fully
automatic, another benefit of our signature inference algorithm
is that it enables approximate signature matching. Suppose we
are given an app A, and we want to determine if A is an
instance of malware family F . Even if A does not exactly
match F’s signature, we might want to determine if A exhibits
a high degree of similarity with other instances of F . This
problem, which we refer to as approximate matching, is useful
both for detecting zero-day malware and also for mitigating
behavioral obfuscation. This section explains how we leverage
signature inference for approximate signature matching.

To perform approximate matching between an app A and
a malware family F with signature SF , we first assume that A
and SF belong to the same malware family. We then compute
a new signature S that captures the common behavior of A
and all instances of F . If SF and S are “similar” (see below),
there is a high probability that A is an obfuscated instance of
malware family F .

To understand how we measure similarity, note that S is
always a subgraph of SF ; hence, we can measure similarity
in terms of number of nodes and edges that are removed from
SF to form S. Specifically, given signature S, let f(S) be a
function that measures the size of S as a weighted sum of
the number of nodes and edges in S. Then, given app A and
family F with signature SF , we define the similarity metric
as follows:

7

δ(A,F) = f(INFERSIGNATURE(A,SF))
f(SF)

Hence, if δ(A,F) is sufficiently high, then A is more likely to
be an instance of family F . As we show in Section IX, approx-
imate matching using this similarity metric between signatures
makes ASTROID more resilient to behavioral obfuscation.

Zero-day malware detection. We can also use approximate
signature matching to detect zero-day malware. Suppose we
have a database of signatures for existing malware families
F1, . . . ,Fn, and suppose that an app A does not match any
of them. Now, to determine whether A belongs to a new
(unknown) malware family, we compute δ(A,Fi) for each
1 ≤ i ≤ n and report A as malware if δ(A,Fi) exceeds a
certain cutoff value for some malware family Fi. We explain
how we pick this cutoff value in Section VIII.

VIII. IMPLEMENTATION

We have implemented the proposed technique in a tool
called ASTROID for inferring semantic malware signatures for
Android. Our implementation consists of about 7,000 lines of
Java code and uses the OPEN-WBO MaxSAT solver [19].
Our implementation builds on top of APPOSCOPY [2] for
statically constructing ICCGs and taint flows of Android apps.
Specifically, APPOSCOPY implements a field- and context-
sensitive pointer analysis and constructs a precise callgraph
by simultaneously refining the targets of virtual method calls
and points-to sets. For context-sensitivity, APPOSCOPY uses
the hybrid approach proposed in [20]. Specifically, it uses call-
site sensitivity for static method calls and object-sensitivity for
virtual method calls. To scale in large apps, APPOSCOPY also
leverages the EXPLORER [21] tool to construct ICCGs in a
demand-driven manner. APPOSCOPY’s average static analysis
time for constructing an ICCG is 87 seconds for an app from
the Android Genome benchmarks and 126 seconds for an app
from Google Play, including analysis time for all third-party
libraries. Unlike DroidSafe [22] which analyzes the source
code of Android framework directly, APPOSCOPY uses about
1,210 manually-written models for classes that are relevant to
its underlying taint analysis.

Once a signature for a given malware family is generated,
ASTROID can perform both exact matching (described in
Section IV) as well as approximate matching (described in
Section VII). Our implementation of the approximate matching
algorithm differs slightly from the description in Section VII;
in particular, we use the transitive closure of the control-flow
edges in the ICCG (computed in a preprocessing step) rather
than the original ICCG control-flow edges; this modification
increases the resilience of ASTROID against obfuscations that
introduce dummy components.

We use approximate matching both to detect obfuscated
apps and to detect zero-day malware. Recall from Section VII
that our approximate matching algorithm uses a cutoff value
for how high the similarity metric must to count as a match.
We choose a cutoff of 0.5 for zero-day malware, and a stricter
cutoff of 0.8 for obfuscated malware. In other words, an app
with a similarity score = 1.0 is flagged as an unobfuscated
instance of a known malware family, an app with similarity
score > 0.8 is flagged as an obfuscated instance of a known

0.01 0.02 0.03 0.04 0.05

0.5

0.6

0.7

0.8

0.9

1

False positive rate

Tr
ue

po
si

tiv
e

ra
te

Fig. 2: Effect of varying cutoff values on false positives and
false negatives for zero-day malware detection

malware family, and an app with similarity score > 0.5 is
flagged as a possible zero-day malware.

We describe our methodology for choosing the similarity
metric cutoff for zero-day malware detection; the cutoff for
obfuscated malware is chosen similarly. We use the Android
Malware Genome Project as a training set. For each family F
in the Android Malware Genome Project, we omit the signature
for F from ASTROID’s database of signatures (so samples
in F appear as zero-day malware to ASTROID). Then, we
use the remaining signatures in the database to try and detect
samples in F using our zero-day malware detection algorithm
in Section VII, using each cutoff value 0.6382, 0.5834, 0.5832,
0.4927, and 0.4505 (selected by manually binning the data).

For each cutoff value and each F , we compute the true
positive rate (i.e., the fraction of samples in F that ASTROID
detects); then, for each cutoff value, we take the weighted
average over families F to obtain an overall true positive rate
for that cutoff value. Finally, we select the largest possible
cutoff that still achieves a 90% true positive rate. The selected
cutoff is 0.4927, which we round to 0.5. Figure 2 shows the
ROC curve obtained using the various cutoff values, with the
y-axis showing the computed true positive rate. The x-axis
shows the corresponding false positive rate, which is computed
on an independent test set of benign apps.

IX. EVALUATION

The goal of our evaluation is to answer the following
questions:

Q1. How do the signatures synthesized by ASTROID compare
with manually-written signatures used for evaluating AP-
POSCOPY in terms of precision and accuracy?

Q2. How do the quality of learned signatures improve as we
increase the number of samples?

Q3. How does ASTROID compare against other state-of-the-
art malware detectors?

Q4. How effective is ASTROID at detecting zero-day mal-
ware?

Q5. How resistant is ASTROID to behavioral obfuscation?

In what follows, we describe a series of five experiments
designed to answer these questions. All experiments are con-
ducted on an Intel Xeon(R) computer with an E5-1620 v3 CPU
and 32G of memory running on Ubuntu 14.04.

8

A B C D E F G H I J K L M
0

10

20

30

40

50

60

70

80

90

100
A

cc
ur

ac
y

Manual Signature ASTROID Avg. Accuracy Manual Signature Avg. Accuracy ASTROID

Id Malware Family #Samples
A DroidKungFu 444
B AnserverBot 184
C BaseBridge 121
D Geinimi 68
E DroidDreamLight 46
F GoldDream 46
G Pjapps 43
H ADRD 22
I jSMSHider 16
J DroidDream 14
K Bgserv 9
L BeanBot 8
M GingerMaster 4

Fig. 3: Accuracy of APPOSCOPY with a manual and an automated signature synthesized by ASTROID

A. Astroid vs. Manual Signatures

In our first experiment, we compare the signatures syn-
thesized by ASTROID with manually written signatures used
for evaluating APPOSCOPY [2]. Since ASTROID generates
semantic malware signatures in the specification language
used in APPOSCOPY, we use APPOSCOPY’s (exact) signature
matching algorithm to decide if an app matches a signature.
According a co-author of [2], it took several weeks to manually
construct signatures for all malware families in their dataset,
even with full knowledge of the malware family of each app
and the nature of the malice.

Accuracy on known malware. Since the authors of [2] have
manually written semantic signatures for all malware families
from the Android Malware Genome Project [23], we use
ASTROID to synthesize signatures for malware families from
this dataset. The table in Figure 3 shows the malware family
names and the number of samples for each family. For each
family F , we randomly select 5 samples from F and use
ASTROID to infer a signature for F from these samples. Since
different sets of samples may produce different signatures,
we run ASTROID with 11 different sets of randomly chosen
samples, and report our results for the signature that achieves
the median accuracy out of these 11 runs.

The plot in Figure 3 compares the accuracy ASTROID
against APPOSCOPY. Here, accuracy is the number of correctly
classified samples divided by the total number of samples.
For most malware families, ASTROID yields similar or bet-
ter accuracy than APPOSCOPY, and the overall accuracy of
ASTROID (93.8%) is higher than that of APPOSCOPY (90%).
Furthermore, for two malware families (specifically, Pjapps
and BaseBridge), ASTROID generates significantly better sig-
natures than manually written ones. In summary, these results
show that ASTROID can achieve significantly fewer false
negatives compared to APPOSCOPY.

False positives on known malware. ASTROID reports zero
false positives on the Android Malware Genome Project sam-

ples. In contrast, APPOSCOPY reports two such false positives
(specifically, it misclassifies two instances of other malware
families as belonging to Geinimi). Hence, the signatures syn-
thesized by ASTROID outperform manually written ones, both
in terms of accuracy as well as precision.

False positives on benign apps. To determine whether AS-
TROID produces false positives on benign apps, we analyze a
corpus of 10,495 apps downloaded from Google Play during
2013-14. According to [7], over 99.9% of these apps are
known to be benign. ASTROID reports a total of 8 mali-
cious apps (specifically, 2 instances each of DroidDream and
DroidDreamLight, 1 instance of Pjapps, and 3 instances of
DroidKungFu). We uploaded these 8 apps to VirusTotal [24],
which is a service that provides aggregated reports from
multiple anti-virus tools. VirusTotal agreed with ASTROID on
each of these 8 apps.2 In other words, ASTROID reported zero
false positives of either kind.

B. Varying the Number of Samples

We evaluate the performance and accuracy of ASTROID
with respect to the number of samples. In Figure 4, the blue
line plots signature inference time (in seconds) against the
number of samples. ASTROID is quite fast, taking less than two
seconds on average to infer a signature for a malware family.
Since manually writing malware signatures typically requires
several hours of human effort, we believe these statistics show
that ASTROID is quite practical.

The bars in Figure 4 show how the accuracy varies with
respect to the number of samples. ASTROID achieves 90.8%
accuracy using only two samples. When we increase the
number of samples to 5, ASTROID achieves 93.8% accuracy.
More samples do not seem to benefit, likely due to imprecision
in the static analysis for ICCG constructions. These results

2To account for the inclusion of some lower-quality AV tools in VirusTotal
results, we only consider VirusTotal to report an app as malware if the majority
(i.e., more than half) of AV tools classify the app to be malicious.

9

2 3 4 5 6 7 8 9 10
0
10
20
30
40
50
60
70
80
90
100

Number of samples

A
cc

ur
ac

y
Accuracy Time

0

1

2

3

4

5

Se
co

nd
s

Fig. 4: Accuracy and time to synthesize the signature with
different number of samples

show that ASTROID can infer very good signatures from a
very small number of malware samples.

C. Comparison Against Existing Tools

We compare ASTROID to two state-of-the-art malware
detection tools, namely DREBIN [3] (a learning-based mal-
ware detector) and MASSVET [15] (which detects repackaged
malware). We do not explicitly compare ASTROID against anti-
virus tools (e.g., VirusTotal) because ASTROID is an extension
of APPOSCOPY, which has already been shown to outperform
leading anti-virus tools in the presence of obfuscated malware.

Comparison to Drebin. We first compare ASTROID against
DREBIN [3], a state-of-the-art malware detector based on
machine learning. Since our goal is to infer malware signatures
using few samples, we focus on the setting where only five
samples are available for the target family. We believe this
setting is very important because many malware families have
very few known samples. For example, in the Drebin dataset,
only 42% of families have more than 5 samples.

DREBIN takes as input a set of apps and extracts fea-
tures using static analysis. It then trains an SVM on these
feature vectors to classify apps as malicious or benign. Unlike
ASTROID, which classifies each app into a specific malware
family, DREBIN only determines whether an app is malicious
or benign. Since the implementation of DREBIN is unavailable,
we used their publicly available feature vectors and train SVMs
based on the methodology described in [3] using the libsvm
library [25]. For each malware family F , we start with the
full DREBIN training set, but remove F except for 5 randomly
chosen samples from F (to achieve our small-sample setting).
In summary, we train DREBIN on a large number of benign
apps, all samples from other malware families, and 5 samples
from the target family. As with ASTROID, we train the SVM
with 11 different sets of randomly chosen samples and report
the median accuracy.

In order to perform an apples-to-apples comparison, we use
the 1,005 samples in the Android Malware Genome Project

50

60

70

80

90

100

A
cc

ur
ac

y

DREBIN-FP0.01% MASSVET DREBIN-FP1% ASTROID

Fig. 5: Comparison between DREBIN with FP0.01% and
FP1%, MASSVET and ASTROID

for which DREBIN feature vectors are available.3 We use
two cutoffs to evaluate the accuracy on these apps. The first
achieves a false positive rate of 1%, which is used in the orig-
inal evaluation [3]. However, 1% false positives still amounts
to more than 10,000 false positives on Google Play, which
contains more than a million apps. For a closer comparison to
ASTROID (which reports zero false positives on Google Play
apps), we choose a second cutoff that achieves a false positive
rate of 0.01%.

As shown in Figure 5, ASTROID outperforms DREBIN
in our small-sample setting: While ASTROID achieves 93.8%
accuracy, DREBIN yields 70.7% and 88.9% accuracy using
the 0.01% and 1% cutoff values respectively. We believe these
results indicate that ASTROID compares favorable with existing
learning-based detectors in the small-sample setting.

Comparison to MassVet. We also compare ASTROID against
MASSVET [15], a state-of-the-art tool for detecting repackaged
malware—i.e., malware produced by adding malicious compo-
nents to an existing benign app. MASSVET maintains a very
large database of existing apps and checks whether a given
app is a repackaged version of an existing one in the database.
The authors of MASSVET provide a public web service [26],
which we use to evaluate MASSVET.

As shown in Figure 5, the overall accuracy of MASSVET
on the Android Malware Genome Project is 84.0%, which
is significantly lower than the 93.8% accuracy of ASTROID.
These false negatives occur because many malware samples
are not repackaged versions of existing benign apps, and even
repackaged malware may go undetected if the original app is
missing from their database.

We also evaluate the false positive rate of MASSVET on
a corpus of 503 benign apps from Google Play. 4 MASSVET
reports that 176 of these apps are malware, but all except one

3In this experiment, we use the Android Malware Genome Project dataset
as opposed to the DREBIN dataset because some of the malware families
in the DREBIN dataset are mislabeled, which is problematic for multi-label
classification (as done by our technique). For example, some of the family
labels in the Drebin dataset do not match the labels in the Malware Genome
project.

4We were unable to apply MASSVET to all 10,495 apps from Google Play
due to limitations of the web service.

10

of these apps are classified as benign by VirusTotal. Since
several benign applications repackage existing apps by adding
ad libraries, MASSVET seems to mistakenly classify them
as malware. In summary, this experiment demonstrates that
ASTROID achieves both higher accuracy as well as a lower
false-positive rate compared to MASSVET.

Interpretability. In addition to comparing favorably with
MASSVET and DREBIN in terms of accuracy and false pos-
itives, we believe that ASTROID produces better explanations
of malice compared to existing tools. In the Appendix, we
compare the semantic signatures produced by ASTROID with
the evidence of malice produced by DREBIN and MASSVET.
Since ASTROID can pinpoint the malicious components and
their suspicious metadata (e.g., sensitive information leaked by
the component), we believe that the signatures generated by
ASTROID are more interpretable (and therefore more helpful)
to security analysts.

D. Detection of Zero-day Malware

To evaluate whether ASTROID can effectively detect zero-
day malware, we conduct experiments on two different datasets
and evaluate ASTROID’s accuracy and false positive rate.

Malware from Symantec and McAfee. In our first experiment,
we use 160 malware samples obtained from Symantec and
McAfee, two leading anti-virus companies. Even though these
applications are known to be malicious, none of them belong
to the malware families from the Android Malware Genome
Project dataset. Since ASTROID’s database only contains sig-
natures for the families shown in Figure 3, all of these 160
applications are zero-day malware with respect to ASTROID’s
signature database. Using ASTROID’s approximate signature
matching algorithm (with the cutoff of 0.5, as described in
Section VIII), ASTROID correctly identifies 147 of these apps
as malware; hence, ASTROID’s accuracy for zero-day malware
detection on this dataset is 92%. In contrast, MASSVET’s
accuracy on this dataset is 81%. We were not able to compare
against DREBIN on this dataset because we do not have their
feature vectors available.

Apps from Google Play. For our second experiment, we ana-
lyze 10,495 Google Play apps using ASTROID’s approximate
signature matching algorithm. As before, ASTROID’s signature
database only contains the malware families from Figure 3.
Among these apps, ASTROID reports 395 of them (i.e., 3.8%)
as being malicious. Of these 395 apps, 8 exactly match one
of the signatures in ASTROID’s database; as discussed in
Section IX-A, these 8 apps are all malicious.

To investigate which of the remaining 387 apps are known
malware, we use VirusTotal to analyze each of these apps.
Among these 387 samples, 21 of them are reported as ma-
licious by the majority (i.e., more than half) of the anti-
virus tools, and 81 of them are reported as malicious by at
least one anti-virus tool. Of the remaining 306 apps reported
by ASTROID, we randomly selected 40 apps and manually
inspected them. Our manual inspection shows that 22 of
these 40 apps are actually malicious since they contain highly
suspicious behaviors:

• 4 apps appear to be SMS Trojans because they automat-
ically block all incoming SMS events when they receive

Obfuscated Non-obfuscated
30

40

50

60

70

80

90

100

A
cc

ur
ac

y

Exact Approximate

Fig. 6: Evaluation of different matching techniques

an SMS at a specific time or the contents of the SMS
match a certain pattern.

• 1 app silently records audio in a background process and
aborts all incoming SMS events.

• 1 app automatically locks the screen and prevents the user
from unlocking it.

• 11 apps dynamically install apk files from untrusted
sources and leak the user’s device id, IMSI number, and
other confidential phone information to untrusted remote
servers.

• 1 app silently takes pictures (i.e., without the user trig-
gering it) and saves the picture to an encrypted file.

• 2 apps contain Android.Cauly library, which has recently
been classified as PUA (“Potentially Unwanted App”) by
Symantec.

• 2 apps perform highly suspicious actions without the user
triggering them. For instance, they send email or SMS
messages to a fixed address or phone number.

Hence, our manual inspection shows that ASTROID can
detect malicious apps that are not identified by existing anti-
malware tools. Furthermore, based on our manual inspection,
we estimate that of the 306 apps not identified as malicious
by existing tools, 55% are in fact malicious. By this estimate,
ASTROID’s false positive rate is approximately 1.3% for zero-
day malware detection (i.e., using approximate matching with
a cutoff of 0.5).

Finally, we remark that the partial match (i.e., the subgraph
INFERSIGNATURE(A,SF) of the ICCG of A) computed by
our approximate matching algorithm was indispensable for
finding the malicious behaviors in the 40 randomly selected
apps. In every case, some part of malicious code was con-
tained in the partial match, allowing us to quickly identify
the malicious behavior. In particular, examining all 40 apps
took a single analyst only a few hours. As discussed earlier,
the interpretability of the inferred signatures is an important
feature of ASTROID.

E. Detection of Obfuscated Apps

To evaluate whether ASTROID is resilient to obfuscations,
we perform a combination of low-level (syntactic) and high-
level (semantic) obfuscations. First, we obfuscate existing

11

malware using the ProGuard tool [27] to rename method/class
names, encrypt strings, and modify the program’s control flow.
Second, we also perform obfuscations at the ICCG level, such
as inserting dummy components and removing taint flows.

Figure 6 shows the accuracy of signature matching using
exact vs. approximate matching for 1,025 malware samples
from the Android Malware Genome Project and their corre-
sponding obfuscated versions. When using the exact matching
algorithm of APPOSCOPY, ASTROID can detect 93.8% of
the non-obfuscated malware samples but only 61% of the
obfuscated malware samples. In contrast, when we use the
approximate matching algorithm (with the cutoff of 0.8, as
described in Section VIII), ASTROID is able to detect 94.3%
of malware samples for both obfuscated and non-obfuscated
versions. Hence, this experiment demonstrates that ASTROID’s
approximate signature matching algorithm significantly in-
creases the resilience of ASTROID to behavioral obfuscations.
In contrast, other anti-virus tools (e.g., Symantec, McAfee,
Kaspersky etc.) have been shown to be much less resilient
to even a subset of the obfuscations that we employ in this
experiment [2].

False positives. Both exact and approximate matching report
zero false positives on malware samples. As before, with exact
matching, ASTROID reports that 8 apps are malicious from the
corpus of 10,495 Google Play apps, but all of these apps are
classified as malware by VirusTotal. When using approximate
matching, ASTROID reports a total of 13 apps as malicious, 9
of which are classified as malware by VirusTotal. Hence, the
false positive rate of ASTROID remains very low (<0.04%)
even with approximate matching.

X. LIMITATIONS

Like any other malware detection tool, ASTROID has a
number of limitations:

First, the quality of the signatures inferred by ASTROID
depends on the precision of the underlying static analysis used
to construct the ICCG of the samples. In particular, sources of
imprecision (or unsoundness) in the analysis can degrade the
quality of the signatures inferred by ASTROID. However, our
experiments indicate that ASTROID can synthesize high-quality
signatures despite possible imprecision in the static analysis.

Second, ASTROID’s signature matching algorithm (both the
exact and approximate variants) are also affected by the quality
of the underlying static analysis. Since signature matching
requires computing the ICCG of the application under analysis,
any source of unsoundness in the analysis may translate
into false negatives in the context of malware detection. For
example, if an app dynamically loads a malicious payload,
then ASTROID may fail to flag it as malware. However, such
attempts to escape detection can be identified as suspicious,
thereby requiring further scrutiny. On the other hand, sources
of imprecision due to the underlying static analysis may also
translate into false positives. For instance, given a benign app,
if the analysis generates a lot of spurious taint flows and inter-
component call edges, ASTROID may mistakenly mark it as
malware. However, our evaluation show that the underlying
static analysis achieves a high precision without sacrificing
scalability.

Third, ASTROID requires an analyst to provide at least
two representative samples of a given malware family, so
there is still a minimal amount of human effort involved in
using ASTROID. However, we believe this effort is miniscule
compared to the laborious task of writing malware signatures
manually.

Finally, ASTROID’s accuracy in detecting malware is de-
pendent on the initial database of malware signatures. The
larger the database, the higher the accuracy in detecting ex-
isting and zero-day malware. However, our experiments show
that ASTROID can effectively detect new malware families
even though we added only thirteen malware signatures to its
database. Furthermore, we believe that it is easier to maintain
a database of malware signatures compared to the task of
maintaining a much larger database of individual malware
samples.

XI. RELATED WORK

Android malware detection and classification have been
extensively studied in recent years. In this section we briefly
discuss prior closely-related work.

Machine learning approaches. Most prior malware classifica-
tion techniques are based on machine learning [3, 6, 11, 12, 4,
13, 14, 5]. The key idea underlying all ML-based approaches
is to extract a feature vector summarizing the application’s
behavior and then train a classifier to predict whether an app
is malicious or benign.

Many ML-based approaches generate their feature vectors
from a graph representation of the program. For instance,
SMIT [11] and Gascon et al. [12] model programs using call-
graphs and use clustering algorithms (e.g., KNN) to group
similar applications.

Similar to SMIT, both MASSVET [15] and DROIDSIFT [4]
use a graph abstraction to represent Android apps. Specifically,
MASSVET [15] computes graph similarity between a given app
A and the database of existing apps to determine if A is the
repackaged version of an existing app. As we show in our
evaluation, ASTROID can achieve better precision and fewer
false positives compared to MASSVET. Similarly, DROID-
SIFT abstracts programs using an API dependency graph
and employs graph similarity metrics to cluster applications
into different malware families. Similar to ASTROID, DROID-
SIFT performs multi-label rather than binary classification and
employs a semantics-based approach to resist obfuscation.
However, unlike DROIDSIFT, ASTROID can infer signatures
from very few samples and does not need a large training set.
We tried to compare ASTROID against DROIDSIFT but we
were not able to reproduce their results using DROIDSIFT’s
web service [28]. While we have contacted the authors, the
issues with DROIDSIFT’s web service have not been resolved
by the time of this submission.

Another related tool is HOLMES [6], which detects Win-
dows malware by constructing the program’s behavior graph.
Such behavior graphs are constructed dynamically by analyz-
ing data dependencies in program traces. Given a behavior
graph, HOLMES then uses discriminative subgraph mining
to extract features that can be used to distinguish malicious
applications from benign ones. DROIDMINER [14] and Bose

12

et.al [5] also use a variant of behavior graphs to abstract
malware as a set of malicious components and use machine
learning for classification. In contrast to these these techniques
which require a large number of samples (e.g., HOLMES uses
492 samples in their evaluation), ASTROID requires as few
as two samples to automatically generate malware signatures.
Second, our constraint-based approach is guaranteed to gener-
ate the optimal signature (in terms of maximizing suspicious
behaviors). Finally, we believe that the semantic signatures
synthesized by ASTROID are easier for security analysts to
interpret.

Another state-of-the-art malware detector for Android is
DREBIN [3], which combines syntactic and semantic features
into a joint vector space. The syntactic features are obtained
from the application’s manifest file, while the semantic features
are obtained through static analysis. Some of the features used
by DREBIN are similar to ASTROID; for instance, DREBIN also
extracts data flow information as well as suspicious API calls.
As we demonstrate experimentally, ASTROID can achieve the
same or better precision as DREBIN using much fewer samples.

Signature-based approaches. As mentioned earlier, signature-
based approaches look for explicit patterns to identify instances
of a malware family [8, 2, 9, 10, 29, 30, 31]. These signatures
can be either syntactic or semantic, or a combination of
both. Our approach extends the applicability of signature-
based detectors by automatically synthesizing signatures from
a handful of malware samples.

Among signature-based detectors, APPOSCOPY [2] uses
semantic signatures to identify Android malware. Specifically,
it performs a combination of static taint analysis and inter-
component control flow analysis to determine whether a sig-
nature matches an Android application. As mentioned earlier,
ASTROID is integrated as a plug-in to APPOSCOPY and can
generate signatures in APPOSCOPY’s malware specification
language.

KIRIN [8], which is another signature-based tool, leverages
Android permissions to detect malware. Specifically, KIRIN
uses permission patterns to perform binary classification of
apps as benign vs. malicious. While FACT [29] obtains a
signature by computing the unweighted maximal common sub-
graph extracted from dynamic analysis, ASTROID computes a
weighted maximally suspicious common subgraph using static
analysis.

Zero-day malware detection. Zero-day malware detectors [32,
7, 15] can detect malicious applications that belong to new
malware families. For instance, RISKRANKER [32] ranks
Android applications as high-, medium-, or low-risk depending
on the presence of suspicious features, such as certain kinds of
function calls. As another example, DROIDRANGER [7] uncov-
ers zero-day malware by performing heuristic-based filtering
to identify suspicious behaviors. Some ML-based approaches
(e.g., [3], [5]) can, in principle, also uncover zero-day malware,
even though their detection rate is much higher for instances
of known malware families. Even though the primary goal of
ASTROID is not zero-day malware detection, our experiments
in Section IX-D show that ASTROID can nonetheless be
successfully used to detect instances of unknown malware
families.

Information flow analysis for Android. Several tools, in-
cluding ASTROID, use information flow as a component of
malware signatures or feature vectors. While information flow
does not directly predict malware, ASTROID can benefit from
recent advances in information flow analysis to improve the
quality of its signatures. Some examples of Android infor-
mation flow analysis tools include FLOWDROID [33], AP-
PINTENT [34], APPAUDIT [35], TAINTDROID [36], DROID-
SCOPE [37], CHEX [38], EPICC [39], HI-CFG [40] and
APPCONTEXT [41].

XII. CONCLUSION

We have presented a new technique for automatically
inferring interpretable semantic malware signatures from a
small number of malware samples. Our technique significantly
improves the usability of signature-based malware detectors
by eliminating the human effort required for writing malware
signatures. Furthermore, we show that ASTROID s signature
inference algorithm enables approximate signature matching,
which is useful both for zero-day malware detection and for
making our technique more resilient to behavioral obfuscation.

We implemented our technique in a tool called ASTROID,
which we evaluated both on malicious apps in the Android
Genome Malware Project as well as on benign apps from
Google Play. Our experiments show that (i) the signatures au-
tomatically synthesized by ASTROID are better than manually-
written signatures in terms of accuracy and false positives, and
(ii) the proposed approximate signature matching algorithm
allows detecting zero-day and behaviorally- obfuscated mal-
ware with a very low false positive rate. Our tool is publicly
available [42] and can be easily used by security analysts to
synthesize malware signatures from very few samples.

ACKNOWLEDGMENTS

We would like to thank Thomas Dillig, Martin Rinard,
Tao Xie, Eric Bodden, Wei Yang and Ashay Rane for their
insightful comments. We also thank the anonymous reviewers
for their helpful feedback.

This work was supported in part by NSF Award #1453386,
AFRL Awards #8750-14-2-0270 and #8750-15-2-0096, and a
Google Ph.D. Fellowship. The views, opinions, and findings
contained in this paper are those of the authors and should not
be interpreted as representing the official views or policies of
the Department of Defense or the U.S. Government.

REFERENCES

[1] Mobile malware report. https://public.gdatasoftware.com/Presse/
Publikationen/Malware Reports/G DATA MobileMWR Q1
2015 US.pdf, 2015.

[2] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Ap-
poscopy: Semantics-based detection of android malware through
static analysis. In FSE, pages 576–587. ACM, 2014.

[3] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gas-
con, and Konrad Rieck. DREBIN: Effective and Explainable
Detection of Android Malware in Your Pocket. In NDSS. The
Internet Society, 2014.

[4] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. Semantics-
aware android malware classification using weighted contextual
API dependency graphs. In CSS, pages 1105–1116. ACM.

13

https://public.gdatasoftware.com/Presse/Publikationen/Malware_Reports/G_DATA_MobileMWR_Q1_2015_US.pdf
https://public.gdatasoftware.com/Presse/Publikationen/Malware_Reports/G_DATA_MobileMWR_Q1_2015_US.pdf
https://public.gdatasoftware.com/Presse/Publikationen/Malware_Reports/G_DATA_MobileMWR_Q1_2015_US.pdf

[5] Abhijit Bose, Xin Hu, Kang G. Shin, and Taejoon Park. Be-
havioral detection of malware on mobile handsets. In MobiSys,
pages 225–238. ACM, 2008.

[6] Matt Fredrikson, Somesh Jha, Mihai Christodorescu, Reiner
Sailer, and Xifeng Yan. Synthesizing Near-Optimal Malware
Specifications from Suspicious Behaviors. In Malware, pages
41–50. IEEE Computer Society, 2010.

[7] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you,
get off of my market: Detecting malicious apps in official and
alternative android markets. In NDSS. The Internet Society,
2012.

[8] William Enck, Machigar Ongtang, and Patrick Drew McDaniel.
On lightweight mobile phone application certification. In CSS,
pages 235–245. ACM, 2009.

[9] Kent Griffin, Scott Schneider, Xin Hu, and Tzi-cker Chiueh.
Automatic generation of string signatures for malware detection.
In RAID, pages 101–120. Springer, 2009.

[10] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn Xi-
aodong Song, and Randal E. Bryant. Semantics-aware malware
detection. In S&P, pages 32–46. IEEE Computer Society, 2005.

[11] Xin Hu, Tzi-cker Chiueh, and Kang G. Shin. Large-scale
malware indexing using function-call graphs. In CSS, pages
611–620. ACM, 2009.

[12] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad
Rieck. Structural detection of android malware using embedded
call graphs. In AISEC, pages 45–54. ACM, 2013.

[13] Hao Peng, Christopher S. Gates, Bhaskar Pratim Sarma, Ninghui
Li, Yuan Qi, Rahul Potharaju, Cristina Nita-Rotaru, and Ian
Molloy. Using probabilistic generative models for ranking risks
of android apps. In CSS, pages 241–252. ACM, 2012.

[14] Chao Yang, Zhaoyan Xu, Guofei Gu, Vinod Yegneswaran,
and Phillip A. Porras. Droidminer: Automated mining and
characterization of fine-grained malicious behaviors in android
applications. In ESORICS, pages 163–182. Springer, 2014.

[15] Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan
Zhang, Heqing Huang, Wei Zou, and Peng Liu. Finding
Unknown Malice in 10 Seconds: Mass Vetting for New Threats
at the Google-Play Scale. In USENIX Security, pages 659–674.
USENIX Association, 2015.

[16] Xuxian Jiang. Security alert: New Android malware –
GoldDream– found in alternative app markets. http://www.csc.
ncsu.edu/faculty/jiang/GoldDream/, 2011.

[17] Chu Min Li and Felip Manyà. MaxSAT, Hard and Soft
Constraints. In Handbook of Satisfiability, volume 185, pages
613–631. IOS Press, 2009.

[18] Joao Marques-Silva, Josep Argelich, Ana Graça, and Inês Lynce.
Boolean lexicographic optimization: algorithms & applications.
Annals of Mathematics and Artificial Intelligence, 62(3-4):317–
343, 2011.

[19] Ruben Martins, Vasco Manquinho, and Inês Lynce. Open-WBO:
A Modular MaxSAT Solver. In SAT, pages 438–445. Springer,
2014.

[20] George Kastrinis and Yannis Smaragdakis. Hybrid context-
sensitivity for points-to analysis. In PLDI, pages 423–434.
ACM, 2013.

[21] Yu Feng, Xinyu Wang, Isil Dillig, and Calvin Lin. EXPLORER :
query- and demand-driven exploration of interprocedural control
flow properties. In OOPSLA, pages 520–534. ACM, 2015.

[22] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei
Gilham, Nguyen Nguyen, and Martin C Rinard. Information
flow analysis of android applications in droidsafe. In NDSS.
The Internet Society, 2015.

[23] Android malware genome project. http://www.
malgenomeproject.org/, 2012.

[24] VirusTotal. https://www.virustotal.com/en/, 2016.
[25] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library

for support vector machines. ACM Transactions on Intelligent
Systems and Technology, 2, 2011.

[26] MassVet. https://bdsec.soic.indiana.edu:8080/, 2016.
[27] Proguard. https://www.guardsquare.com/en/proguard, 2016.
[28] DroidSift. https://haven.syr.edu:3000/, 2016.
[29] Young Hee Park, Douglas S. Reeves, Vikram Mulukutla, and

Balaji Sundaravel. Fast malware classification by automated
behavioral graph matching. In CSIIRW, pages 45–48. ACM,
2010.

[30] Mihai Christodorescu, Somesh Jha, and Christopher Kruegel.
Mining specifications of malicious behavior. In FSE, pages 5–
14. ACM, 2007.

[31] Brian Chin, Daniel von Dincklage, Vuk Ercegovac, Peter
Hawkins, Mark S. Miller, Franz Josef Och, Christopher Olston,
and Fernando Pereira. Yedalog: Exploring Knowledge at Scale.
In SNAPL, pages 63–78. LIPICS, 2015.

[32] Michael C. Grace, Yajin Zhou, Qiang Zhang, Shihong Zou,
and Xuxian Jiang. Riskranker: scalable and accurate zero-day
android malware detection. In MobiSys, pages 281–294. ACM,
2012.

[33] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bod-
den, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick McDaniel. Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android
apps. In PLDI, pages 259–269. ACM, 2014.

[34] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning,
and Xiaoyang Sean Wang. AppIntent: analyzing sensitive data
transmission in android for privacy leakage detection. In CSS,
pages 1043–1054. ACM, 2013.

[35] Mingyuan Xia, Lu Gong, Yuanhao Lyu, Zhengwei Qi, and Xue
Liu. Effective real-time android application auditing. In S&P,
pages 899–914. IEEE Computer Society, 2015.

[36] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox,
Jaeyeon Jung, Patrick McDaniel, and Anmol Sheth. Taintdroid:
An information-flow tracking system for realtime privacy mon-
itoring on smartphones. In OSDI, pages 393–407. USENIX
Association, 2010.

[37] Lok-Kwong Yan and Heng Yin. Seamlessly reconstructing the
OS and dalvik semantic views for dynamic android malware
analysis. In USENIX Security, pages 569–584. USENIX Asso-
ciation, 2012.

[38] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei
Jiang. CHEX: statically vetting android apps for component
hijacking vulnerabilities. In CSS, pages 229–240. ACM, 2012.

[39] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre
Bartel, Eric Bodden, Jacques Klein, and Yves Le Traon. Effec-
tive inter-component communication mapping in android: An
essential step towards holistic security analysis. In USENIX
Security, pages 543–558. USENIX Association, 2013.

[40] Dan Caselden, Alex Bazhanyuk, Mathias Payer, Stephen McCa-
mant, and Dawn Song. HI-CFG: construction by binary analysis
and application to attack polymorphism. In ESORICS, pages
164–181. Springer, 2013.

[41] Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie,
and William Enck. AppContext: Differentiating Malicious and
Benign Mobile App Behaviors Using Context. In ICSE, pages
303–313. IEEE Computer Society, 2015.

[42] Astroid. https://utopia-group.github.io/astroid/, 2016.
[43] Smart phone malware: The six worst offenders. http://tinyurl.

com/huaor8y, 2011.
[44] Fake android apps. http://us.norton.com/fake-android-apps/

article, 2016.

APPENDIX

APPENDIX A: INTERPRETABILITY OF EXPLANATIONS

In this section, we describe the explanations for the Gold-
Dream malware family generated by ASTROID, DREBIN and
MASSVET, which are shown in Figure 7. In particular, we

14

http://www.csc.ncsu.edu/faculty/jiang/GoldDream/
http://www.csc.ncsu.edu/faculty/jiang/GoldDream/
http://www.malgenomeproject.org/
http://www.malgenomeproject.org/
https://www.virustotal.com/en/
https://bdsec.soic.indiana.edu:8080/
https://www.guardsquare.com/en/proguard
https://haven.syr.edu:3000/
https://utopia-group.github.io/astroid/
http://tinyurl.com/huaor8y
http://tinyurl.com/huaor8y
http://us.norton.com/fake-android-apps/article
http://us.norton.com/fake-android-apps/article

V = {r : receiver, s : service}
X = {(SYSTEM, r), (r, s)}

Y =

(SYSTEM, r, IntentFilter(BOOT_COMPLETED)),

(SYSTEM, r, IntentFilter(SMS_RECEIVED)),

(SYSTEM, r, IntentFilter(PHONE_STATE)),

(SYSTEM, r, IntentFilter(NEW_OUTGOING_CALL)),

(s, s, SuspiciousAPI(sendTextMessage)),

(s, s, TaintFlow(DeviceID, Internet)),

(s, s, TaintFlow(SubscriberID, Internet)),

(s, s, TaintFlow(File, Internet)),

(s, s, TaintFlow(SimSerial, Internet))

SuspiciousAPI(sendSMS) (1.07)

NetworkAddress(lebar.gicp.net) (0.93)

Permission(DELETE_PACKAGES) (0.58)

IntentFilter(SMS_RECEIVED) (0.56)

SuspiciousAPI(getSubscriberID) (0.53)

onReceive → createFromPdu

onReceive → getOriginatingAddress

onReceive → getDisplayMessageBody

ASTROID DREBIN MASSVET

Fig. 7: Explanations produced by each tool for the GoldDream family.

discuss how a security analyst might use these explanations
to pinpoint and understand the malicious behaviors of Gold-
Dream malware.

The left-hand side of Figure 7 shows the signature synthe-
sized by ASTROID for the GoldDream malware family. This
signature conveys a wealth of information about the malware
family to the auditor:

Components. Simply by looking at the vertices V in the
signature, the auditor sees that the malware consists of two
components: a receiver r and a service s. Furthermore, the
inter-component call relations X convey that r is called by
the Android framework (denoted by the vertex SYSTEM), and
s is subsequently called by r.

Triggers. The metadata Y encodes intent filters registered
by each receiver. For the GoldDream family, the receiver
r can be triggered by a variety of common system events
including BOOT_COMPLETED (triggered when the app starts)
and SMS_RECEIVED (triggered when an SMS message is
received).

Malice. The metadata Y also encodes malicious behaviors
associated with the relevant components. For the GoldDream
family, this includes suspicious API calls (e.g., the service s
calls sendTextMessage) and information leaks (e.g., the
service s leaks the device ID to the Internet).

In summary, the signature inferred by ASTROID encodes
that members of the GoldDream family contain a receiver
triggered by common system events, and this receiver calls
a service that leaks sensitive information to the Internet.

Unlike ASTROID, DREBIN and MASSVET do not charac-
terize the malice corresponding to a particular malware family.
Instead, they produce explanations for why a specific app
might be malicious.

Comparison to Drebin. The explanation produced by DREBIN
consists of a list of the features most indicative of malicious
behavior together with weights indicating their relative signif-
icance. Figure 7 (middle) shows this list of top features and
corresponding weights for the GoldDream family (obtained by
averaging over all members of the family). The most significant
feature is the call to the suspicious API sendSMS. Only

6.6% of benign apps in the Drebin dataset call sendSMS,
but 92.8% of GoldDream malware make this call. Therefore,
calling sendSMS is a good statistical signal that an app is
malicious, but it does not give conclusive evidence of malice.
Unlike ASTROID, DREBIN fails to pinpoint any malicious
components, intent filters, and information leaks, let alone the
complex relationships between these entities.

The presence of the network address lebar.gicp.net
might be a more conclusive signal of malice, but if this
feature were used to filter apps on Google play, then malware
developers would quickly learn to obfuscate it. In contrast,
ASTROID solely relies on semantic features of apps that are
significantly harder to obfuscate.

Comparison to MassVet. The explanation produced by
MASSVET consists of a set of method calls added as part of
the repackaging process. These method calls typically do not
pinpoint the malicious functionality in the app. For example,
the explanation produced by MASSVET for an instance of the
GoldDream family is shown in Figure 7 (right). It consists
of a list of calls to APIs that MASSVET considers suspicious.
While these API calls play a role in the malicious functionality
of this app, they are also commonly used by benign apps to
process SMS messages, and do not capture the overall malice
present in this app.

In addition, we believe the results produced by ASTROID
confer a number of other benefits:

Malware family. Unlike DREBIN and MASSVET, which can
only identify whether an app is malicious or benign, ASTROID
determines which malware family the app belongs to. Since
some malware families are more malicious than others, the
ability to categorize different apps into malware families pro-
vides finer-grained information about the threat level compared
binary classification as malicious vs. benign. For instance,
some malware families merely affect user experience [43]
whereas others introduce financial risks by stealing user’s
personal account or credit card information [44].

Disinfection. Since ASTROID pinpoints the malicious compo-
nents in the malicious app, it can be used to “disinfect” the
app by removing these malicious components.

15

	Introduction
	Background
	Android Basics
	Inter-component Call Graphs

	Overview
	Semantic Android Malware Signatures
	Signature Inference Problem
	Signature Synthesis as MaxSAT
	Variables in Encoding
	Encoding of Common Subgraph
	Encoding of Maximally Suspicious

	Approximate Signature Matching
	Implementation
	Evaluation
	Astroid vs. Manual Signatures
	Varying the Number of Samples
	Comparison Against Existing Tools
	Detection of Zero-day Malware
	Detection of Obfuscated Apps

	Limitations
	Related Work
	Conclusion
	Appendix

