Measuring Neural Net Robustness with Constraints

¹Stanford University,

Summary

Motivation: Despite having high accuracy, neural nets have been shown to be susceptible to adversarial examples, where a small perturbation to an input can cause it to become mislabeled

Algorithm: We propose metrics for measuring neural net robustnes and devise a novel algorithm to approximate these metrics

Evaluation: We evaluate the robustness of deep neural nets with experiments on the MNIST and CIFAR-10 datasets:

- We generate more accurate estimates of robustness metrics that existing algorithms
- We use discovered adversarial examples to fine-tune neural nets and show that existing algorithms for improving robustness "overfit" to specific kinds of adversarial examples

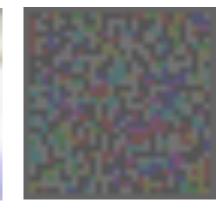
Related literature: Existing algorithms have been proposed for finding adversarial examples:

- Approximated as cost function minimization, and solved using L-BFGS-B (Szegedy et al. 2014)
- Fast signed-gradient heuristic (Goodfellow et al. 2015)

Robustness Metrics

• Problem setting:

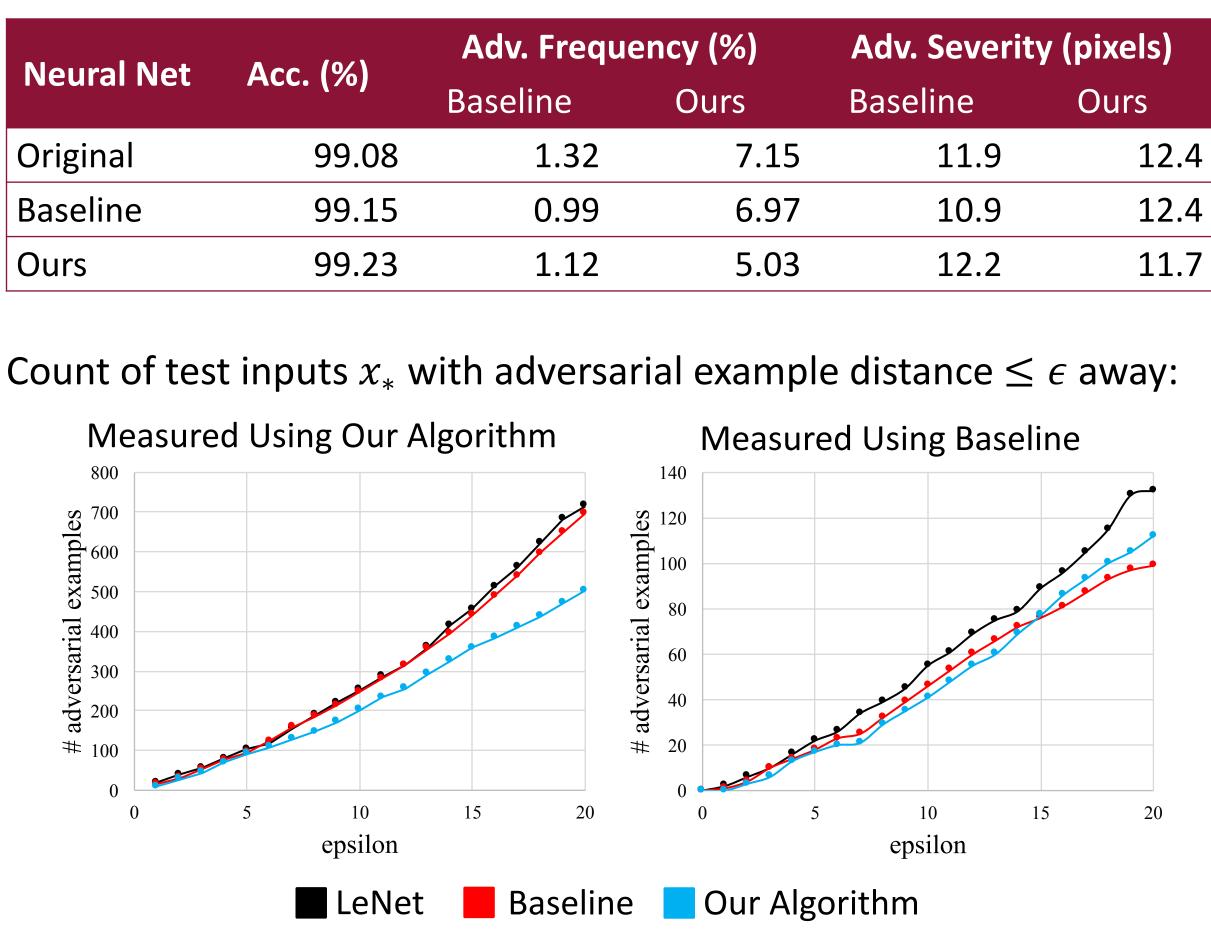

- Input space $\mathcal{X} \subseteq \mathbb{R}^n$ and output labels $\mathcal{L} = \{1, ..., L\}$
- Classifier $f: \mathcal{X} \to \mathcal{L}$
- Distribution $\mathcal D$ over inputs $\mathcal X$
- Classifier f is (x_*, ϵ) robust if all points x s.t. $||x_* x||_{\infty} \le \epsilon$ have the same label as x_*
- The **pointwise robustness** of f at x_* is $\rho(f, x_*) = \inf \{ \epsilon \ge 0 \mid f \text{ is not } (x_*, \epsilon) \text{ robust} \}$
- The **adversarial frequency** of f is $\phi(f,\epsilon) = \Pr_{x_* \sim \mathcal{D}}[\rho(f,x_*) \le \epsilon]$
- The **adversarial severity** of *f* is $\mu(f,\epsilon) = \mathbb{E}_{x_* \sim \mathcal{D}}[\rho(f,x_*) \mid \rho(f,x_*) \leq \epsilon]$


Osbert Bastani¹, Yani Ioannou², Leonidas Lampropoulos³, Dimitrios Vytiniotis⁴, Aditya V. Nori⁴, Antonio Criminisi⁴ ²University of Cambridge, ³University of Pennsylvania, ⁴Microsoft Research Cambridge

	Constraint F	ormulation		
•	 Constraint systems: Linear inequalities: Conjunctions: Disjunctions: 	$C \equiv (w^T x + b \ge 0)$ $C \equiv C_1 \lor C_2$ $C \equiv C_1 \land C_2$		
•	 Neural net f as a constraint system Encodes whether f outputs Can be constructed when f 			
•	Pointwise robustness as constra $\rho(f, x_*, \ell) = \inf \{ \epsilon \ge 0 \mid C_f(x) \}$	-		
Approximation				
•	 Constraint formulation is NI We restrict the search to a I The resulting optimization p The LP is very large, so we c 	P-hard due to disjunctions inear region around the input <i>c</i> problem is a linear program (LP levise an abstraction-refinemer significantly improves scalabili		
•	 Constraint formulation is NI We restrict the search to a I The resulting optimization p The LP is very large, so we c 	inear region around the input problem is a linear program (LP levise an abstraction-refineme significantly improves scalabili		

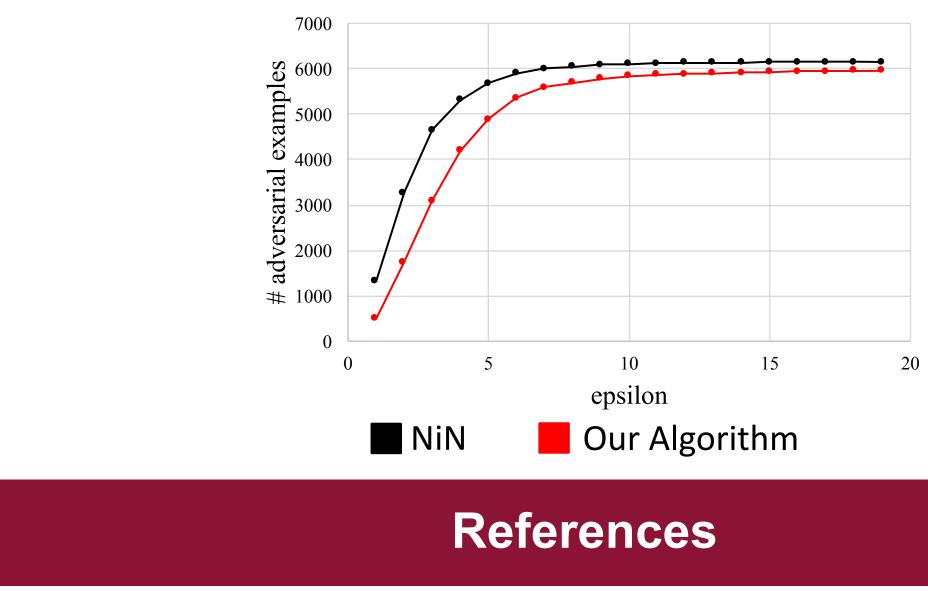
origina

adversarial


perturbation

Evaluation on MNIST

Neural nets: (i) modified LeNet, (ii) fine-tuned using baseline (Szegedy et al. 2014), (iii) fine-tuned using our algorithm


	Acc. (%)	Adv. Frequency (%)		Adv. Severi
Neural Net		Baseline	Ours	Baseline
Original	99.08	1.32	7.15	11.9
Baseline	99.15	0.99	6.97	10.9
Ours	99.23	1.12	5.03	12.2

Evaluation on CIFAR-10

Neural nets: (i) NiN, (ii) fine-tuned using our algorithm

Count of test inputs x_* with adversarial example distance $\leq \epsilon$ away, measured using our algorithm:

Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus. Intriguing properties of neural networks. ICLR 2014.

Goodfellow, Shlens, Szegedy. Explaining and harnessing adversarial examples. ICLR 2015.

