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Constraint Formulation

Robustness Metrics

Motivation:	Despite	having	high	accuracy,	neural	nets	have	been	
shown	to	be	susceptible	to	adversarial	examples,	where	a	small	
perturbation	to	an	input	can	cause	it	to	become	mislabeled

Algorithm:	We	propose	metrics	for	measuring	neural	net	robustness	
and	devise	a	novel	algorithm	to	approximate	these	metrics

Evaluation:	We	evaluate	the	robustness	of	deep	neural	nets	with	
experiments	on	the	MNIST	and	CIFAR-10	datasets:
• We	generate	more	accurate	estimates	of	robustness	metrics	than	

existing	algorithms
• We	use	discovered	adversarial	examples	to	fine-tune	neural	nets,	

and	show	that	existing	algorithms	for	improving	robustness	
“overfit”	to	specific	kinds	of	adversarial	examples

Related	literature:	Existing	algorithms	have	been	proposed	for	
finding	adversarial	examples:
• Approximated	as	cost	function	minimization,	and	solved	using	L-

BFGS-B	(Szegedy et	al.	2014)
• Fast	signed-gradient	heuristic	(Goodfellow et	al.	2015)

Summary

• Problem	setting:
• Input	space	𝒳 ⊆ ℝ$ and	output	labels	ℒ = {1, … , 𝐿}
• Classifier	𝑓:𝒳 → ℒ
• Distribution	𝒟 over	inputs	𝒳

• Classifier	𝑓 is	 𝑥∗, 𝜖 robust if	all	points	𝑥 s.t.	 𝑥∗ − 𝑥 5 ≤ 𝜖 have	
the	same	label	as	𝑥∗

• The	pointwise	robustness	of	𝑓 at	𝑥∗ is
𝜌 𝑓, 𝑥∗ = inf 	 𝜖 ≥ 0 𝑓	is	not	 𝑥∗, 𝜖 	robust

• The	adversarial	frequency	of	𝑓 is
𝜙 𝑓, 𝜖 = Pr

F∗∼𝒟
[𝜌 𝑓, 𝑥∗ ≤ 𝜖]

• The adversarial	severity	of	𝑓 is
𝜇 𝑓, 𝜖 = 𝔼F∗∼𝒟[𝜌 𝑓, 𝑥∗ ∣ 𝜌 𝑓, 𝑥∗ ≤ 𝜖]

• Approximation:
• Constraint	formulation	is	NP-hard	due	to	disjunctions
• We	restrict	the	search	to	a	linear	region	around	the	input	𝑥∗
• The	resulting	optimization	problem	is	a	linear	program	(LP)
• The	LP	is	very	large,	so	we	devise	an	abstraction-refinement	

constraint	solving	loop	that	significantly	improves	scalability

• Piecewise	linear	structure	of	neural	nets:

• Generated	adversarial	examples:

Evaluation on MNIST

Approximation

• Constraint	systems:
• Linear	inequalities: 𝒞 ≡ 𝑤P𝑥 + 𝑏 ≥ 0
• Conjunctions: 𝒞 ≡ 𝒞S ∨ 𝒞U
• Disjunctions: 𝒞 ≡ 𝒞S ∧ 𝒞U

• Neural	net	𝒇 as	a	constraint	system	𝒞𝒇(𝒙, ℓ):
• Encodes	whether	𝑓 outputs	label	ℓ on	input	𝑥
• Can	be	constructed	when	𝑓 is	piecewise	linear	(e.g.,	ReLUs)

• Pointwise	robustness	as	constrained	optimization:
𝜌 𝑓, 𝑥∗, ℓ = inf 	 𝜖 ≥ 0 𝒞\ 𝑥, ℓ ∧ 𝑥 − 𝑥∗ 5	satisfiable

Neural	nets:	(i)	modified	LeNet,	(ii)	fine-tuned	using	baseline	
(Szegedy et	al.	2014),	(iii)	fine-tuned	using	our	algorithm

Count	of	test	inputs	𝑥∗ with	adversarial	example	distance	≤ 𝜖 away:
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Neural	Net Acc.	(%)
Adv. Frequency	(%) Adv. Severity	(pixels)
Baseline Ours Baseline Ours

Original 99.08 1.32 7.15 11.9 12.4
Baseline 99.15 0.99 6.97 10.9 12.4
Ours 99.23 1.12 5.03 12.2 11.7

Evaluation on CIFAR-10

Neural	nets:	(i)	NiN,	(ii)	fine-tuned	using	our	algorithm

Count	of	test	inputs	𝑥∗ with	adversarial	example	distance	≤ 𝜖 away,	
measured	using	our	algorithm:

original adversarial perturbation

Measured	Using	Our	Algorithm Measured	Using	Baseline

Our	AlgorithmLeNet Baseline

NiN Our	Algorithm


