
Polytopic Trees for Verification
of Learning-Based Controllers

Sadra Sadraddini1(B), Shen Shen1, and Osbert Bastani2

1 Massachusetts Institute of Technology, Cambridge, USA
{sadra,shenshen}@mit.edu

2 University of Pennsylvania, Philadelphia, USA
obastani@seas.upenn.edu

Abstract. Reinforcement learning is increasingly used to synthesize
controllers for a broad range of applications. However, formal guarantees
on the behavior of learning-based controllers are elusive due to the black-
box nature of machine learning models such as neural networks. In this
paper, we propose an algorithm for verifying learning-based controllers—
in particular, deep neural networks with ReLU activations, and decision
trees with linear decisions and leaf values—for deterministic, piecewise
affine (PWA) dynamical systems. In this setting, our algorithm computes
the safe (resp., unsafe) region of the state space—i.e., the region of the
state space on which the learned controller is guaranteed to satisfy (resp.,
fail to satisfy) a given reach-avoid specification. Knowing the safe and
unsafe regions is substantially more informative than the boolean charac-
terization of safety (i.e., safe or unsafe) provided by standard verification
algorithms—for example, this knowledge can be used to compose con-
trollers that are safe on different portions of the state space. At a high
level, our algorithm uses convex programming to iteratively compute new
regions (in the form of polytopes) that are guaranteed to be entirely safe
or entirely unsafe. Then, it connects these polytopic regions together in a
tree-like fashion. We conclude with an illustrative example on controlling
a hybrid model of a contact-based robotics problem.

1 Introduction

Recently, there has been a great deal of success using reinforcement learning
to synthesize controllers for challenging control tasks, including grasping [20],
autonomous driving [24], and walking [9]. Reinforcement learning provides a
number of advantages compared to traditional approaches to control—for exam-
ple, it can be used to compress computationally expensive online controllers into
computationally efficient control policies [21], it can be used to solve challenging
nonconvex optimization problems such as grasping [4], and it can be used to
adapt controllers to handle unmodeled real-world dynamics [1,9].

Despite these successes, reinforcement learning has had limited applicability
in real-world control tasks. An important obstacle is the inability to provide

This research was partially supported by ONR award N00014-17-1-2699.

c⃝ Springer Nature Switzerland AG 2019
M. Zamani and D. Zufferey (Eds.): NSV 2019, LNCS 11652, pp. 110–127, 2019.
https://doi.org/10.1007/978-3-030-28423-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28423-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-28423-7_8

Polytopic Trees for Verification of Learning-Based Controllers 111

formal guarantees on the behavior of learned controllers. For instance, real-world
control tasks are usually safety-critical in nature. Furthermore, the more general
problem of computing safe regions (i.e., sets of states from which the controller
is guaranteed to be safe) is also an important tool for composing controllers [32].

The challenge is that learned controllers are typically deep neural networks
(DNNs), which are hard to formally analyze due to their large number of param-
eters and lack of internal structure [5,16]. The lack of guarantees is particu-
larly concerning since even in the supervised learning setting, DNNs are not
robust [5,11,14,16,25,29,31,34,36]—i.e., even if an input is correctly classified, a
small, adversarially chosen perturbation can typically cause the input to become
misclassified. For closed-loop control, the lack of robustness would imply that
even if a DNN controller produces a safe trajectory from a given initial state, a
small perturbation to the initial state can cause the trajectory to become unsafe.
This setting is particularly challenging for formal analysis, since we must reason
about repeated application of the DNN controller.

In this paper, we propose an algorithm for computing safe regions (as well
as unsafe regions—i.e., for which the system is guaranteed to be unsafe) for
learning-based controllers. We are interested in reach-avoid specifications, which
are safety properties expressed as (i) a goal region that is considered to be safe,
(ii) a safety constraint specifying states that are known to be unsafe. Then, our
goal is to classify each state as either safe (i.e., reaches the goal region without
entering the unsafe region), or unsafe (i.e., it reaches the unsafe region). For
example, consider the task of stabilizing an inverted pendulum. Then, the goal
region may be a small region |θ| ≤ θsafe around the upright position θ = 0,
where the closed-loop system is known to be safe (e.g., verified using stability
analysis [32]), and the safety constraint may say that the pendulum should not
fall over—i.e., |θ| > θunsafe, where θunsafe ∈ R . Our goal is to compute the set
of states from which the learning-based controller successfully reaches the goal
region without entering the unsafe region.

We build on recent work that verify DNNs with rectified-linear units (ReLUs),
which are piecewise affine [5,16]. As a consequence, for the supervised learn-
ing setting, safety properties can then be encoded as a mixed-integer linear
program [33], which can be checked using standard solvers. For our setting of
closed-loop control, we consider dynamical systems with piecewise affine (PWA)
dynamics, where each piece is a polytopic region (i.e., defined by the intersection
of linear half-spaces). These systems are commonly encountered in control tasks;
even systems that are not PWA can typically be (locally) closely approximated
by one that is PWA. For PWA systems, safety properties for the closed-loop
dynamics can be formulated as a mixed-integer linear program [15]. However,
this approach can only be used to verify whether a given set of initial states is
a safe region, and cannot be used to compute safe and unsafe regions.

At a high level, our algorithm iteratively constructs the safe and unsafe
regions as follows. On each iteration, it first samples an unclassified state x from
the state space, and determines whether x is safe or unsafe using a simple for-
ward simulation. In particular, x is safe if the feedforward simulation reaches the

112 S. Sadraddini et al.

current safe region, and unsafe if it reaches the current unsafe region. Finally, our
algorithm expands x into a polytopic region around x with the same correctness
property as x (i.e., safe or unsafe). Thus, our algorithm is essentially growing two
tree-like data structures (which we call polytopic trees) - one representing safe
states and the other for unsafe states. Then, our algorithm continues iteratively
growing these polytopic trees until the entire state space has been classified.

The key challenge is expanding x into a polytopic region. We leverage the fact
that the closed-loop dynamics is PWA—in particular, it computes a polytopic
region around x such that the closed-loop dynamics is linear on that region.
Then, it uses convex programming to restrict this region to a polytopic sub-
region that has the same correctness property (i.e., safe or unsafe) as x. In
summary, our contributions are:
– We formulate the problem of computing safe and unsafe regions for learning-
based controllers (Sect. 2).

– We propose an algorithm for computing safe and unsafe regions (Sect. 5). A
subroutine computes safe and unsafe polytopic regions around a given initial
state for the closed-loop dynamical system (Sects. 4 and 3).

– We perform an extensive case study to evaluate our approach (Sect. 6).

Related Work. The closest work is [30], which studies the problem of finding
the safe states of a linear systems controlled with ReLU-based DNNs. Their
solution is based on partitioning the work-space and computing reachable sets to
obtain a finite-state abstraction. The end result is an under-approximation of the
safe region. This approach suffers from the resolution quality of the workspace
partitioning, which is known to scale badly in high dimensions. Our approach
does not require partitioning, which helps the algorithm scale better. Moreover,
in high dimensions, it is common to only verify a desirable part of the state
space, where sampling-based strategies are naturally powerful. On the other
hand, fine partitioning of the whole state-space is still necessary to obtain a
finite abstraction that represents the original system by the needed accuracy.

Another line of work in formal verification of learning-based controllers is
searching for counterexamples within a given region. For example, [6] takes this
approach to verify controllers obtained using reinforcement learning. If no coun-
terexample is found, then the whole given region is verified as safe. The coun-
terexample search can be formulated as an SMT problem [10]. While this app-
roach allows for one shot verification of the specification over a given region, it
does not allow for direct computation of the safe region. In many applications
in robot control, counterexamples are abundant, and safe regions are complex
subsets of the state space. Therefore, this approach to verification has limited
applicability. Similarly, [15] provides a boolean answer to the verification problem
by checking a property over a given region. The method is based on formulating
the verification problem as the reachability problem of a hybrid system, which
is verified using state-of-the art solvers such as dReach [17] and Flow∗ [8]. They
also do not provide a direct way to compute safe and unsafe regions.

The authors in [37] and [38] explicitly compute the forward reachable sets
of DNN-based controllers. The exact computations are formidable, so they use

Polytopic Trees for Verification of Learning-Based Controllers 113

over-approximations. Our work also computes reachable sets, albeit in a back-
ward manner. We efficiently grow the backward reachable set using trees, thus
eliminating the need for roll-out of reachable sets for a large horizon. Moreover,
we are able to provide probabilistic completeness properties, whereas methods
based on over-approximations are inherently conservative.

2 Problem Statement and Approach

Notation. We denote the sets of real and non-negative real numbers by R and
R+, respectively. Given a set S ⊆ Rn, we use int(S) to denote the interior of S.
Given S ⊂ Rn and A ∈ RnA×n, we use AS to denote the set {As | s ∈ S}. For
a vector x ∈ Rn, we use |x| to denote the cardinality of the vector, i.e., |x| =
n. All matrix inequality relations are interpreted element-wise. A polyhedron
H ⊂ Rn is the intersection of a finite number of closed half-spaces in the form
H = {x ∈ Rn | Hx ≤ h}, where H ∈ RnH×n, h ∈ RnH define the hyperplanes. A
bounded polyhedron is called a polytope. A piecewise affine (PWA) function f

is a function f : H → Rnf , where the domain H ⊆ Rn is a union H =
⋃k

i=1 Hi

of disjoint polyhedra H1, . . . ,Hk, and where for each i, f(x) = Aix + bi for all
x ∈ Hi for some Ai ∈ Rn×nf and bi ∈ Rnf .

Problem Formulation. Consider a deterministic control system

xt+1 = F (xt, ut)
ut = g(xt),

where xt ∈ X ⊆ Rn is the state, ut ∈ U ⊆ Rm is the control input at time
t ∈ N, and F : X ×U → Rn is the system dynamics, and g : Rn → U is
the controller. We assume that F and g are both PWA functions. Note that it
is possible that there exists x ∈ X , u ∈ U such that F (x, u) ̸∈ X . One of the
primary tasks of the controller is to keep the state within the constraint set X .
Also, we assume that X is bounded. Note that one or both of F and g may
be machine learning components with PWA structure. Examples include feed-
forward neural networks with ReLU activation functions, and decision trees with
linear predicates. The closed-loop system is given as:

xt+1 = F (xt, g(xt)) = Fcl(xt), (1)

where Fcl itself is a PWA system:

Fcl(x) = Aix+ bi, ∀x ∈ Ci, (2)

where Ci, i = 1, · · · , N, are interior-disjoint polytopes,
⋃N

i=1 Ci = X . The number
of pieces N is dependent on the structure of F and g, but upper-bounded by the
number pieces in F times the number pieces in g.

Problem 1. Given closed-loop system of the form (1), and a goal region XG ⊆ X ,
compute the two followings sets:

114 S. Sadraddini et al.

– Xs ⊆ X , where all trajectories originating from it reach XG in finite time (the
safe region).

– Xf ⊆ X , where all trajectories originating from it leave X in finite time (the
unsafe region).

We assume that X and XG are both given as a union of finite number of
polytopes. This assumption is common in most control problems as any bounded
set can be reasonably approximated using a finite number of polytopes.

Approach. The complete solution to Problem1 partitionsX\XG into 3 regions:
Xmax

s , the largest possible set of Xs, Xmax
f , the largest possible set of Xf , and

Xmin
a := X \ (Xmax

s ∪ Xmax
f), where Xmin

a is the set of states from which origi-
nating trajectories neither reach the goal or violate the constraints in finite time.
Therefore, Xmin

a is a forward-invariant set. Although in most control tasks the
forward-invariant sets around an equilibrium point or a limit cycle are desirable
and the user typically designs XG within it, it is possible that learning-based
controllers inadvertently create invariant sets outside of XG, where trajectories
are trapped and thus is an undesirable behavior—examples of this behavior in
DNN-based controllers is shown in Sect. 6.

Our solution to Problem1 is an anytime sampling-based algorithm that grad-
ually grows Xs and Xf , and shrinks Xa. Initially, Xs = XG,Xf = ∅, and
Xa = X \XG. As shown in the paper, our algorithm has probabilistic complete-
ness: if x ∈ Xmax

s or x ∈ Xmax
f , the probability that our solution verifies it as

the algorithm runs approaches one.

Example. As an example of the safe and unsafe regions computed using our
algorithm, consider the following figures:

These figures plot the safe region Xs (green), unsafe region Xf (red), and
unclassified region Xa (white) for a neural network controller trained to stabilize
a torque-limited inverted pendulum, after 34 iterations (left) and 137 iterations
(right) of our algorithm. This task is complicated by the presence of a wall,
which the controller can use to “bounce” off of to aid stabilization. The presence
of the contact dynamics makes the problem challenging for traditional control
synthesis algorithms. On the other hand, reinforcement learning can be directly
applied to solve this problem. The blue region is the goal region XG, where the
linear controller synthesized using LQR on the linearized dynamics can provably
stabilize the inverted pendulum. Reinforcement learning is used to train a neural
network or decision tree controller with the goal of driving the system into the
blue region XG. The region inside the black square is the constraint set X .

Polytopic Trees for Verification of Learning-Based Controllers 115

At each iteration, our algorithm grows either the safe region or the unsafe
region from a randomly chosen state x ∈ Xa. Some of the regions added on each
iteration can be distinguished in the figure above—they tend to be elongated
subsets of the state space, since they are computed by expanding a trajectory
(which has measure zero) into a small region around that trajectory (which has
positive measure). Comparing the two figures, we can also see how safe and
unsafe regions are added over time. As can be seen, Xs tends to grow outward
from XG as the number of iterations increases. Similarly, Xf tends to grow
inward from the region R2 \ X . These patterns reflect the tree-like way in which
the safe and unsafe regions are grown.

3 Local Constrained Affine Dynamics

We provide a framework to characterize the local affine dynamics of (1) around
a given point. Recall that (1) is PWA with affine dynamics in polytopic cells.

Definition 1. An affine cell is defined as a tuple A = (A, b,H, h), where
Fcl(x) = Ax+ b,∀x ∈ {x ∈ Rn|Hx ≤ h}.

Let the set of all affine cells be defined as A. In this section, we explain how to
derive a function L : X → A, which takes a point x ∈ X, and provides the affine
cell which it belongs to. The basic idea is to fix (i) the mode of the dynamical
system (if it is PWA) and (ii) the activations of the machine learning structure
used in the controller. In decision trees, this means the path to the leaf is fixed.
In DNNs, it means all the ReLU activations remain the same. Note that there
exists a finite number of affine cells in (1). However, computing all of them in
advance may not be possible. For decision trees, the number of affine cells is
equivalent to the number of leaves, which is often a manageable number. For
neural networks, on the other hand, the number of affine cells can be as much
as 2|# neurons|, which can be extremely large to save on a memory. Therefore, it
is better that L(x) is computed on-the-fly, i.e. while the algorithm is running.

Decision Trees. A depth d decision tree τ is a binary tree with 2d − 1 internal
nodes and 2d leaf nodes (we ignore leaf nodes when measuring depth). Each
internal node of the tree is labeled with tuple (i, t), where i ∈ {1, . . . , n} (where
n is the dimension of the state space) and t ∈ R ; we interpret this tuple as a
predicate xi ≤ t. Each leaf node is labeled with a control input u ∈ U .

We let root(τ) denote the root of τ , and leaves(τ) denote the leaf nodes of τ .
For each leaf node ν in τ , we let path(ν; τ) = ((ν1, s1), . . . , (νd, sd)) denote the
sequence of internal nodes on the path from root(τ) to ν (so ν1 = root(τ) and
νd is the parent of ν in τ). The variable si ∈ {± 1} is +1 if νi+1 is the left child
of νi, and − 1 if it is the right child (where we let νd+1 = ν). Then, we associate
each leaf node ν with the affine cell Aν = (Aν , bν ,Hν , hν), where Aν is the zero
matrix, bν = u (where u is the label on ν), and (Hν , hν) define the polyhedron
Hν that is the intersection of the half-spaces

{s · xi ≤ t | (ν′, s) ∈ path(ν; τ) has label (i, t)}. (3)

116 S. Sadraddini et al.

It is clear that the polyhedra Hν associated with the leaf nodes ν ∈ leaves(τ) are
disjoint and cover Rn. Thus, we can interpret τ as a function τ : X → U , where

τ(x) =
∑

ν∈leaves(τ)

(Aνx+ bν) · I[x ∈ Hν],

where I is the indicator function. Thus, given x ∈ X , we define L(x) = Aν , where
ν is the (unique) leaf node such that x ∈ Hν .

Neural Networks. Consider a k-layer ReLU-based network. For a single layer
i, let its input be xi and output be xi+1. Also, let the layer weights be Ai ∈
R |xi+1|×|xi| and the bias be bi ∈ R |xi+1|. The layer i input-output relationship is
xi+1 = max(Aixi + bi, 0) where max(·) is taken element-wise.

To derive the polytopic cell expression, we first introduce binary vector si ∈
{0, 1}|xi+1| = S(Aixi + bi) where the scalar function S(α) := I[α ≥ 0] is applied
element-wise. Therefore, we equivalently have xi+1 = Âixi + b̂i where Âi =
si ⊙ Ai, b̂i = si ⊙ bi and ⊙ is the element-wise multiplication. By recursive
expansion, the network final output xk+1 in terms of the first layer input x1 is

xk+1 =
k∏

i=1

Âi

︸︷︷︸
A

x1 +
k−1∑

i=1

k∏

j=i+1

Âj b̂i + b̂k

︸ ︷︷ ︸
b

, (4)

which is PWA with the pieces (defined by polytopes to be derived) dependent on
the si. Also, since matrix multiplication is not commutative, it is worth pointing
out that the enumeration is left-multiplied:

∏k
i=1 Âi = ÂkÂk−1 . . . Â1.

To get the H-representation for the polytopes, we use one single layer with
one single ReLU for illustration. In this case, x2 can take on two possible values
depending on if s1 = 1, i.e., A1x1+ b1 ≥ 0, or if s1 = 0, i.e. A1x1+ b1 < 0. These
two case conditions can be equivalently described as checking if H1x1 ≤ h1, with
H1 := (2s1 − 1) ⊙ A1, and h1 := − (2s1 − 1) ⊙ b1.

It is then straightforward, albeit tedious, to generalize that for any particular
layer i, the hyperplanes defining a particular polytope is

Hi = (2si − e)Ai

i−1∏

j=1

Âj , hi = (2si − e)bi +Hi(
i−1∑

l=1

i−2∏

j=l+1

Âj b̂l + b̂i) (5)

where e is the all-one vector, such that (2s1 − e) ∈ {− 1, 1}|xi+1| and easier for
sign-flipping. For the entire network, the affine cell of a particular input x1 is
then A(x1) = (A, b,H, h) with A, b as defined in (4), and H and h as simply the
column concatenation of the individual Hi and hi in (5).

Affine Cells of the Closed-Loop System. Once given a state query xq ∈ X
and obtained affine cell for the controller g(x) = Aux + bu,∀x ∈ Cu, xq ∈ Cu,
we combine it with F (x, u) = AFx+ bFu+ cF ,∀x ∈ CF , xq ∈ CF to derive the
affine cell of the closed-loop dynamics:

Fcl(x) = (AF + bFAu)x+ (bF bu + cF),∀x ∈ Cu ∩ CF . (6)

Polytopic Trees for Verification of Learning-Based Controllers 117

4 Polytopic Trajectories

In this section we introduce polytopic trajectories, which is central to our ver-
ification approach. Recall that by simulating the system forward we obtain a
trajectory that is a region with zero measure. A key property of this trajectory
is that the points in the trajectory are either all safe or all unsafe (since the
dynamics and controller are deterministic). Our algorithm expands this trajec-
tory into a region with positive measure, such that the points in the region are
either all safe or all unsafe. Doing so enables our algorithm to verify a nonzero
fraction of the state space at each iteration. To obtain such a region, our algo-
rithm expands each point in this trajectory into a polytopic region, resulting in
a trajectory of polytopic regions, which we refer to as a polytopic trajectory.

Parametrization. First, we define the space of all polytopic trajectories. A
polytopic trajectory is a sequence of polytopes Pt, t = 0, 1, · · · , T , with the
constraint that Pt ⊆ X is mapped to Pt+1 ⊆ X by the closed-loop dynamics.
As standard, the polytopes are individually parameterized as follows:

Pt = x̄t +GtPb, (7)

where Pb ⊆ R q is a user-defined base polytope, and x̄t ∈ Rn, Gt ∈ Rn×q are
parameters characterizing Pt as an affine transformation of Pb. The matrix Gt

is called the generator. When Pb is chosen to be the unit hypercube in R q, the
polytopes are referred to as zonotopes. Due to their balance between expressive-
ness and computational efficiency, zonotopes are a popular way to parameterize
polytopes when verifying dynamical systems [2,12]. The remaining parameter q
is chosen by the user. A typical choice is q = n to obtain zonotopes of order one.

Next, we describe how our algorithm enforces the constraint on Pt and Pt+1—
i.e., that the closed-loop dynamics maps Pt to Pt+1. If we restrict Pt to entirely
lie in an affine cell of (1), then Pt will be subject to an affine transformation.
In this case, Pt+1 will also be a polytope. However, if Pt has points in multiple
cells of (1), then its image under the closed-loop dynamics would be a union
of polytopes (but may not itself be a polytope); the number of polytopes in
this union may grow exponentially in the number of time steps. Therefore, we
enforce a constraint that each polytope is contained within a single affine cell.
In particular, letting the affine dynamics be xt+1 = Atxt + bt, we have

Pt+1 = Atx̄t + bt +AtGtPb. (8)

Therefore, we obtain linear relations for the parameters of the polytopes:

x̄t+1 = Atx̄t + bt, Gt+1 = AtGt. (9)

Finally, we remark that in many control problems, the underlying system evolves
in continuous-time. Therefore, it is preferable to include the states between Pt

and Pt+1 in the polytopic region, since those states are traversed between two
polytopes. One reasonable approximation is computing the convex hull of Pt and
Pt+1, but this approximation is computationally demanding. An alternative is

118 S. Sadraddini et al.

adding xt+1 − xt as an additional column to Gt, which elongates the zonotope
alongside the trajectory path. Due to its simplicity, we use the latter method.

Optimization. Next, we describe how our algorithm computes the parameters
{(x̄t, Gt)}t=0,··· ,T−1 of a polytopic trajectory that satisfies the property that the
states in the polytopic trajectory are either all safe or all unsafe. Our algorithm
uses a convex program to do so. Let the sampled trajectory be x0, x1, · · · , xT ,
where xT is already known to be safe or unsafe. Suppose that xT ∈ Ptarget, where
the target polytope Ptarget is a polytope around xT that is known to be safe or
unsafe. The existence of such a polytope is guaranteed since our algorithm keeps
track of safe and unsafe regions as a union of polytopes—in particular, the target
polytope may be one of the following regions: XG, Rn \XG, or a polytope in Xs

or Xf . Details are in Sect. 5; for now, we suppose that Ptarget is given.
We compute a polytopic trajectory using the following optimization problem:

{(x̄t, Gt)}t=0,··· ,T−1 = argmin α ({(x̄t, Gt)}t=0,··· ,T−1)
subj. to Gt+1 = AtGt, x̄t+1 = Atx̄t + bt, x̄0 = x0,

x̄t +GtPb ⊆ Ct, x̄T +GTPb ⊆ Ptarget,
(At, bt,Ct) = L(xt), t ∈ {0, · · · , T − 1}.

(10)

where α :
∏T−1

i=0 Rn ×Rn×q → R is a cost function that is user-defined. The first
line of constraints in (10) encode the closed-loop dynamics Pt to Pt+1 and the
initial state. The second line is polytope containment constraints that ensure
that the whole Pt is subject to a single affine dynamics and the final polytope is
contained in the target polytope Ptarget. The details on how to encode polytope
containment problems into a set of linear constraints using auxiliary variables
and constraints is available in [27]. Thus, all the constraints in (10) are linear.

We wish to design α to promote larger volumes for the polytopes. The volume
of zonotopes is generally a non-convex objective [18]. Thus we use heuristics for
designing α. A useful, simple, form of α is

α = Tr
(
G0 0
0 GT

0

)
. (11)

Note that if Pb is the unit hypercube, it follows from symmetry that restrict-
ing the diagonal terms in the matrix in (11) to be non-negative does not have
any effect on P0 as zonotopes are invariant with respect to multiplication of the
columns of their generator by − 1. A notable difference between (10) and com-
puting the region of attraction of LQR controllers in [32] is that in the latter, the
verified regions are centered around the nominal trajectory. In contrast, there
is no such restriction in (10), so the polytopic trajectory can shift around the
nominal trajectory. This fact is important since constructing polytopes centered
at the points of the trajectory can lead to very small polytopes if only one time
point of the trajectory lies close to the boundary of its affine cell.

Computational Complexity. Using (11), the optimization problem in (10)
becomes a linear program which its size scales quadratically with n, the dimen-
sion of the state, and linearly in length of the trajectory. The polytope contain-
ment constraints introduce auxiliary variables whose size grows linearly with n

Polytopic Trees for Verification of Learning-Based Controllers 119

Algorithm 1. Construction of Polytopic Verification Trees
Require: System (1) and XG ◃ The closed loop system and the goal
Require: imax, Tmax,L : X → L ◃ The number of iterations, the maximum time of

forward simulation, and local constrained affine system generator
i = 0, Xs = XG, Xf = ∅ ◃ Initialization
while i ≤ imax do

x0 ← sample from X \(Xs ∪ Xf), t = 0
while t ≤ Tmax do

if xt ∈ P,P ⊆ Xs then ◃ P is a polytope
flag ← safe
Compute polytopic trajectory P0,P1, · · · ,Pt−1 using (10) with Ptarget = P
Add branch to the tree and add P0,P1, · · · ,Pt−1 to Xs

Break
if xt ∈ P,P ⊆ Xf or xt ̸∈ X then ◃ P is a polytope

flag ← unsafe
Compute polytopic trajectory P0,P1, · · · ,Pt−1 using (10) with Ptarget = P
Add branch to the tree and add P0,P1, · · · ,Pt−1 to Xf

Break
xt+1 = Fcl(xt) ◃ Simulate system forward
Ct+1 = L(xt+1) ◃ Compute the polytopic linear system

return Xs, Xf

and with the number of rows of the hyperplane, where the latter grows linearly
with (i) the depth of the decision tree, (ii) the number of nodes in the DNN.
Therefore, obtaining polytopic trajectories is a very efficient procedure.

5 Polytopic Trees

We describe our polytopic tree algorithm (outlined in Algorithm1).

5.1 Sampling Unclassified States and Checking Membership

At each iteration, we first sample a point from the unclassified states X \ (Xs ∪
Xf). A straightforward approach is to use rejection sampling—i.e., sample x from
X, and reject it if it belongs to (Xs ∪Xf). However, the subroutine of checking
whether x ∈ (Xs ∪ Xf) can be computationally challenging as (Xs ∪ Xf) grows
with the number of iterations. Recall that both Xs and Xf consist of a finite
number of polytopes. There are several approaches to checking if x ∈ (Xs ∪Xf).

The first approach is to check the feasibility of x = x̄i +Gip, for p ∈ Pb and
i ∈ {1, · · · , N}, where x̄i, Gi are the parameters of the ith polytope in (Xs∪Xf),
and N is the total number of polytopes. This approach requires at most N linear
programs, which the size of each is linear in n and q, and very small. The second
approach is to precompute the hyperplanes of all polytopes; then, instead of
checking feasibility of linear programs, we can evaluate the partial order relation
required to check if a point is within the intersection of multiple hyperplanes.

120 S. Sadraddini et al.

However, finding the hyperplanes may also be computationally challenging. Both
methods can be greatly accelerated using binary search methods for manipulat-
ing a large number of polytopes [35].

5.2 Growing the Polytopic Tree

A polytopic tree is a tree-like data structure where each node is labeled with
a polytope; in general, these “trees” may have multiple roots. Our algorithm
represents the regions Xs and Xf as polytopic trees, where we require that
the parent P′ of a polytope P contains the image of P under the closed-loop
dynamics. The regions Xs and Xf are simply the union of all polytopes in the
tree. Initially, we represent Xs = XG as the “tree” where each polytope in XG

is its own root, and represent Xf = ∅ as the empty tree.
We iteratively grow the polytopic trees representing Xs and Xf by sampling

an unclassified state x0 from X \ (Xs ∪Xf), forward simulating the system from
x0 to obtain a trajectory, and then expanding the resulting trajectory into a
polytopic trajectory. More precisely, during forward simulation, once we have
state xt of the trajectory, we compute Ct = L(xt), and check whether to stop
at xt. There are 4 cases: (i) xt ∈ XG (i.e., the goal is reached), (ii) xt ̸∈ X (i.e.,
the state bounds are violated), (iii) xt ∈ (Xs ∪ Xf) (i.e., the state is already
known to be safe or unsafe), or (iv) t > Tmax, where Tmax is a bound on the
trajectory length specified by the user. In cases (i), (ii), and (iii), we terminate
the trajectory (so T = t), and compute a polytopic trajectory by solving (10)
with initial state x0, sequence of affine cells C0, · · · ,CT−1, and target polytope
PT chosen to be the polytope encountered in XG (case (i)), R \ X (case (ii)),
or Xs ∪ Xf (case (iii)). In case (iii), we can determine PT since our algorithm
represents Xs and Xf each as a finite union of polytopes. In case (iv), we assume
that the trajectory belongs to the set Xmin

a , and ignore the trajectory.
Once we have computed the polytopic trajectory, we insert the polytopes

P0, . . . ,PT−1 into the appropriate polytopic tree—i.e., the tree representing Xs

if PT is safe, and the tree representing Xf if PT is unsafe. To do so, we simply set
the parent of Pt to be Pt+1 for each t ∈ {0, 1, . . . , T − 1}. Except in case (ii), PT is
already in the tree; in case (ii), if PT is not yet in the polytopic tree representing
Xf , then we add it as a new root node. The following result is straightforward:

Theorem 1 (Correctness). Algorithm 1 returns Xs and Xf , from which all
originating trajectories reach XG and Rn \ X , respectively, in finite time.

5.3 Probabilistic Completeness

We state the completeness result of our algorithm. We require two mild assump-
tions, which are similar to the assumptions made in [32].

Assumption 1. For any measurable Y ⊆ X , the sampler chooses a point from
Y with non-zero probability.

Polytopic Trees for Verification of Learning-Based Controllers 121

Assumption 2. Given x0 ∈ int(Xmax
s ∪ Xmax

f), there is a non-zero probability
that the polytopic trajectory optimization (10) provides P0 with non-zero volume
vol(P0) ≥ λ > 0 for some uniform constant λ.

Assumption 1 is not restrictive as we are often able to sample uniformly from X .
Assumption 2 relies on the heuristics used in (10). We empirically have observed
that the polytopes always have non-zero volume. If a polytope with zero volume
is obtained (even after elongating it across the trajectory, as explained in Sect. 4),
we can discard it and use another heuristic. Moreover, the assumption that a
uniform constant exists is not restrictive as there exists a finite number of affine
cells with non-zero volume. Therefore, the assumption boils down to (10) being
able to find a polytopic inner-approximation to an affine cell that covers a certain
fraction of its volume if provided an appropriate cost function.

Theorem 2 (Probabilistic Completeness). Let Xi
s and Xi

f be the Xs and
Xf computed Algorithm1 by the i’th iteration. Then if Assumption 1 and
Assumption 2 both hold, the following holds:

Pr
(
lim
i→∞

int(Xmax
s \Xi

s) ∪ int(Xmax
f \Xi

f) = ∅
)
= 1. (12)

Proof. In AppendixA.

6 Example

We adopt example 1 from [23] and [28]. The model represents an inverted pen-
dulum with a spring-loaded wall on one side, as illustrated in Fig. 1 [Left]. The
control input is the torque. The system is constrained to |θ| ≤ 0.12, |θ̇| ≤ 1,
|u| ≤ 4, and the wall is located at θ = 0.1. The problem is to steer the state
toward the origin. We set XG = [− 0.05, 0.05] ×[− 0.5, 0.5]. We know from [23]
thatXG is within the region of attraction of the linear quadratic regulator (LQR)
controller of the contact-free dynamics (which is Ω in Fig. 1 [Left]). Therefore,
once the trajectories end in XG, they are guaranteed to asymptotically reach
the origin. The dynamics is a hybrid model with two modes associated with
“contact-free” and “contact”. The piecewise affine dynamics is:

A1=
(

1 0.01
0.1 1

)
, A2=

(
1 0.01

− 9.9 1

)
,B1= B2=

(
0

0.01

)
, c1=

(
0
0

)
, c2=

(
0
1

)
,

where mode 1 and 2 correspond to contact-free (θ ≤ 0.1) and contact dynamics
(θ > 0.1), respectively.

6.1 Controller Based on Formal Synthesis

It is non-trivial to control this hybrid system. Both [23] and [28] use approx-
imate explicit hybrid model predictive control (MPC) to compute an inner-
approximation of the safe region. The method in [28] is sampling-based and
it achieves probabilistic feedback coverage. As shown in Fig. 1 (right), the safe
region is not the whole state-space and it takes a very non-trivial shape.

122 S. Sadraddini et al.

Fig. 1. Example: The inverted pendulum with wall (left). The model-based safe regions
as obtained from figures in [23] (middle), and [28] (right).

Fig. 2. Example: Verified regions for system controlled with a decision tree. XG, Xs, Xf

are shared in blue, green, and red, respectively. (Color figure online)

6.2 Decision Tree Controllers

Training. We use the Viper algorithm to learn decision trees [6]. Learning deci-
sion tree controllers is challenging due to their discrete structure—in particular,
the gradient of the loss function for a decision tree is zero almost everywhere. To
address this challenge, Viper first learns a neural network controller using stan-
dard reinforcement learning algorithms. Then, it uses imitation learning to train
a decision tree controller that “mimics” the neural network controller [26]. In
particular, given an “oracle controller” (i.e., the neural network), imitation learn-
ing reduces the reinforcement learning problem for the decision tree controller
to a supervised learning problem. Thus, we can use standard CART algorithm
for learning decision trees [7]. See [6] for details.

Verification. The results are shown in Fig. 2. Since all decision trees are
extracted from the same neural network, their performance looks quite simi-
lar, albeit the smallest decision tree with depth 2 performs slightly weaker than
the others, which is interpreted by the larger unsafe region and smaller safe
region. All the decision trees perform superb handling the contact, which is due
to the fact that constant controller in this area of the state space is sufficient.
On the other hand, the decision tree behaves very poorly with negative angle
and small velocities as piecewise constant decisions are not sufficient to conduct
a maneuver that brings the state to get into the goal.

Polytopic Trees for Verification of Learning-Based Controllers 123

Fig. 3. Example: Verified regions for system controlled with a neural network.
XG, Xs, Xf are shared in blue, green, and red, respectively. (Color figure online)

6.3 Neural Network Controllers

Training. The neural network used to guide the training of the decision tree
is too large for our algorithm to verify. It is known that neural networks must
be vastly overparameterized to obtain good performance (otherwise, they are
susceptible to local optima) [22], which explains why we can approximate a
large neural network with small decision trees. Indeed, we found that training a
small neural network using reinforcement learning was intractable. Instead, we
used supervised learning—we run the model-based PWA controller described in
[23] to generate state-control pairs, and construct ReLU-based DNN of various
depth and size to minimize the mean-square-error between the network predic-
tion and those labels. Using this approach, the neural networks still performed
poorly, even though they were comparable in size to the smallest decision tree.
Nevertheless, this experiment complements the decision tree experiment—the
emphasis for decision trees is on the verifying “good” behaviors, whereas the
emphasis here is on identifying “bad” behaviors.

Verification. Figure 3 shows the verified regions of various neural network con-
trollers. We name the network by its size and depth, e.g. L4N2 means the network
has four layers with two ReLUs each, and L2N2L2N1 means the first two layers
have two ReLUs each and the last two layers have just one each; in addition to
these ReLU-based layers, all networks also have a final affine layer.

We observe that on average, the algorithm covers a larger falsified region,
which is to be expected since the network is not an ideal stabilizing controller.
The plots in each column exhibit a variety of different traits. For example, the
figures in the first column exhibit lack of robustness of the neural network—
around the vertical strip of between [0.05, 0.10], there is a slim unsafe region
encompassed by a large safe region. In particular, in this portion of the state
space, even a very small deviation from the state space can lead to unsafety.

124 S. Sadraddini et al.

The second column has an unclassified region (white). Upon manually
inspecting the control behavior, we observe chattering near the point of con-
tact with the wall—i.e., the system repeatedly hit and bounced off of the wall.
This behavior showcases a limitation of learning-based controllers. The average
time for each linear program in verifying the largest NN controller was less than
0.1 s using Gurobi [13]. The total number of linear programs to be solved is equal
to the total number of branches.

7 Discussion and Future Work

Advantages. The main advantage of the method in this paper is that instead
of verifying a property over a region, it is able to compute regions of safe and
unsafe states, which is more relevant in problems where the set of safe states
is a complex subset of the state space. Our approach is easy to deploy as it
based on anytime algorithm that only requires sampling, forward simulation,
and linear programming, and unlike most related verification techniques, it has
the potential to be applied to large-scale problems.

Limitations. The last advantage point above is conditioned on the number of
samples and polytopic branches required to provide a reasonable volume of veri-
fied regions. A major drawback of our approach stems from the fact that it relies
on each polytope to be contained within a single affine cell. For many machine
learning components, especially DNNs, these affine cells can be very small, thus
making polytopes small hence requiring denser trees for proper coverage. This
issue was alleviated for decision tree controllers, where the number of affine cells
scales linearly with the number of leaves. A promising direction to resolve this
issue is focusing on interpretable neural networks [3,19], which are trained in
a way that they are less fragile and typically have fewer and larger affine cells.
This limitation is less severe in many applications that we are only interested in
verifying regions around a nominal point or trajectory.

Another limitation of our approach is the restriction to PWA dynamical
systems and controllers. While the linearity assumption around a nominal tra-
jectory is reasonable, this restriction limits us from constructing larger verified
regions that are able to incorporate nonlinearities.

Future Directions. An immediate future direction is characterizing Xmax
a . A

potential approach is searching for equilibria or limit cycles and applying the
methods in this paper to characterize states leading to limit cycles. Moreover,
we are planning to leverage the results in this paper to develop compositional
methods for controller synthesis and verification. For instance, by learning a
controller that steers trajectories from the unsafe region of another controller
to its safe regions, we can compose controllers in a hierarchical manner. This
approach has the potential to provide a framework for learning-based control
synthesis in a more scalable, interpretable, and formally correct way.

Polytopic Trees for Verification of Learning-Based Controllers 125

A Appendix

A.1 Proof of Theorem 2

Proof. Let Xi
r = Xmax

s \ Xi
s. We need to show that limi→∞ int(Xi

r) = ∅ with
probability one. The same argument holds for Xmax

f \Xi
f . We prove by contra-

diction. Let limi→∞ Xi
r be a measurable set. It follows from Assumption 1 that

we obtain a sample from X∞
r with non-zero probability. Then we simulate the

system forward from the sampled state x0. Once the trajectory is obtained, the
polytopic trajectory is computed, and by Assumption 2, we obtain a measurable
P0, centered at x0 ∈ int(X∞

r) that has non-empty intersection with X∞
r . There-

fore, by non-zero probability, the volume of Xi
r shrinks in one iteration by at

least λ. Thus we reach a contradiction.

References

1. Abbeel, P., Coates, A., Quigley, M., Ng, A.Y.: An application of reinforcement
learning to aerobatic helicopter flight. In: Advances in Neural Information Pro-
cessing Systems, pp. 1–8 (2007)

2. Althoff, M., Stursberg, O., Buss, M.: Computing reachable sets of hybrid systems
using a combination of zonotopes and polytopes. Nonlinear Anal.: Hybrid Syst.
4(2), 233–249 (2010)

3. Alvarez-Melis, D., Jaakkola, T.S.: Towards robust interpretability with self-
explaining neural networks. arXiv preprint arXiv:1806.07538 (2018)

4. Andrychowicz, M., et al.: Learning dexterous in-hand manipulation. arXiv preprint
arXiv:1808.00177 (2018)

5. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.:
Measuring neural net robustness with constraints. In: Advances in Neural Infor-
mation Processing Systems, pp. 2613–2621 (2016)

6. Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via policy
extraction. arXiv preprint arXiv:1805.08328 (2018)

7. Breiman, L.: Classification and Regression Trees. Routledge, Abingdon (2017)
8. Chen, X., Abraham, E., Sankaranarayanan, S.: Taylor model flowpipe construction

for non-linear hybrid systems. In: 2012 IEEE 33rd Real-Time Systems Symposium
(RTSS), pp. 183–192. IEEE (2012)

9. Collins, S., Ruina, A., Tedrake, R., Wisse, M.: Efficient bipedal robots based on
passive-dynamic walkers. Science 307(5712), 1082–1085 (2005)

10. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 208–214.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 14

11. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation

12. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005). https://doi.org/10.1007/978-3-540-31954-2 19

13. Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2016). http://www.
gurobi.com

http://arxiv.org/abs/1806.07538
http://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1805.08328
https://doi.org/10.1007/978-3-642-38574-2_14
https://doi.org/10.1007/978-3-540-31954-2_19
http://www.gurobi.com
http://www.gurobi.com

126 S. Sadraddini et al.

14. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

15. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. arXiv preprint
arXiv:1811.01828 (2018)

16. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

17. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 15

18. Kopetzki, A.K., Schürmann, B., Althoff, M.: Efficient methods for order reduction
of zonotopes. In: Proceedings of the 56th IEEE Conference on Decision and Control
(2017)

19. Lei, T., Barzilay, R., Jaakkola, T.: Rationalizing neural predictions. arXiv preprint
arXiv:1606.04155 (2016)

20. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor
policies. J. Mach. Learn. Res. 17(1), 1334–1373 (2016)

21. Levine, S., Koltun, V.: Guided policy search. In: International Conference on
Machine Learning, pp. 1–9 (2013)

22. Li, Y., Liang, Y.: Learning overparameterized neural networks via stochastic gra-
dient descent on structured data. In: Advances in Neural Information Processing
Systems, pp. 8168–8177 (2018)

23. Marcucci, T., Deits, R., Gabiccini, M., Biechi, A., Tedrake, R.: Approximate
hybrid model predictive control for multi-contact push recovery in complex environ-
ments. In: 2017 IEEE-RAS 17th International Conference on Humanoid Robotics
(Humanoids), pp. 31–38. IEEE (2017)

24. Pan, Y., et al.: Learning deep neural network control policies for agile off-road
autonomous driving. In: The NIPS Deep Reinforcement Learning Symposium
(2017)

25. Raghunathan, A., Steinhardt, J., Liang, P.S.: Semidefinite relaxations for certifying
robustness to adversarial examples. In: Advances in Neural Information Processing
Systems, pp. 10900–10910 (2018)

26. Ross, S., Gordon, G., Bagnell, D.: A reduction of imitation learning and structured
prediction to no-regret online learning. In: Proceedings of the Fourteenth Interna-
tional Conference on Artificial Intelligence and Statistics, pp. 627–635 (2011)

27. Sadraddini, S., Tedrake, R.: Linear encodings for polytope containment problems.
arXiv preprint arXiv:1903.05214 (2019)

28. Sadraddini, S., Tedrake, R.: Sampling-based polytopic trees for approximate opti-
mal control of piecewise affine systems. In: International Conference on Robotics
and Automation (ICRA) (2019)

29. Su, J., Vargas, D.V., Sakurai, K.: One pixel attack for fooling deep neural networks.
IEEE Trans. Evol. Comput. (2019)

30. Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network controlled
autonomous systems. arXiv preprint arXiv:1810.13072 (2018)

31. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)
32. Tedrake, R., Manchester, I.R., Tobenkin, M., Roberts, J.W.: LQR-trees: feedback

motion planning via sums-of-squares verification. Int. J. Robot. Res. 29(8), 1038–
1052 (2010)

https://doi.org/10.1007/978-3-319-63387-9_1
http://arxiv.org/abs/1811.01828
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-662-46681-0_15
http://arxiv.org/abs/1606.04155
http://arxiv.org/abs/1903.05214
http://arxiv.org/abs/1810.13072

Polytopic Trees for Verification of Learning-Based Controllers 127

33. Tjeng, V., Tedrake, R.: Verifying neural networks with mixed integer programming.
arXiv preprint arXiv:1711.07356 (2017)

34. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming (2018)

35. Tøndel, P., Johansen, T.A., Bemporad, A.: Evaluation of piecewise affine control
via binary search tree. Automatica 39(5), 945–950 (2003)

36. Wong, E., Kolter, Z.: Provable defenses against adversarial examples via the convex
outer adversarial polytope. In: International Conference on Machine Learning, pp.
5283–5292 (2018)

37. Xiang, W., Lopez, D.M., Musau, P., Johnson, T.T.: Reachable set estimation and
verification for neural network models of nonlinear dynamic systems. In: Yu, H., Li,
X., Murray, R.M., Ramesh, S., Tomlin, C.J. (eds.) Safe, Autonomous and Intelli-
gent Vehicles. UST, pp. 123–144. Springer, Cham (2019). https://doi.org/10.1007/
978-3-319-97301-2 7

38. Xiang, W., Tran, H.D., Johnson, T.T.: Specification-guided safety verification for
feedforward neural networks. arXiv preprint arXiv:1812.06161 (2018)

http://arxiv.org/abs/1711.07356
https://doi.org/10.1007/978-3-319-97301-2_7
https://doi.org/10.1007/978-3-319-97301-2_7
http://arxiv.org/abs/1812.06161

	Preface
	Organization
	Abstracts of Invited Talks
	Correctness and Optimality for Control Systems
	Modeling, Control, and Verification of an Automated Transport System
	Formal Methods for Highly Automated Driving Applications
	Contents
	Tutorials
	Trust, Resilience and Interpretability of AI Models
	1 Introduction
	2 Interpretability of AI Models
	2.1 Motivating Example
	2.2 Logic Extraction and Formal Synthesis
	2.3 Sparse Boolean Formula Learning for Explanations

	3 Verification of DNNs
	3.1 Range Estimation
	3.2 MILP Based Approach
	3.3 Application: Reachability Analysis

	4 Resilience of DNNs
	4.1 Adversarial Attacks and Defenses
	4.2 Manifold Learning
	4.3 Empirical Evaluation

	5 Conclusion
	References

	Reinforcement Learning and Formal Requirements
	1 Introduction
	2 Reinforcement Learning
	2.1 Markov Decision Processes
	2.2 Computation of Discounted Reward Optimal Strategies
	2.3 Q-Learning Algorithm and Its Convergence

	3 Formal Requirements
	3.1 -Regular Objectives
	3.2 Product MDP
	3.3 Limit-Deterministic Büchi Automata
	3.4 Linear Time Logic Objectives
	3.5 Probabilistic Model Checking

	4 Limit Reachability
	5 Conclusion
	References

	Contributed Papers
	An Evaluation of Monte-Carlo Tree Search for Property Falsification on Hybrid Flight Control Laws
	1 Introduction
	2 Industrial Use Case and Approach
	3 Monte-Carlo Tree Search Planning for Property Falsification
	4 Evaluation Results and Discussion
	4.1 Connexion with the MDP Framework and Experimental Methodology
	4.2 Threshold Property
	4.3 Frequential Properties
	4.4 Event-Based Property

	5 Related Works
	6 Conclusion
	References

	Rigorous Continuous Evolution of Uncertain Systems
	1 Introduction
	2 Background
	2.1 Brief Summary of Groundwork

	3 Relevant Theory and Extensions
	3.1 Error Formulas

	4 Implementation Aspects
	4.1 Numerical Accuracy and Representation Complexity

	5 Numerical Results
	5.1 Description of the Experimental Setup
	5.2 Evaluation of Input Approximations Using Ariadne
	5.3 Comparison with Other Tools

	6 Conclusions and Future Work
	References

	Stochastic Local Search for Solving Floating-Point Constraints
	1 Introduction
	2 Approach
	2.1 Input Grammar
	2.2 Search Algorithm

	3 Implementation and Experiments
	4 Limitations and Proposed Solutions
	References

	Evaluating Branching Heuristics in Interval Constraint Propagation for Satisfiability
	1 Introduction
	2 Preliminaries
	3 Gradient Branching
	4 Lookahead Branching
	5 Evaluation
	6 Related Work and Discussion
	7 Conclusion
	References

	Approximate Probabilistic Relations for Compositional Abstractions of Stochastic Systems
	1 Introduction
	2 General Markov Decision Processes
	3 Approximate Probabilistic Relations Based on Lifting
	4 Compositional Abstractions of Interconnected gMDPs
	4.1 Interconnected gMDPs
	4.2 Compositional Abstractions of Interconnected gMDPs

	5 Construction of Abstractions for Nonlinear Systems
	5.1 Construction of Finite Abstractions
	5.2 Establishing Probabilistic Relations

	6 Case Study
	References

	Polytopic Trees for Verification of Learning-Based Controllers
	1 Introduction
	2 Problem Statement and Approach
	3 Local Constrained Affine Dynamics
	4 Polytopic Trajectories
	5 Polytopic Trees
	5.1 Sampling Unclassified States and Checking Membership
	5.2 Growing the Polytopic Tree
	5.3 Probabilistic Completeness

	6 Example
	6.1 Controller Based on Formal Synthesis
	6.2 Decision Tree Controllers
	6.3 Neural Network Controllers

	7 Discussion and Future Work
	A Appendix
	A.1 Proof of Theorem 2

	References

	Mutant Accuracy Testing for Assessing the Implementation of Numerical Algorithms
	1 Introduction
	2 Background
	2.1 Sources of Error in Numerical Computations
	2.2 Oracles
	2.3 Testing Numerical Algorithms
	2.4 Mutation Testing

	3 Mutant Accuracy Testing
	3.1 Mutant Generation
	3.2 Mutant Evaluation

	4 Experiments
	4.1 Reference Numerical Implementations
	4.2 Test Cases
	4.3 Buggy Versions

	5 Results
	6 Discussion
	7 Conclusions and Future Work
	A Numerical Algorithms
	A.1 Simpson's Method
	A.2 Complete Cubic Spline
	A.3 Runge-Kutta Schemes

	References

	Author Index

