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Abstract
App stores are increasingly the preferred mechanism for
distributing software, including mobile apps (Google Play),
desktop apps (Mac App Store and Ubuntu Software Center),
computer games (the Steam Store), and browser extensions
(Chrome Web Store). The centralized nature of these stores
has important implications for security. While app stores
have unprecedented ability to audit apps, users now trust
hosted apps, making them more vulnerable to malware that
evades detection and finds its way onto the app store. Sound
static explicit information flow analysis has the potential to
significantly aid human auditors, but it is handicapped by
high false positive rates. Instead, auditors currently rely on
a combination of dynamic analysis (which is unsound) and
lightweight static analysis (which cannot identify informa-
tion flows) to help detect malicious behaviors.

We propose a process for producing apps certified to be
free of malicious explicit information flows. In practice, im-
precision in the reachability analysis is a major source of
false positive information flows that are difficult to under-
stand and discharge. In our approach, the developer provides
tests that specify what code is reachable, allowing the static
analysis to restrict its search to tested code. The app hosted
on the store is instrumented to enforce the provided spec-
ification (i.e., executing untested code terminates the app).
We use abductive inference to minimize the necessary in-
strumentation, and then interact with the developer to en-
sure that the instrumentation only cuts unreachable code. We
demonstrate the effectiveness of our approach in verifying a
corpus of 77 Android apps—our interactive verification pro-
cess successfully discharges 11 out of the 12 false positives.

Categories and Subject Descriptors F.3.2 [Semantics of
Programming Languages]: Program analysis; F.3.1 [Spec-
ifying and Verifying and Reasoning about Programs]: Me-
chanical verification

Keywords interactive verification; abductive inference;
specifications from tests

1. Introduction
Android malware has become increasingly problematic as
the popularity of the platform has skyrocketed in the past
few years [67]. App stores currently identify malware using
a two-step process: first, they use an automated malware de-
tection pipeline to flag suspicious apps, and then a human au-
ditor manually reviews flagged apps. The detection pipeline
typically combines dynamic analysis (e.g., dynamic infor-
mation flow [20]) and static analysis (e.g., identifying exe-
cution of dynamically loaded code [27]); subsequent man-
ual examination is necessary both because the static analy-
sis may be imprecise and because determining if suspicious
behavior is malicious requires understanding the behavior’s
purpose (e.g., a map app should not send location data over
SMS, but it may be okay for a location sharing app to do
so). For example, Google uses a combination of dynamic
analysis [7] and manual analysis [6] to audit Android apps
on Google Play.

Important families of malware include apps that leak lo-
cation, device ID, or contact information, and malware that
covertly send SMS messages to premium numbers [24, 66].
Static and dynamic analyses for finding explicit information
flows (i.e., flows arising only from data dependencies [52])
can be used to identify such malware [8, 20, 21, 24, 25].
While explicit information flows do not describe all mali-
cious behaviors, we focus on them because they can be used
to characterize a significant portion (60% according to [21])
of existing malware, especially in conjunction with addi-
tional light-weight static analyses [24, 27].

The drawback of dynamic explicit information flow anal-
ysis is the potential for false negatives. Malware can easily
avoid detection by making the relevant information flow dif-
ficult to trigger. For example, the malware can detect that
the execution environment is an emulator and disable mali-



cious behaviors [61]. While static explicit information flow
analysis avoids this problem, it can have a high false posi-
tive rate. Because of their global nature, false positive infor-
mation flows can be time-consuming for a human auditor to
understand and discharge. Furthermore, the rate at which the
auditor can evaluate suspicious applications is likely the bot-
tleneck for finding malware, implying that very few benign
apps should be flagged for manual review—i.e., the malware
detection pipeline must have a low false positive rate. As a
consequence, app stores currently rely on approaches that
achieve low false positive rates (possibly at the expense of
higher false negative rates), thereby excluding static explicit
information flow analysis.

Our goal is to design a sound verification process for en-
forcing the absence of malicious explicit information flows
that guarantees no false negatives and maintains a low false
positive rate. Our first key observation is that for static ex-
plicit information flow analysis, a large number of false pos-
itives are flows through unreachable code. Such false posi-
tives result from imprecision in the static reachability analy-
sis, which can be a major problem for static analyses [9, 16].
In our setting, this imprecision is caused both by an impre-
cise callgraph (due to virtual method calls) and by the lack of
path sensitivity. Using sound assumptions about possible en-
try points of an Android app can also lead to imprecision. In
our experiments, 92% of false positives were flows through
unreachable code. Oftentimes, the unreachable code is found
in large third-party libraries used by the app.

Our second key observation is that currently the burden
of identifying and discharging false positives is placed en-
tirely on the auditor, despite the fact that the developer is
most familiar with the app’s code. Our approach shifts some
of this burden onto the developer: we require that the devel-
oper specify which methods are reachable in the app. These
reachability specifications allow the static analysis to restrict
its search space to reachable code, thereby reducing the false
positive rate.

In practice, we envision that the developer will provide
reachability specifications by supplying tests that exercise
the app code—the specification we extract is that only tested
code is reachable. We use tests to avoid the senario where
a developer insists (either maliciously or to avoid effort)
that everything is reachable, thereby wasting auditor time
and eliminating the benefits of our approach. Tests are exe-
cutable, which means that the auditor can verify the correct-
ness of the specifications. Using tests as specifications has a
number of additional advantages. First, developers routinely
write tests, so this approach both leverages existing tests and
gives developers a familiar interface to the specification pro-
cess. Second, concrete test cases can benefit the auditor in
case the app must be manually examined. For our techni-
cal development, we assume that specifications are extracted
from tests, though any method for obtaining correct reacha-
bility specifications suffices.

Of course, a malware developer can attempt to evade de-
tection by specifying that the malicious code is unreachable.
Our solution is simple: we enforce the developer-provided
specifications by instrumenting the app to terminate if code
not specified to be reachable (e.g., not covered by any of the
developer-provided tests) is actually reached during runtime.
The instrumented app is both consistent with the developer’s
specifications, and statically verified to be free of explicit in-
formation flows.

In practice, it may be difficult for developers to provide
tests covering all reachable code. Therefore, we take an it-
erative approach to obtaining tests. To enforce the security
policy, it is only necessary to terminate the app if it reaches
untested code that may also lead to a malicious explicit in-
formation flow. Rather than instrument all untested program
statements, we find a minimum size set of untested state-
ments (called a cut) such that instrumenting these statements
to terminate execution produces an app that is free of explicit
information flows, and then propose this cut to the developer.
If the developer finds the cut unsatisfactory, then the devel-
oper can provide new tests (or other reachability informa-
tion) and repeat the process; otherwise, if the developer finds
the cut satisfactory, then the cut is enforced via instrumenta-
tion as before. This process repeats until either a satisfactory
cut is produced, or no satisfactory cut exists (in which case
the auditor must manually review the app). We call this pro-
cess interactive verification.

If the developer allows (accidentally or maliciously)
reachable code to be instrumented, then it may be possi-
ble for the app to terminate during a benign execution. To
make the process more robust against such failures, we can
produce multiple, disjoint cuts. We then instrument the pro-
gram to terminate only if at least one statement from every
cut is reached during an execution of the app.

More formally, our goal is to infer a predicate λ (the
statements in the cut) such that the security policy φ (lack
of explicit information flows) holds provided λ holds. We
compute λ using abductive inference [18]: given facts χ
(extracted from the app P) and security policy φ, abductive
inference computes a minimum size predicate λ such that (i)
χ ∧ λ |= φ (i.e., λ together with the known program facts χ
suffice to prove the security policy φ) and (ii) SAT(χ ∧ λ)
(i.e., λ is consistent with the known program facts χ). In
our setting, we augment χ with facts extracted from the
tests. Then the app P is instrumented to ensure that λ holds,
producing a verified app P ′. Finally, we extend this process
to infer multiple disjoint cuts λ1, ..., λn, and instrument P to
terminate only if every λi fails.

We propose a novel algorithm for solving the abduc-
tive inference problem for properties formulated in terms of
context-free language (CFL) reachability. The security pol-
icy φ states that certain vertices in a graph representation of
the program are unreachable. Our key insight is to formulate
the CFL reachability problem as a constraint system, which



we encode as an integer linear program. Finding minimum
cuts in turn corresponds to a minimum solution for the inte-
ger linear program. Our work has three main contributions:

• We formalize the notion of interactive verification for
producing verified apps using abductive inference (Sec-
tion 3).
• For properties φ formulated in terms of CFL reachability

(Section 4), we reduce the abductive inference problem
to an integer linear program (Section 5).
• We implement our framework (Section 6) for producing

Android apps verified to be free of explicit information
flows, and show that our approach scales to large An-
droid apps, some with hundreds of thousands of lines of
bytecode (Section 7).

2. Motivating Example
Consider the Java-like code shown in Figure 1, which we
call PonCreate. Suppose that a developer submits PonCreate to
the app store. The first step is to run an information flow
analysis onPonCreate. We assume that the information sources
and sinks are given (or inferred, see [35]). Sources and sinks
are annotated in the Android framework—we inline these
annotations as comments in PonCreate; the comment on line 2
says that the argument passed to sendHTTP is an information
sink and the comment on line 6 says that the return value of
getLocation is an information source. The goal is to prove
that the user’s location does not flow to the Internet:

φflow = @(source-to-sink explicit information flow).

As discussed earlier, one major source of false positive in-
formation flows is unreachable code, so we remove parts
of the program that are statically proven to be unreachable.
However, statically computed reachability information can
be very imprecise; we focus on imprecision due to the static
callgraph. For example, using a callgraph generated by class
hierarchy analysis, the analysis cannot determine that line
12 cannot call runMalice.run. Even with a more precise
callgraph, the static analysis may not be able to prove that
flag is false in every execution. Hence, our information
flow analysis finds a flow from getLocation.return to
sendHTTP.param—i.e., it fails to prove φflow.

Our approach is to search for a cut, which is a subset
of statements that can be removed from PonCreate so that
the resulting program P ′onCreate satisfies φflow. To remove a
statement s fromPonCreate, we terminatePonCreate if execution
reaches the program point immediately before s (i.e., if s is
about to be executed). More formally, let S∗ be the set of
reachable program statements. Because our static analysis is
sound, the set of reachable statements S computed by our
static analysis overapproximates S∗ (i.e., S∗ ⊆ S). Let λ
have form

λ =
∧
s∈Eλ

(s 6∈ S∗),

1. void leak(boolean flag, String data) {

2. // @Sink("sendHTTP.param")

3. if (flag) sendHTTP(data); }

4. @Entry("onCreate")

5. void onCreate() {

6. // @Source("getLocation.return")

7. String loc = getLocation();

8. Runnable runMalice = new Runnable() {

9. void run() { leak(true, loc); }}

10. Runnable runBenign = new Runnable() {

11. void run() { leak(false, loc); }}

12. runBenign.run(); }

Figure 1. An app PonCreate for which the static analysis po-
tentially finds a false positive information flow. The com-
ment in line 2 indicates that the first argument of sendHTTP
is a sink, and the comment in line 6 indicates that the return
value of getLocation is a source.

where Eλ ⊆ S. In other words, λ asserts that the subset
Eλ of program statements are unreachable. Then, a cut is
a predicate λ such that if every statement in s ∈ Eλ is
unreachable, then φflow holds. Any of the following choices
for Eλ would allow the static analysis to prove φflow for
PonCreate:

a. {3.sendHTTP(data)}
b. {7.getLocation()}
c. {9.leak(true,loc)}

Once our system has computed a cut λ, it returns λ for the
developer to inspect, along with the instrumented program

P ′onCreate = PonCreate − Eλ.

However, not all of the above choices for Eλ are desirable.
For example, suppose our analysis infers Eλ = (b)—then,
Eλ ∩ S∗ 6= ∅, so removing Eλ from PonCreate would result
in a program that terminates during a valid execution. We
call such a cut invalid (as opposed to a valid cut, which only
removes unreachable statements; i.e., Eλ ∩ S∗ = ∅).

Seeing this problem, the developer returns a test that exe-
cutes onCreate, showing that (b) is reachable. By requiring
the the developer provides a test where the cut is invalid, we
obtain a proof of the invalidity, which prevents the devel-
oper from automatically rejecting any cut. Upon executing
onCreate, our system observes that (b) is reachable. Our
system runs the inference algorithm to compute a new cut,
this time prohibiting choice (b). The inference algorithm can
return either (a) or (c). Suppose that this time, Eλ = (a) is
returned; then the developer accepts the cut Eλ because re-
movingEλ from PonCreate does not remove any functionality.

Now our analysis produces P ′onCreate = PonCreate − Eλ by
instrumenting PonCreate to enforce that 3.sendHTTP(data)
is unreachable. By the definition of a cut, φflow provably
holds for P ′onCreate, so the app can be safely placed on the
app store. Because (3.sendHTTP(data) 6∈ S∗) is true for



PonCreate, we know P ′onCreate is semantically equivalent to
PonCreate. Furthermore, the instrumentation inP ′onCreate incurs
no runtime overhead, since it is unreachable.

There are three alternative scenarios:

• Our information flow analysis may prove φflow forPonCreate,
so no instrumentation is needed.
• There may not exist a valid cut, in which case the auditor

must manually inspect the app.
• Finally, the developer may incorrectly accept a cut that

removes reachable code (i.e., an invalid cut). In this case,
the instrumented app P ′onCreate may abort during usage,
but safety is maintained.

Our experiments show that a valid cut exists for the majority
of false positive information flows that occur in our bench-
mark. Furthermore, the number of interactions required to
find a valid cut is typically small, especially when using mul-
tiple cuts; see Section 7.

2.1 Analyzing Callbacks
In addition to imprecision in the callgraph, another source
of imprecision is whether to treat runMalice.run as a call-
back. Much of an Android app’s functionality is executed via
callbacks that are triggered when certain system events oc-
cur, so callbacks must be annotated as program entry points.
The Android framework provides thousands of callbacks;
however, many of these callbacks are poorly documented,
which makes manually identifying and annotating callbacks
a time consuming and error prone task. If a callback annota-
tion is missing, then reachable code may be excluded from
the analysis, introducing unsoundness.

On the other hand, every callback must override an An-
droid framework method—we call any such method a po-
tential callback. Of course, not every potential callback
is a true callback; for example, any method overriding
Object.equals is a potential callback but not a true call-
back. In our analysis, we make the sound assumption that
every potential callback is a callback—that is, we conserva-
tively overestimate the set of callbacks. We then infer a cut λ
as before. For example, in Figure 1, the static analysis treats
runMalice.run as a potential callback, and thus reports the
flow of location data to the Internet. The abductive inference
algorithm can return the cut

λ = (3.sendHTTP(data) 6∈ S∗)

which as before guarantees that the program is free of ex-
plicit information flows.

While more precise analyses such as [15] exist for soundly
identifying callbacks, they are still overapproximations, and
furthermore may be prone to false negatives (e.g., failing to
handle native code). Our approach is both simple to imple-
ment and sound.

3. Interactive Verification
We model the imprecision of static analysis by categorizing
program facts as may-facts and must-facts. May-facts are
facts that the static analysis cannot prove are false for all
executions. For example, (3.sendHTTP(data) ∈ S∗) is
a may-fact for PonCreate. Conversely, must-facts χ are facts
that are shown to hold for at least one concrete execution
of P . For example, since 7.getLocation() is executed
by running onCreate, this is a must-fact for PonCreate, i.e.
χ = (7.getLocation() ∈ S∗) ∧ (...).

Our static analysis takes as input a cut λ that asserts that
some may-facts are false; for example, the predicate

λ9,11 =(9.leak(true,loc) 6∈ S∗)
∧ (11.leak(false,loc) 6∈ S∗)

is a cut with which the static analysis can verify φflow for
PonCreate. These assumptions have a (finite) lattice structure
(Λ,≤,>,⊥), where λ ≤ µ means: if χ ∧ λ |= φ holds, then
χ∧µ |= φ holds as well (i.e., µ makes stronger assumptions
than λ). For example, (9.leak(true,loc) 6∈ S∗) ≤ λ9,11
because λ9,11 makes stronger assumptions. The predicate ⊥
corresponds to no assumptions (and is guaranteed to hold),
and > corresponds to assuming that all may-facts are false.

We are interested in the setting where predicates corre-
spond to sets of program statements:

• Predicates λ correspond to sets Eλ ⊆ S:

λ =
∧
s∈Eλ

(s 6∈ S∗),

where S is the set of program statements and S∗ is the
set of reachable program statements. In other words, λ
asserts that statements s ∈ Eλ are not reachable.
• Conjunction of predicates corresponds to set union:

Eλ1∧λ2
= Eλ1

∪ Eλ2
,

i.e., two cuts hold simultaneously if all of the statements
from both cuts are unreachable.
• Partial order corresponds to set inclusion:

λ ≤ µ if Eλ ⊆ Eµ.

In other words, smaller sets make fewer (therefore,
weaker) assumptions.
• Top and bottom: E> = S and E⊥ = ∅.

Given λ ∈ Λ, our static analysis tries to prove χ∧ λ |= φ
(i.e., it tries to prove φ assuming λ). When can we hope
to find a valid cut λ that helps the static analysis prove φ?
Consider three cases:

1. The static analysis proves χ∧ ⊥|= φ. Since ⊥ always
holds, the static analysis has proven that φ holds.



2. The static analysis cannot prove χ∧ ⊥|= φ, but proves
χ ∧ > |= φ. In this case, we can search for a valid cut
λ ∈ Λ with which the static analysis can prove φ.

3. The static analysis cannot prove χ ∧ > |= φ. This means
that even making best-case assumptions, the static anal-
ysis fails to prove φ, so no cut λ ∈ Λ can help the static
analysis prove φ.

In the first case, the app is already free of malicious infor-
mation flows. In the third case, the app must be sent to the
auditor for manual analysis. The second case is our case of
interest, which we describe in more detail in the subsequent
sections.

3.1 Abductive Inference
Our goal is to find a valid cut λ ∈ Λ with which the static
analysis can verify that the policy φ holds. Our central tool
will be a variant of abductive inference where the known-
facts χ are extracted from tests:

DEFINITION 3.1. Given must-facts χ extracted from dy-
namic executions, the abductive inference problem is to find
a cut λ ∈ Λ such that

χ ∧ λ |= φ and SAT(χ ∧ λ). (1)

Additionally, we constrain λ to be minimal, i.e. there does
not exist µ ∈ Λ satisfying (1) such that µ < λ.

Abductive inference essentially allows us to compute mini-
mal specifications λ that are simultaneously consistent with
the must-facts χ and verify the policy φ. In our setting, the
abductive inference problem corresponds to finding a set Eλ
such that:

• Removing Eλ from S suffices to prove φflow (i.e., remov-
ing Eλ from P guarantees that there are no source-sink
flows in the resulting app P ′).
• Eλ is consistent with must-facts χ (i.e., Eλ does not con-

tain any statements observed during a dynamic execution
of P).
• Eλ has minimum size.

We assume access to an oracle we can query to obtain the
tests used to extract must-facts χ:

DEFINITION 3.2. An oracle O is a function that, on input
cut λ and program P , returns a test Tnew showing that λ does
not hold for P , or returns ∅ if λ holds for P .

In our setting, the oracle is the developer and the inferred
cut λ is shown to the developer as the set of statements
Eλ to be removed from the program. If the developer is
not satisfied with Eλ, then the developer can produce a
new test case such that the extracted must-facts χnew satisfy
UNSAT(χnew∧λ)—i.e., χnew shows that Eλ contains reach-
able statements, so λ is invalid. The tool updates the must-
facts χ← χ∧χnew and reruns the inference procedure. This

Figure 2. The interactive verification system. One iteration
of the system proceeds as follows: (i) The system produces
an inferred cut λ that suffices to prove absence of source-
sink flows. (ii) The oracle O (which is the developer) either
accepts λ, or generates a new test Tnew showing that λ is
invalid.

process repeats until the developer is satisfied withEλ, upon
which verification is complete. This process is performed by
the refinement loop in function INTERACTIVECUT(P, T ) in
Algorithm 1.

3.2 Instrumenting Cuts
Given cut λ, our framework produces

P ′ ← INSTRUMENT(P, λ),

where P ′ is instrumented to abort if λ is violated. The in-
strumentation guarantees that λ holds for P ′, so φ holds for
P ′ as well (as long as φ is not related to termination prop-
erties of P ′). Furthermore, if λ holds for P , then P and P ′
are semantically equivalent. The procedure is summarized in
Algorithm 1, and an overview of the system (for callgraph
specifications discussed in Section 5) is shown in Figure 2.

The properties φ we have in mind are security policies,
for example the policy φflow that no malicious explicit in-
formation flow occurs, and abductive inference computes a
cut Eλ such that removing Eλ from P produces an app P ′
with no malicious flows. The instrumentation enforces Eλ
simply by terminating execution if s ∈ Eλ is reached. In
our example in Figure 1, we instrument PonCreate to ensure
that the cut λ3 = (3.sendHTTP(data) 6∈ S∗) holds. Then
INSTRUMENT(PonCreate, λ3) adds instrumentation that ter-
minates PonCreate if 3.sendHTTP(data) is reached.

3.3 Improving Precision Using Multiple Cuts
We can improve precision by computing multiple sufficient
cuts, which must all fail before the instrumentation termi-
nates P ′. In other words, we want λ1, ..., λn such that

χ ∧ (λ1 ∨ ... ∨ λn) |= φ and ∀i, SAT(χ ∧ λi).

However, we need to avoid choosing λ1 = ... = λn (since
then the predicates are correlated). To do so, we assume



Algorithm 1 Algorithm for interactively verifying P . Here,
the function CUT solves the abductive inference problem (al-
gorithm described in Section 5), and the function EXTRACT-
FACTS constructs the must-facts χ (described in Section 4).

procedure INTERACTIVECUT(P, φ)
T ← ∅
while true do

[χ,Λ]←EXTRACTFACTS(P, T )
λ←CUT(φ, χ,Λ)
if λ = ∅ then

return ∅
end if
Tnew ← O(P, λ)
if Tnew = ∅ then

return λ
end if
T ← T ∪ Tnew

end while
end procedure
procedure INTERACTIVEVERIFY(P, φ)

λ←INTERACTIVECUT(P, φ)
return INSTRUMENT(P, λ)

end procedure

that Λ comes with a meet operator u, where λ u µ should
mean “intersection of specifications λ and µ”. We require
that the predicates be disjoint—i.e., λi u λj =⊥ for all
1 ≤ i < j ≤ n. This is stronger than requiring that the
predicates λi are distinct, but maximizes the independence
of the predicates, thus making it more likely that at least one
of them holds.

In our setting, where predicates λ correspond to sets
Eλ ⊆ S, the meet operator is intersection:

Eλuµ = Eλ ∩ Eµ.

This satisfies the requirement λuµ ≤ λ because Eλ∩Eµ ⊆
Eλ. Now, the condition λi u λj =⊥ says that our cuts Eλi
should be non-intersecting: Eλi ∩ Eλj = ∅.

We incrementally construct the predicates λi. Our first
predicate is λ1 ←CUT(φ, χ,Λ). When computing λ2, we
need to ensure that λ1 u λ2 =⊥—i.e., we need to exclude
every predicate in the downward closure

(↓ {λ1}) = {µ ∈ Λ | µ ≤ λ1}

of λ1 from consideration. To exclude these predicates, we
add them to χ:

χ1 ← χ ∧
∧

λ∈(↓{λ1}−{⊥})

(¬λ).

Now consider λ2 ←CUT(φ, χ1,Λ). Let ν = λ1 u λ2. Note
that ν ∈ (↓ {λ1}), since ν ≤ λ1. However, CUT returns
λ2 such that SAT(χ1 ∧ λ2), and χ1 = (¬ν) ∧ (...) unless
ν 6∈ (↓ {λ1} − {⊥}), so it must be the case that ν =⊥.

In general, after computing the first i − 1 predicates
{λ1, ..., λi−1}, we compute

χi ← χi−1 ∧
∧

µ∈(↓{λi−1}−{⊥})

(¬µ),

and choose λi ←CUT(φ, χi,Λ). Algorithm 2 uses this pro-
cedure to compute α = λ1 ∨ ... ∨ λn. Note that at some
point, the problem of computing CUT becomes infeasible,
after which no new sufficient cuts can be computed.

In our setting,

µ ∈↓ {λ} if Eµ ⊆ Eλ.

To compute multiple cuts, we need an efficient way to com-
pute the conjunction over (↓ {λi} − {⊥}). Note that∧
µ∈(↓{λi}−{⊥})

(¬µ) =
∧

s∈Eλi

(¬µ{s}) =
∧

s∈Eλi

(s ∈ S∗).

To see the first equality, note that the conjunction on the
right-hand side is over a subset of the conjunction on the left-
hand side, so the left-hand side implies the right-hand side.
Conversely, every µ ∈ (↓ {λi} − {⊥}) can be expressed
as a (nonempty) conjunction µ{s1} ∧ ... ∧ µ{sm}, where
s1, ..., sm ∈ Eλi . Therefore¬µ = (¬µ{s1})∨...∨(¬µ{sm}),
which is implied by the right-hand side.

The resulting update rule is

χi ← χi−1 ∧
∧

s∈Eλi−1

(s ∈ S∗).

In other words, the next call to CUT assumes that every
statement s ∈ Eλ is in S∗. Since λiuλj =⊥ is equivalent to
Eλi ∩Eλj = ∅, this condition is correctly enforced because
χ is updated so that every statement that occurs in Eλi is
prevented from occurring in Eλj (for j > i).

To instrument the program to enforce multiple cuts α =
λ1 ∨ ... ∨ λn, we keep a global array of Boolean variables
[b1, ..., bn], all initialized to false. Whenever a predicate λi is
violated, we update bi ← true. If b1 ∧ ... ∧ bn ever becomes
true, then all of the predicates λi have been violated and we
terminate P ′.

Algorithm 2 Algorithm for computing multiple cuts.
procedure MULTIPLECUT(φ, χ,Λ, n)

α← false
for all 1 ≤ k ≤ n do

λi ←CUT(φ, χ,Λ)
if λi 6= ∅ then

α← α ∨ λi
χ← χ ∧

∧
µ∈(↓{λi}−{⊥})(¬µ)

end if
end for
return α

end procedure



1. v=new X()⇒ o
New−−→ v

2. u=v ⇒ v
Assign−−−→ u

3. u.f=v ⇒ v
Put[f ]−−−→ u

4. u=v.f ⇒ v
Get[f ]−−−→ u

5. @Source(v)⇒ v
SrcRef−−−→ v

6. @Sink(v)⇒ v
RefSink−−−−→ v

7. v σ−→ v′ ⇒ v′
σ−→ v (where σ = σ)

Figure 3. Program fact extraction rules.

4. Background on CFL Reachability
We compute cuts for a static (explicit) information flow anal-
ysis formulated as a context-free language (CFL) reachabil-
ity problem. Our analysis does not handle implicit informa-
tion flows (i.e., where information is leaked due to control
flow decisions), and furthermore is flow-, context-, and path-
insensitive.

The first step of performing the analysis is to extract a
graph G = (V,E) from the given program P , along with a
context-free grammar (CFG) C = (Σ, U, P, T ), where Σ is
the set of terminals,U is the set of non-terminals, P is the set
of productions, and T is the start symbol. We assume that C
is normalized, i.e. every production has the form A→ B or
A → BD [39]. The edges e ∈ G are labeled with terminals
σ ∈ Σ, i.e., e = v

σ−→ v′ (for some v, v′ ∈ V ). The transitive
closure GC of G under C is the minimal sized solution to
the following constraint system:

• e ∈ G
e ∈ GC

• v
B−→ v′ ∈ GC , A→ B ∈ C

v
A−→ v′ ∈ GC

• v
B−→ v′′

D−→ v′ ∈ GC , A→ BD ∈ C

v
A−→ v′ ∈ GC

The policy we are trying to enforce has the form φ = e∗ 6∈
GC , where e∗ = vsource

T−→ vsink for the source vertex vsource
and the sink vertex vsink. Our exposition focuses on the case
where there is a single source and a single sink, but our
techniques generalize to policies φ excluding edges between
multiple sources and sinks.

4.1 Explicit Information Flow Analysis
Given a program P , the static analysis constructs the labeled
graph G = (V,E). Here, V = M ∪ H ∪ V , where M is
the set of methods, H is the set of abstract objects (which
correspond to object allocation sites), and V is the set of ref-
erence variables. Additionally, a distinguished source vertex
vsource ∈ V and a distinguished sink vertex vsink ∈ V are
annotated by the user—for example, in Figure 1, the return
value of getLocation is annotated as a source, and the pa-
rameter of sendHTTP is annotated as a sink.

8. FlowsTo→ New

9. FlowsTo→ FlowsTo Assign

10. FlowsTo→ FlowsTo Put[f ] FlowsTo FlowsTo Get[f ]

11. SrcSink→ SrcRef FlowsTo FlowsTo RefSink

12. A→ A1...Ak ⇒ A→ Ak...A1 (where A = A)

Figure 4. Productions for Cflow.

The edges e ∈ E encode relations between the variables
and abstract objects, where the relation is explained by the
label σ ∈ Σ. Rules for generating G are shown in Figure 3.
Rules 1-4 handle statements that are used in the points-to
analysis [56]. Rule 1 says that the contents of abstract ob-
ject o flow to the reference v (more formally, v may point
to o). Rule 2 encodes the flow when a reference variable v
is assigned to another reference variable u. Rules 3 and 4
record the flows induced by field reads (or gets) and writes
(or puts)—note that there is a distinct put/get terminal for
each field f ∈ F (where F is the set of fields in the pro-
gram). Additionally, we handle interprocedural information
flow by including (i) assignment edges from the arguments
in the caller to the formal parameters of the callee, and (ii)
assignments from the formal return values of the callee to
the left-hand side of the invocation statement in the caller.

Rules 5-6 mark vertices as sources and sinks based on
annotations in the library—Rule 5 adds a self-loop on the
source vertex, and Rule 6 adds a self-loop on the sink ver-
tex. Finally, Rule 7 is a technical device that allows us to
express paths with “backwards” edges. It introduces a la-
bel σ to represent the reversal of an edge labeled σ. Fig-
ure 5 shows the part of the graph extracted from the code
in Figure 1 (using the rules in Figure 3) that is relevant to
finding the source-sink flow from getLocation.return to
sendHTTP.param.

Information flows through the graph correspond to source-
sink paths in the CFG Cflow defined as follows:

Σflow ={New,Assign,SrcRef,RefSink}
∪ {Put[f ],Get[f ] | f ∈ F}

Uflow ={New,Assign,FlowsTo,SrcSink}

where F is the set of fields used in the program. We also
include symbols σ andA in Σflow andUflow, respectively. The
start symbol of the grammar is Tflow = SrcSink. Productions
are shown in Figure 4. Rules 8-10 build the points-to relation
o

FlowsTo−−−−→ v, which means that variable v ∈ V may point to
abstract object o ∈ H. Rule 11 produces a source-sink edge
if the value in source vertex vsource is aliased with the value in
sink vertex vsink. Finally, Rule 12 introduces a reversed edge

v′
A−→ v for every non-terminal edge v A−→ v′. In this way,

Rule 12 plays the same role for non-terminal edges that Rule
10 plays for terminal edges. It is also possible to capture
implicit flows through framework methods, see [11].



Figure 5. A part of the graph G for the code in Figure 1.
Solid edges are edges extracted using the rules in Figure 1.
Dashed edges are edges added by the rules in Figure 4.
Backwards edges are omitted for clarity.

In Figure 5, the dashed edges are edges added when
computing the transitive closure. For example, because we

have edge return
New−−→ olocation, Rules 8 and 12 add the

edge return FlowsTo−−−−→ olocation. Also, because we have path

olocation
New−−→ return

Assign−−−→ loc
Assign−−−→ data

Assign−−−→ text,

Rules 8 and 9 add edge olocation
FlowsTo−−−−→ text. Now we have

path

return
SrcRef−−−→ return

FlowsTo−−−−→ olocation

FlowsTo−−−−→ text
RefSink−−−−→ text,

from which Rule 11 adds return SrcSink−−−−→ text.

5. Cuts for CFL Reachability
In this section, we describe an algorithm for performing
interactive verification in the case of context-free language
reachability. Let C be a context-free grammar, and let G =
(V,E) be a labeled graph constructed from a program P .
We consider policies φ of the form φ = (e∗ 6∈ GC), where
e∗ = vsource

T−→ vsink. This question can be answered in
polynomial time [39]. However, the graph constructed by
the static analysis in general is an approximation of the true
graph G∗ = (V ∗, E∗), i.e. G∗ ⊆ G, which potentially
introduces false positive source-sink paths.

In Section 3, we discuss predicates Eλ ⊆ S correspond-
ing to sets of program statements. In this section, we slightly
modify notation and consider predicates Eλ ⊆ E that corre-
spond to sets of edges. All of our cuts are eventually con-
verted to sets of statements—as can be seen in Figure 3,
edges correspond directly to statements, except for edges of

the form v
SrcRef−−−→ v and v RefSink−−−−→ v that do not occur in our

cuts.
The must-facts are predicates (e ∈ G∗) where e is an

edge certain to be in G∗, whereas the may-facts are predi-
cates (e ∈ G∗) where it is uncertain whether e ∈ G∗. Let
Ep ⊆ E be this set of may-edges; then e ∈ Ep corresponds
to may-fact (e ∈ G∗). Our goal is to infer specifications of
the form

λ =
∧
e∈Eλ

(e 6∈ G∗)

where Eλ ⊆ Ep. In other words, λ specifies that the edges
in Eλ are not in G∗. The partial ordering on the lattice Λ
of specifications is λ ≤ µ if Eλ ⊆ Eµ; i.e., λ makes fewer
assumptions about which edges are not in G∗.

In this setting, the abductive inference problem is to find
a minimal subset Eλ ⊆ Ep such that λ |= φ holds for P . All
else being equal, we prefer to find the smallest cuts possible,
so we add the stronger constraint that |Eλ| is minimized.

DEFINITION 5.1. Let Gλ = (V,E − Eλ); i.e. the subgraph
of G with edges e ∈ Eλ removed. A predicate λ ∈ Λ is a
sufficient cut if and only if e∗ 6∈ GCλ . The CFL reachability
minimum cut problem is to find a sufficient cut λ that min-
imizes |Eλ|—i.e., there does not exist any sufficient cut µ
such that |Eµ| < |Eλ|.
The CFL minimum cut problem is NP-hard—we give a
proof in Appendix A.

5.1 Algorithms for CFL Reachability Cuts
We describe a reduction of the minimum cut problem to
an integer linear program (ILP). The objective of the ILP
is to minimize |Eλ| over the set of predicates {λ ∈ Λ |
e∗ 6∈ GCλ }. We need to translate the constraints on λ into
linear inequalities. To do so, we first recast the problem by
introducing the Boolean variables δe = (e 6∈ GCλ ) ∈ {0, 1}
for every edge e ∈ GC—i.e., δe = 1 if removing Eλ from E
causes e to be removed fromG. We can recoverEλ given the
values δe, i.e. Eλ = {e ∈ Ep | δe = 1}. In this formulation,
the objective is to minimize |Eλ| =

∑
e∈Ep δe.

Recall that e = v
A−→ v′ ∈ GCλ if there exists e′ = v

B−→
v′′ and e′′ = v′′

D−→ v′ in GCλ such that A → BD ∈ C (we
describe the case of binary productions—the case of unary
productions is similar); we denote such a triple as e→ e′e′′.
Then δe ⇒ (δe′ ∨ δe′′) must hold—i.e., e is removed from
GCλ only if either e′ or e′′ is removed from GCλ . Next, for
the source-sink edge e∗, we add constraint δe∗ = 1, which
enforces (e∗ 6∈ GCλ ). Finally, we require that δe = 0 for
edges e ∈ E−Ep, since these edges cannot be removed from
the graph. These constraints translate into linear inequalities:

1. Productions: δe ≤ δe1 + ... + δek for every production
e→ e1...ek (k ∈ {1, 2}).

2. Remove the source-sink edge: δe∗ = 1.



3. Retain must-edges: δe = 0 for every e ∈ E − Ep
The first set of constraints follows because δe = 1 only if
δei = 1 for some 1 ≤ i ≤ k.

The number of constraints generated by this approach is
intractable for the typical ILP solver, so we introduce two
optimizations to reduce the number of constraints. First, we
construct the constraints in a top-down manner—i.e., we
only include productions contained in some derivation of
e∗. If an edge e ∈ GC is not contained in any derivation
of e∗, then the presence of e in GCλ does not affect the
presence of e∗ inGCλ , so e can be ignored. This optimization
is implemented by first processing all productions e∗ →
e1...ek (k ∈ {1, 2}); for every input ei, we recursively add
productions for ei, which recursively adds every production
in some derivation of e∗.

Second, any facts added to GC produced from only the
must-edges (i.e., from edges e ∈ E − Ep) are present in
GCλ for every λ ∈ Λ. Note that the graph G> = (V,E−Ep)
contains no edges e ∈ Ep, so the edges e ∈ GC> are produced
by must-facts alone. This means that we can first compute
GC>, and then only include variables δe for e ∈ (GC −GC>).
More precisely, consider a production e→ e′e′′:

1. If e′, e′′ ∈ GC>, then e ∈ GC>, so we do not add any
constraints.

2. If e′ ∈ GC> but e′′ 6∈ GC>, then we treat this as the unary
production e→ e′′.

3. If e′, e′′ 6∈ GC>, then we treat this as e→ e′e′′ as before.

Algorithm 3 summarizes the procedure. The above discus-
sion shows that the set Ep returned by Algorithm 3 solves
CFL reachability minimum cut problem.

In practice, we include one additional constraint. For σ ∈
Σ, edges e1 = v

σ−→ v′ and e2 = v′
σ−→ v are distinct edges,

but they are derived from the same program fact. To account
for this, we impose the additional constraint δe1 = δe2 for
such pairs of edges.

For example, consider the graph in Figure 5. The graph
shown in Figure 6 summarizes the possible derivations of
the edge return

SrcSink−−−−→ param from the terminal edges;
to distinguish this graph from GC we refer to the edges of
this graph as arrows and the vertices as nodes. There are
two types of nodes—nodes corresponding to productions
e→ e1...ek (shown as black circles), and nodes correspond-
ing to edges in GC (shown as boxes containing the corre-
sponding edge). Each production e → e1...ek has one in-
coming arrow from e, and one outgoing arrow to each of the
edges e1, ..., ek. Let

Ep ={v Assign−−−→ v′ | v formal return value}

∪ {v Assign−−−→ v′ | v′ formal parameter}.

In other words, Ep is the set of edges corresponding to
method invocations (recall that we treat each method invoca-
tion x=foo(y) as an assignment from argument y to formal

Algorithm 3 This algorithm solves the CFL reachability
minimum cut problem. Here, S maps variables δe to their
value in the solution to the ILP.

procedure CFLCUT(C,G,Ep)
GC ←CLOSURE(C,G); GC> ←CLOSURE(C,G− Ep)
C ← {δe∗ = 1}
W ← [e∗]; X ← {e∗}
while ¬W .EMPTY() do

e←W .POP()
for all e→ e1...ek do

F ← {ei | ei 6∈ GC>}
C ← C ∪ {δe ≤

∑
e∈F δe}

W ←W.CONCAT([e ∈ F | e 6∈ X])
X ← X ∪ {e ∈ F | e 6∈ X}

end for
end while
S ←SOLVEILP(min

∑
e∈Ep δe, C)

return {e ∈ Ep | S(δe) = 1}
end procedure

parameter foo.param and an assignment from formal return
value foo.return to the defined variable x).

Each production generates one constraint δe ≤ δe1 + ...+
δek in the ILP, though these constraints are simplified using
the two optimizations described above. Figure 7 shows the
constraints generated by Algorithm 3. Constraint 1 enforces
that the SrcSink edge is in the cut. Constraint 2 enforces the
production

(return
SrcSink−−−−→ param)→ (return

SrcRef−−−→ return

FlowsTo−−−−→ olocation
FlowsTo−−−−→ param

RefSink−−−−→ param)

but the first, second, and fourth edges on the right-hand
side of the production are in GC>, so they are not included
in the constraint. The third edge olocation

FlowsTo−−−−→ param is
produced from the three edges

return
Assign−−−→ loc

Assign−−−→ data
Assign−−−→ param,

which is captured by Contraints 3-5.

6. Implementation
We have implemented the interactive verification algorithm
for explicit information flow analysis of Android apps within
the Chord program analysis framework [40] modified to use
Soot as a front end [60]. We use the ILP solver SCIP [2].
While our information flow analysis (described in Section 4)
is not context-sensitive, we compute a 2-CFA points-to anal-
ysis in BDDBDDB [62] and use it to filter the points-to set
we compute. More precisely, during the computation of the
transitive closure of G, whenever an edge e = o

FlowsTo−−−−→ v
is produced, we check if the 2-CFA points-to set contains e.
If not, we remove e from the graph and continue the compu-
tation.



App LOC Malware FP/TP Ep Choice |{e∗}| |Ep| |V| |C| |Copt|
|Copt|
|C| Run Time (s) |Eλ1

| |Eλ2
|

411524 389K Yes TP E
param+ret
p 4 28K 144K 1982K 264K 0.13 64.350 6 7

0C2B78 322K Yes TP E
param
p 3 23K 491K 5076K 956K 0.19 29.483 8 10

f7d928 258K Yes TP E
param
p 4 48K 882K 18969K 1683K 0.089 663.237 11 25

tingshu 240K Yes TP E
param
p 5 27K 655K 7530K 1280K 0.17 101.259 26 36

16677 200K Yes TP E
param+ret
p 4 40K 423K 6896K 809K 0.12 243.154 4 5

phone 198K Yes TP E
param
p 3 8K 83K 968K 156K 0.16 11.882 11 11

583cc9 195K Yes TP E
param
p 4 45K 792K 12575K 1526K 0.12 276.256 20 23

da8c48 190K Yes TP E
param
p 1 5K 6K 166K 8K 0.051 0.224 1 1

4292c1 155K Yes TP E
param+ret
p 3 40K 1258K 10155K 2453K 0.24 92.545 1 1

5127eb 142K Yes TP E
param+ret
p 2 43K 289K 4579K 548K 0.12 426.992 5 5

1c2514 100K Yes TP E
param+ret
p 1 28K 347K 3182K 649K 0.20 181.696 3 4

wifi 98K Yes TP E
param+ret
p 3 31K 579K 6568K 1129K 0.17 281.255 8 16

browser 346K No FP E
param
p 4 51K 669K 13718K 129K 0.094 32.079 7 19

00714C 248K Yes FP E
param
p 4 51K 986K 16784K 1922K 0.11 118.056 21 25

highrail 247K Yes FP E
param+ret
p 3 39K 587K 9310K 1130K 0.12 451.537 9 9

flow 131K No FP E
param+ret
p 4 31K 409K 4759K 792K 0.17 48.796 11 12

calendar 125K Yes FP E
param+ret
p 4 31K 226K 3916K 430K 0.11 13.233 5 5

19780d 87K Yes FP E
param+ret
p 4 28K 244K 3742K 467K 0.13 894.685 21 22

aab740 86K Yes FP E
param+ret
p 4 28K 241K 3695K 461K 0.13 305.971 21 21

9d1da3 56K Yes FP E
param+ret
p 5 20K 217K 4321K 420K 0.097 16.862 4 4

018ee7 53K Yes FP E
param+ret
p 3 21K 148K 1952K 268K 0.098 9.844 5 5

ca70f4 44K Yes FP E
param+ret
p 3 10K 57K 456K 106K 0.23 10.402 3 4

battery 33K Yes FP E
param+ret
p 3 14K 98K 1076K 185K 0.17 377.113 12 13

7d43c8 27K Yes FP E
param+ret
p 4 9K 33K 368K 60K 0.16 5.599 3 4

Avg. 83K – – – 2.32 12K 76K 2437K 338K 15.9 42.36 5.85 7.74

Figure 8. Statistics for some of the Android apps used in the experiments: the number of lines of Jimple bytecode (LOC),
whether the app exhibited a false positive information flow (FP/TP), the number of source-sink edges |{e∗ = vsource

T−→ vsink ∈
GC}|, the number of may-edges |Ep|, the number of variables |V| in the ILP, the unoptimized number of constraints |C| and
the optimized number of constraints |Copt|, the percentage |Copt| compared to |C|, the run time of the ILP solver, and the size of
the first and second cuts (on the first iteration of our algorithm). Where relevant, we give statistics for the largest ILP solved
for the given app. Also, we include the average values over the entire corpus of 77 apps (where Ep is taken to be Eparam

p ).

Figure 6. The derivation tree for the edge return
SrcSink−−−−→

param in the graph in Figure 5.

max
{
δ(return

Assign−−−→ loc) + δ(data
Assign−−−→ param)

}
subject to

1. δ(return SrcSink−−−−→ param) = 1

2. δ(return SrcSink−−−−→ param) ≤ δ(olatitude
FlowsTo−−−−→ param)

3. δ(olatitude
FlowsTo−−−−→ param) ≤ δ(olatitude

FlowsTo−−−−→ data)

+δ(data
Assign−−−→ param)

4. δ(olatitude
FlowsTo−−−−→ data) ≤ δ(olatitude

FlowsTo−−−−→ loc)

+δ(loc
Assign−−−→ data)

5. δ(olatitude
FlowsTo−−−−→ loc) ≤ δ(olatitude

FlowsTo−−−−→ return)

+δ(return
Assign−−−→ loc)

Figure 7. The integer linear program (ILP) corresponding
to the productions shown in Figure 6.



(a) (b)

(c) (d)

Figure 9. Statistics of the constraint system and resulting cuts for the corpus of 77 Android apps, plotted on a log-log scale:
(a) number of unoptimized (black, circle) and optimized (red, triangle) constraints, (b) ILP solve time in seconds, (c) size of
the search space Ep, (d) size of the first cut Eλ1 (red, triangle) and the second cut Eλ2 (black, circle).

7. Experimental Results
We demonstrate the effectiveness of our approach by inter-
actively verifying a corpus of 77 Android apps1, including
battery monitors, games, wallpaper apps, and contact man-
agers. These apps are a combination of malware samples and
a few benign apps obtained from a major security company.
The malware in this corpus contain malicious functionalities
that leak sensitive information (contact data, GPS location,
and the device ID) to the Internet. We have ground truth on
what information is leaked for each app. Our goal is to ap-
ply Algorithm 1 to produce apps proven not to leak sensitive
information. The security policy is φflow = vsource

SrcSink−−−−→
vsink 6∈ GCflow (with multiple source vertices vsource and sink
vertices vsink), where Cflow is the context-free grammar en-
coding the explicit information flow analysis described in
Section 4.

1 Available for download from:
http://stanford.edu/~obastani/files/oopsla15apks.zip

As described in Section 2.1, we prune the program by re-
moving provably unreachable statements before computing
information flows. Also, we make worst-case assumptions
about program entry points—i.e., we assume that every po-
tential callback is an entry point (recall that a potential call-
back is any method in the application that overrides a method
in the Android framework).

We consider cuts consisting of method invocation state-
ments and return statements, since these statements deter-
mine interprocedural reachability. As described in Section 5,
this corresponds to choosing Ep = Eparam+ret

p , where

Eparam
p = {v Assign−−−→ v′ | v′ formal parameter}

Eret
p = {v Assign−−−→ v′ | v formal return value}

Eparam+ret
p = Eparam

p ∪ Eret
p .

The cut λ asserts that certain edges in Ep cannot happen.
If an edge in Eparam

p or Eret
p is cut, then we add a state-

ment assert(false) immediately before the correspond-
ing method invocation statement.



To scale to some of the largest apps in our corpus, we
needed to restrict our search space of cuts—for these apps
we use Ep = Eparam

p as the search space. Restricting the size
of the search space can increase the size of the cuts (since the
search space is strictly smaller), but in our experiments the
cuts are still reasonably sized. For apps where our algorithm
scaled using both Eparam

p and Eparam+ret
p , using Eparam

p led an
increase in cut size by at most a factor of about two (typically
less).

In our first experiment, we run our tool on the corpus
of apps and give statistics for the cuts we generate (Sec-
tion 7.1). In our second experiment, we iteratively gener-
ate specifications that describe reachable code using Algo-
rithm 1 (Section 7.2).

7.1 Inferring Cuts
We ran our tool on all the apps in our corpus. The results
for twelve of the largest apps, along with all apps with false
positives, are shown in Figure 8. We computed two cuts for
each app, and include the sizes of each of these cuts in Fig-
ure 8. In our experience, additional cuts progressively be-
came larger and less useful to examine (since the size of the
search space reduces on every iteration), though in principle
this process can safely be repeated until no new cuts can be
produced—φflow continues to hold and having more cuts can
only enlarge the set of allowed program behaviors.

We also include some statistics on the sizes of the con-
straint systems generated by Algorithm 3—these statistics
are for the constraint system used to compute the first cut
(which is the largest constraint system, though typically the
size is similar for other runs). We have shown both the
number of unoptimized constraints generated along with the
number of constraints after applying the optimizations de-
scribed in Section 5. Additionally, we include the average
values over all 77 apps in the corpus (using Ep = Eparam

p for
consistency).

We have plotted some of these statistics in Figure 9 for
all the apps in the corpus (again, using Ep = Eparam

p for
consistency). In (a), we compare the size of the unoptimized
constraint system to the size after applying optimizations.
As can be seen, the optimized constraint system typically re-
duces the size by an order of magnitude (≈ 10×). The unop-
timized constraint systems typically proved to be intractable
for the ILP solver to optimize, but with the optimizations the
solver always terminated and finished fairly quickly. We also
show the running time for the ILP in (b). As can be seen, our
algorithm scales well to apps with hundreds of thousands of
lines of Jimple bytecode.

In (c), we show the size of Eparam
p —this gives a sense of

the size of the search space of cuts, since there are 2|E
param
p |

possible cuts. In (d), we show the sizes of the first two
cuts produced. Most of the cuts have fewer than 16 edges,
though the largest size for the first cut is 26 edges, and the
largest size for the second cut is 36 edges. All of these cuts

are sufficiently small so that the developer can easily verify
whether the cut is valid. This suggests that the interactive
verification process places little work on the developer; we
further evaluate this workload in our second experiment.

7.2 Interactive Verification
In our second experiment, we manually carried out the pro-
cedure described in Algorithm 1 to produce verified apps P ′.
Because the app developer is absent, we play the role of the
developer. However, we are disadvantaged compared to the
app developer: we only have the app bytecode, have superfi-
cial knowledge of the app’s intended functionality, and lack
access to the testing tools available to the developer. Further-
more, many of the apps crash when we try to run them due
to incompatibilities with the Android emulator.

Thus, we provide the reachability information to our tool
manually, determining which statements are reachable by
reading the bytecode. The cuts are presented as a list of
statements to be removed from the app, and we mark each
statement as reachable or unreachable based on our inspec-
tion. For those apps that did not crash in the emulator (about
half of the 12 apps) we also ran tests and found that reach-
ability information was consistent with our specifications.
In practice, we expect developers to write tests for Android
apps using GUI testing frameworks such as Selendroid [53],
Robotium [50], or Espresso [23].

We focused our efforts on producing cuts only for the
false positives produced by our explicit information flow
analysis. If the flow is a true positive, then no cut exists,
so the auditor must necessarily inspect the app to determine
whether it is malicious. As a consequence, in these cases
little can be done to reduce the auditor workload.

The apps with false positive flows are shown in the sec-
ond half of Figure 8. For each of these apps, we show the
source of the false positive flow in Figure 10, and whether
we determined that the cause of the false positive is due to
unreachable code. These apps typically have other true pos-
itive flows—we include only sources that have false positive
flows in φflow when performing the verification process (or
else φflow would be false for the app).

In Figure 10, we show the results of our interactive veri-
fication process. We show two iterations of the process. For
each iteration, we show the size of the cuts λ1 and λ2, along
with the validity of each cut. The inspection of the cuts pro-
ceeded until a valid cut was found, or it was determined that
no cut was possible. After just two iterations of Algorithm 1,
we succeeded in producing valid cuts for all apps with false
positive explicit information flows, except for the app with a
false positive not due to unreachable code. This means that
only two interactions with the developer were necessary. The
cuts remained small after the second iteration, which shows
that the entire process is feasible for the developer to carry
out. In the case of the final application (browser), because
the false positive was not due to unreachable code, no valid



cut can be produced by our method, which means that the
app would be flagged for manual review.

To demonstrate how each step of Algorithm 1 contributes
to verifying each app, Figure 11 plots the number of apps
remaining to be verified at each step. As can be seen, the
first cut on the first iteration alone clears many of the apps
(6 out of 12), and the second cut on the first iteration clears
an additional app. The first cut on the second iteration clears
three of the remaining apps, and the second cut clears an
additional app, leaving only one app that our process failed
to verify.

Whereas the auditor would initially have had to analyze
all 12 false positives, our approach reduces the auditor’s
workload to a single false positive. In our setting, this may
not seem like a huge improvement, because the auditor still
needs to analyze the true positive apps. However, our corpus
of apps is heavily biased towards apps with malicious behav-
iors. In practice, the overwhelming majority of apps received
by an app store are benign, which means that even a small
false positive rate leads to a huge ratio of false positives to
true positives that the auditor must analyze. We achieve a
92% reduction in the number of false positives that need to
be discharged by the auditor, which enables the auditor to
better focus effort.

While we cannot evaluate the workload required of the
developer, we describe our own experience inspecting cuts.
In 10 of the cases (including the invalid cut), the cuts were
very easy to evaluate, taking only a few minutes, and we are
very confident of the results. The remaining 2 cases were
considerably more difficult, and took up to two hours each,
leaving more room for error. This difficulty was primarily a
consequence of code obfuscation. We believe that it would
be significantly easier for the developer, who understands the
app and has source code, to examine the cuts. While most
cuts were in third-party libraries, the developer has knowl-
edge of which library features they use, which should aid
them in evaluating the correctness of the cut. Furthermore,
developers often maintain high-coverage test suites, which
we believe would also aid the process.

We found two sources of imprecision that led to the false
positives. The first was the presence of a conditional to the
following effect:

if (hasLocationPermission()) { leakLoc(); }

In cases where the app did not have permissions to access
location, this caused the information flow analysis to report
a false positive. The second was due to our sound assumption
that every potential callback is an entry point, which caused
unreachable code to be marked as reachable. In both cases,
our algorithm can find cuts removing the unreachable code.
In the case of the app for which no cut could be found,
we believe the false positive was due to insufficient context
sensitivity, not flows through unreachable code.

8. Related Work
Our approach to performing iterative verification is related
to the following prior techniques.

Abductive inference. Abductive inference has been ap-
plied to aid developers in understanding error reports [18],
to infer program invariants [19], to infer information flow
specifications for library functions [68], and for abstraction
refinement [65]. We present a general approach for inferring
multiple predicates, as well as optimized algorithms for ab-
ductive inference in the case where φ is described using CFL
reachability. Also, [34] presents a related approach to guide
sanitizer placement. Their approach is fully automated, but
requires runtime taint tracking (though they minimize use of
taint tracking).

Specifications from tests. There has been much work on
extracting specifications from dynamic executions, with ap-
plications to verification [22, 54], proving equivalence of
programs [55], finding good abstractions [41], and prov-
ing program termination [44]. In another line of work [26],
must-facts (extracted from guided dynamic executions) have
been used to avoid spending effort trying to discharge true
positives. In contrast, we use must-facts extracted from tests
as specifications for may-facts—i.e., we enforce that may-
facts not observed in tests are invalid using instrumentation,
and use abductive inference to minimize the amount of in-
strumentation required.

Dynamic instrumentation for safety. Instrumenting
programs to ensure safety properties is well-studied, for ex-
ample to enforce type safety [28, 42] and to ensure control-
flow integrity [1]. Our work applies similar principles to
ensure the integrity of information flows, which is more
challenging because information flows are global properties.
In [13], instrumentation is guided by testing: only reflec-
tive calls observed during execution are permitted. Their
instrumentation issues warnings to the user for potential
unsoundness in the static analysis. Finally, there has been
work on modifying programs to coerce potentially problem-
atic inputs into acceptable forms manually specified by the
user [48, 49].

Security applications. Static information flow analysis
has been applied previously to the verification of security
policies [8, 21, 25, 37, 59, 63]. Our work makes static veri-
fication of security policies more practical—rather than em-
ploying a large amount of manual labor to discharge false
positives, our framework allows the auditor to instrument the
program P to enforce the security policy, with the guarantee
that the instrumentation is consistent with tests given by the
developer.

The approach in [21] shares our goal of moving the bur-
den of verification to the (possibly adversarial) developer;
they require the developer to annotate the source code with
information types to guide the auditing process. Compared
to [21], our approach does not require source code (com-
mercial app stores typically do not have access to source



App vsource Cause Iteration 1 Iteration 2

|Eλ1
| |Eλ2

| χ ∧ λ1
?

|= φflow χ ∧ λ2
?

|= φflow |Eλ1
| |Eλ2

| χ ∧ λ1
?

|= φflow χ ∧ λ2
?

|= φflow
browser location u.k. 5 6 No No 5 None No No
00714C contacts u.r. 2 8 Yes - - - - -
highrail device ID u.r. 1 2 Yes - - - - -

flow contacts u.r. 2 3 Yes - - - - -
calendar location u.r. 3 3 Yes - - - - -
19780d contacts u.r. 1 1 No No 2 9 Yes -
aab740 contacts u.r. 1 1 No No 2 9 Yes -
9d1da3 location u.r. 4 4 No No 5 5 No Yes
018ee7 location u.r. 4 4 Yes - - - - -
battery location u.r. 8 8 No Yes - - - -
ca7b26 location u.r. 4 4 Yes - - - - -
7d43c8 location u.r. 3 4 No No 4 4 Yes -

Figure 10. Size and validity of cuts generated by Algorithm 3 for apps with false positive flows. “None” means no cut could
be generated. For “Cause”, “u.k.” means the cause is unknown, and “u.r.” means the information flow is unreachable.

Figure 11. Visualization of how many apps are successfully verified at each step of the process. Algorithm 1 is run on each
of the 12 input apps that have a false positive explicit information flow. The x-axis describes the various points in the process,
and the y-axis describes the number of apps remaining to be verified at each point.

code) and leverages existing test suites to produce specifi-
cations rather than requiring annotations specific to infor-
mation flow.

Dynamic taint tracking has been applied to produce pro-
grams that terminate execution upon violation of the se-
curity policy [20]. To the best of our knowledge, existing
approaches to enforce information flow policies require in-
strumenting the entire program (or modifying the runtime
environment). In contrast, our approach uses very mini-
mal instrumentation, and often places that instrumentation
in unreachable code where it will have zero runtime cost.
Other approaches for restricting app behaviors have been
proposed, for example [51], but the policies enforced are
local (e.g., disallowing calls to certain library methods).

Specification inference. There is a large body of work
on specification inference; see [11] for a survey. There has
also been work specifically on inferring callback specifica-
tions [15]. Their approach, which reduces the false positive
rate, complements our approach since it would help further
reduce the work required of the developer.

9. Conclusions
Given a program P and a policy φ, our framework mini-
mally instruments P to ensure that φ holds. This instrumen-
tation is guaranteed to be consistent with given test cases,
and furthermore the developer can interact with the process
to produce suitable cuts. Our approach to handling false pos-
itives has the potential to make automated verification of the
absence of explicit information flows a more practical ap-
proach for security auditors to produce safe and usable pro-
grams. We have applied this approach to verify the absence
of malicious explicit information flows in a corpus of 77 An-
droid apps. For 11 out of 12 false positives information flows
we found, our tool produced valid cuts to enforce φflow.

9.1 Future Work
In our experience, Android malware to date does not rely on
sophisticated techniques to hide malicious behavior. We be-
lieve this is because such malware predominantly appears on
third-party app stores where sophisticated security auditing
(either manual or automatic) is unavailable. Android mal-



ware is likely to become more sophisticated over time, in
which case the limitations in our static analysis may be ex-
ploited. In particular, it may be interesting to study the fol-
lowing limitations to our current analysis:

• Implicit flows: While we do not take into account the
possibility of implicit flows in the application [52], we
can easily extend our technique to do so—we can include
“transfer” edges in the analysis that pass taint from vari-
ables used in conditionals to variables used in branches.
• Exception analysis: Our analysis does not currently track

flows due to exceptional control flow. There has been
recent work on exception handling [14].
• Reflection: Our analysis cannot resolve method calls

made using the Java reflection API, so we treat such calls
as no-ops. There has been recent work on handling re-
flective method calls [13, 36].
• Missing models: Our information flow analysis depends

on information flow models [11, 17, 68], which means
that missing models can introduce unsoundness into our
analysis. For the apps in our experiments, we have care-
fully searched for potential missing models.

For each of these settings, a key challenge is handling the
high false positive rate from a sound analysis (implicit
flows [29], exceptions [14], reflection [13], and missing
models [11]). Our technique may therefore be particularly
applicable to these settings, though the search space of cuts
may need to be modified.
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A. CFL Minimum Cut is NP-Hard
THEOREM A.1. The CFL minimum cut problem is NP-
hard.

Proof: We prove the theorem by reducing the minimum
vertex cover problem to the CFL minimum cut problem.
Consider the minimum vertex cover problem for a given
undirected graph G = (V,E), where V = {v1, ..., vn}. We
construct the following directed, labeled graph G = (V, E)
and context-free grammar C such that a CFL minimum cut
for G and C corresponds to a minimum vertex cover for G.

Context-free grammar C. The context-free grammar C is
defined to be:

1. Alphabet Σ = {a, b, c, d}.
2. A single production T → abcbd, where T is the start

symbol.

Graph G. The graph G is defined to be:

1. We have vertices x∗, y∗ ∈ G.

2. For each i ∈ {1, ..., n}, we have vertices xi, yi ∈ G.

3. For each i ∈ {1, ..., n}, E contains the edges

x∗
a−→ xi

b−→ yi
d−→ y∗.

4. For each edge (vi, vj) ∈ E, we have edges

yi
c−→ xj , yj

c−→ xi.

CFL minimum cut problem. Finally, the specification of
the CFL minimum cut problem is as follows:

1. The source vertex is x∗.

2. The sink vertex is y∗.

3. The edges labeled b have weight 1.

4. All other edges have weight∞.

CFL minimum cut ⇒ vertex cover. First, we claim that
given a cut Ecut = {xi

b−→ yi}, the corresponding vertices

Vcover = {vi | xi
b−→ yi ∈ Ecut}

form a cover. To see this, note that for every edge (vi, vj) ∈
E, we have path

x∗
a−→ xi

b−→ yi
c−→ xj

b−→ yj
d−→ y∗

in E . By the definition of a cut, we know that

xi
b−→ yi ∈ Ecut or xj

b−→ yj ∈ Ecut.

As a consequence, by the definition of Vcover, we have

vi ∈ Vcover or vj ∈ Vcover,

so Vcover is a vertex cover as claimed.

Vertex cover⇒ CFL minimum cut. Conversely, we claim
that given a cover Vcover = {vi}, the corresponding edges

Ecut = {xi
b−→ yi | vi ∈ Vcover}

form a cut. To see this, note that for every path

x∗
a−→ xi

b−→ yi
c−→ xj

b−→ yj
d−→ y∗,

we have (vi, vj) ∈ E, so by the definition of a cover, we
have

vi ∈ Vcover or vj ∈ Vcover.

As a consequence, by the definition of Ecut, we have

xi
b−→ yi ∈ Ecut or xj

b−→ yj ∈ Ecut.

Furthermore, every CFL source-sink path in G has this form,
so Ecut is a cut as claimed.

Finally, note that for both directions of the proof,

|Vcover| = |Ecut|,

so in particular, a minimum cut corresponds to a minimum
cover (and vice versa). �


