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Relational verification aims to prove properties that relate a pair of programs or two different runs of the
same program. While relational properties (e.g., equivalence, non-interference) can be verified by reducing
them to standard safety, there are typically many possible reduction strategies, only some of which result
in successful automated verification. Motivated by this problem, we propose a new relational verification
algorithm that learns useful reduction strategies using reinforcement learning. Specifically, we show how
to formulate relational verification as a Markov decision process (MDP) and use reinforcement learning to
synthesize an optimal policy for the underlying MDP. The learned policy is then used to guide the search for
a successful verification strategy. We have implemented this approach in a tool called Coeus and evaluate
it on two benchmark suites. Our evaluation shows that Coeus solves significantly more problems within a
given time limit compared to multiple baselines, including two state-of-the-art relational verification tools.
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1 INTRODUCTION
Relational verification aims to establish that two programs—or a pair of executions of a program—
do not interact in unintended ways. Such relational properties appear under many guises when
reasoning about program correctness. For instance, a prototypical relational property is program
equivalence which requires that two programs have the same observable behavior when executed
on the same input. Other examples include non-interference [Goguen and Meseguer 1982], which
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is used for reasoning about side channels, as well as algebraic properties like injectivity and anti-
symmetry [Sousa and Dillig 2016]. In addition, relational properties also arise in the context of
software evolution [Lahiri et al. 2012, 2013] and version control [Sousa et al. 2018].
Due to their significance across many application domains, relational properties have been the

subject of much attention in the program verification literature [Barthe et al. 2011, 2016, 2012;
Benton 2004; De Angelis et al. 2016b; Mordvinov and Fedyukovich 2017; Sousa and Dillig 2016;
Yang 2007]. Interestingly, a common theme among all relational verification techniques is that
they reduce the problem of proving a relational property to that of standard safety. For instance,
given two programs P1 and P2 that need to obey some relational property, a popular approach
is to construct a so-called product program P such that the relational property is valid if P obeys
some safety property [Barthe et al. 2011, 2016; Eilers et al. 2018; Sousa et al. 2018; Zaks and Pnueli
2008]. In a similar vein, many relational program logics [Benton 2004; Chen et al. 2017; Sousa and
Dillig 2016; Yang 2007] reduce relational verification to the problem of discharging a set of standard
Hoare triples.
Despite the power and conceptual simplicity of this approach, a key challenge in relational

verification is that there are typically many ways to reduce the original problem to safety. While
each reduction method corresponds to a valid proof strategy, some of these strategies are much
more amenable to automation than others. For example, consider verifying equivalence between
programs P1, P2 in Figure 1 and the two product programs A, B shown in Figure 2. Here, both A and
B have the property of being safe if and only if P1 and P2 are equivalent. However, it is significantly
easier for most automated tools to prove the assertion in B (see comments in Figure 2).
In principle, there is a simple way to deal with this challenge: We could simply try all possible

ways of reducing the relational verification problem to standard safety and conclude that the
property holds if any of the corresponding safety problems can be verified. Unfortunately, this
naïve strategy is not feasible in practice because there are simply too many reduction strategies to
try. As a result, prior techniques either require the user to manually specify a suitable reduction
strategy (e.g., [Barthe et al. 2011; Felsing et al. 2014]) or use domain-specific heuristics (e.g., [Chen
et al. 2017; Sousa and Dillig 2016; Sousa et al. 2018; Zaks and Pnueli 2008]). The former strategy is
sub-optimal in that it lacks automation, whereas the latter approach is time-consuming and highly
domain-dependent. In particular, developing good hand-crafted heuristics for relational verification
requires both domain expertise and knowledge about the underlying safety checker.
This paper aims to address this challenge by guiding relational proof search using machine

learning. That is, given a benchmark suite of relational verification tasks from a specific domain
and an underlying safety verifier, our goal is to automatically learn a probability distribution over
possible reduction strategies such that those deemed more promising by the machine learning
model are explored first. This approach allows our relational verification algorithm to automatically
infer useful search heuristics for new problems without requiring costly user intervention.
However, one key challenge to using machine learning in this context is the lack of labeled

training data in the form of successful relational proof strategies. In this paper, we address this
challenge by using reinforcement learning (RL), which effectively allows the relational verifier to
learn over time from its own failed and successful proof attempts. Specifically, in an offline phase,
we use RL to train the relational verifier on a corpus of verification problems such that the verifier
is "rewarded" for using reduction strategies that result in successful proofs. Then, in an online
phase, the verifier leverages the knowledge accumulated in the offline training phase to solve new
verification problems much more efficiently.

One of the key contributions of this paper is to show how to formalize the relational verification
problem as a Markov decision process (MDP). In our formulation, states of the MDP correspond to
partial proofs, and a policy of the MDP specifies which reduction strategy to use at each proof step.
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int P1(int *a) {
int max = a[0], i;
for (i = 1; i < N; ++i)
if (a[i] > max)
max = a[i];

return max;
}

int P2(int *a) {
int max, i;
for (i = 0; i < N; ++i)
if (i == 0) max = a[i];
else if (a[i] > max)
max = a[i];

return max;
}

Fig. 1. Example programs

void A(int *a0, int *a1) {
assume(a0 == a1);
int max0 = a0[0], max1, i0, i1;
for (i0 = 1, i1 = 0; i0 < N || i1 < N; ++i0, ++i1) {
/* We need quantified loop invariant to state that:
* - max0 is the largest element in a0[0..i0]
* - max1 is the largest element in a1[0..i1] */

if (i0 < N)
if (a0[i0] > max0) max0 = a0[i0];

if (i1 < N)
if (i1 == 0) max1 = a1[i1];
else if (a1[i1] > max1) max1 = a1[i1];

}
assert(max0 == max1);

}

void B(int *a0, int *a1) {
assume(a0 == a1);
int max0 = a0[0], max1, i0, i1;
i1 = 0;
if (i1 == 0) max1 = a1[i1]; else /* Not relevant */;
for (i0 = 1, i1 = 1; i0 < N && i1 < N; ++i0, ++i1) {
/* Loop invariant: i0 == i1 && max0 == max1 */
if (a0[i0] > max0) max0 = a0[i0];
if (i1 == 0) /* Not relevant */;
else if (a1[i1] > max1) max1 = a1[i1];

}
assert(max0 == max1);

}

Fig. 2. Product programs for Figure 1. Program A requires a complex quantified loop invariant, whereas B
can be verified using the simple loop invariant i0 = i1 ∧max0 =max1.

Given this formulation, we give a technique for finding an optimal policy of the MDP by adapting
the policy gradient algorithm to solve the optimization problem that arises in the off-line phase of
our algorithm. Then, in the on-line phase, we use a backtracking search algorithm that leverages
the optimal policy learned during the off-line phase to efficiently search through different strategies
for reducing the relational verification problem to standard safety.
We have implemented the proposed relational verification approach in a tool called Coeus

and evaluate it on two benchmarks suites. In our first experiment, we use Coeus to validate the
correctness of source-to-source transformations performed by the ROSE compiler infrastructure
from the Lawrence Livermore Laboratory. In our second experiment, we use Coeus to prove
relational properties between programs written by different people, such as different solutions
to programming challenge problems. Our evaluation shows that the proposed approach solves
significantly more benchmarks compared to multiple baselines, including two state-of-the-art
verification tools. In particular, among a total of 259 relational verification benchmarks that we use
in our evaluation, Coeus can successfully verify 88% of the problems whereas existing state-of-the-
art verifiers solve less than half.

To summarize, this paper makes the following key contributions:

• We propose a new relational verification algorithm that performs proof search using a policy
that is obtained using reinforcement learning.
• We show how to formulate the relational verification problem as a Markov decision process,
and we propose a variant of the policy gradient technique to find an optimal policy for the
corresponding MDP.
• We describe a backtracking search algorithm that uses the learned policy to guide proof search.
• We experimentally evaluate our approach on two benchmark suites and empirically quantify the
benefits of our approach over competing techniques.
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⊢ {Φ}S{Ψ}
(Lift)

⊢ ⟨Φ⟩skip⊛ S ⟨Ψ⟩

⊢ {Φ}S{Φ′} ⊢ ⟨Φ′⟩S1 ⊛ S2⟨Ψ⟩ (Seq)
⊢ ⟨Φ⟩S ; S1 ⊛ S2⟨Ψ⟩

Φ⇒ (e1 ↔ e2) Φ⇒ I

⊢ ⟨I ∧ e1 ∧ e2⟩S1 ⊛ S2⟨I⟩

⊢ ⟨I ∧ ¬e1 ∧ ¬e2⟩S ⊛ S ′⟨Ψ⟩
(Sync)

⊢ ⟨Φ⟩while e1 do S1; S ⊛while e2 do S2; S ′⟨Ψ⟩

⊢ ⟨Φ ∧ e⟩S ;while e do S ; S1 ⊛ S2⟨Ψ⟩

⊢ ⟨Φ ∧ ¬e⟩S1 ⊛ S2⟨Ψ⟩ (Peel)
⊢ ⟨Φ⟩while e do S ; S1 ⊛ S2⟨Ψ⟩

f1 = λ ®p1. S ′1 f2 = λ ®p2. S ′2 ⊢ ⟨⊕′⟩S ′1 ⊛ S ′2⟨⊖
′⟩

Φ⇒ ⊕′[ ®a1/ ®p1, ®a2/ ®p2]

⊢ ⟨⊖′[ ®a1/ ®p1, ®a2/ ®p2]⟩S1 ⊛ S2⟨Ψ⟩
(Call)

⊢ ⟨Φ⟩call f1( ®a1); S1 ⊛ call f2( ®a2); S2⟨Ψ⟩

Fig. 3. Selected rules for reducing 2-safety verification problem to standard Hoare triples

Organization. This paper is organized as follows: In Sections 2 and 3, we provide some background
on relational verification and discuss how we represent proof strategies for relational verification
problems. Next, in Section 4, we give a high-level overview of our approach and motivate our design
choices. Section 5 introduces our learning objective and explains how to solve this optimization
problem using reinforcement learning. Then, Section 6 presents our policy-guided proof search
algorithm, and Sections 7 and 8 discuss our implementation and experimental results. Finally, we
discuss related work in Section 9.

2 BACKGROUND ON RELATIONAL VERIFICATION
As mentioned in Section 1, existing techniques reduce relational verification to safety checking
either by explicitly constructing a product program [Barthe et al. 2011, 2016; Eilers et al. 2018] or
introducing a proof system where certain proof obligations can be discharged by an off-the-shelf
safety checker [Barthe et al. 2012; Benton 2004; Sousa and Dillig 2016]. In this paper, we adopt the
latter approach and think of relational verification as the problem of searching for a proof within a
relational program logic.
Following prior work [Benton 2004; Chen et al. 2017; Sousa and Dillig 2016], we assume a

relational program logic that derives relational Hoare triples of the form ⟨Φ⟩ S1 ⊛ S2 ⟨Ψ⟩ where S1,
S2 are programs over disjoint sets of variables and Φ (resp. Ψ) is a relational precondition (resp.
post-condition). For example, for equivalence checking, Φ would stipulate that the inputs of the
two programs are equal, and Ψ would assert that the outputs are equal.

By studying prior work on relational program verification [Barthe et al. 2011, 2016; Benton 2004;
Felsing et al. 2014; Sousa and Dillig 2016], we built a library of 37 different proof rules and tactics,
of which five representative ones are shown in Figure 3. While a detailed discussion of these proof
rules is out of scope for this paper, we highlight some of their salient features below.
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Reduction to safety. As illustrated by the Lift and Seq rules from Figure 3, the premises of
a relational proof rule can involve proving standard Hoare triples of the form {P}S{Q}. Thus,
relational program logics eventually reduce the problem to standard safety checking.

Non-determinism. Given a proof goal G = ⟨Φ⟩ S1 ⊛ S2 ⟨Ψ⟩, there are typically many rules that
can be used to prove G. For example, if S1 and S2 are both while loops, we can apply three different
rules (namely, Seq, Sync, and Peel) even for the small subset of proof rules shown in Figure 3.

Sensitivity to proof strategy. Let us define a proof strategy to be a mapping from each proof
subgoal to a proof rule that can be used for discharging it. Because the base cases of a relational
proof require invoking an off-the-shelf safety checker, the success of a particular proof strategy
depends on how easy or difficult the corresponding safety checking problems are. Thus, some proof
strategies may lead to successful proofs, while others may not.

Large search space. Since there are many proof rules that can be used to discharge a relational
Hoare triple, the search space of proof strategies is very large. Specifically, given m rules with
k subgoals and two programs S1, S2 of size n, the size of the search space is Θ((mk)n). Thus, in
practice, it is often infeasible to explore all possible proof strategies within a reasonable time limit.

Shape of the rules. As we can see from Figure 3, each relational proof rule R consists of (i) a
goal G (i.e., a relational Hoare triple), (ii) a set of subgoals Ω = {G1, . . . ,Gn}, where each Gi is
also a relational Hoare triple, and (iii) a set of verification conditions (VCs) (e.g., Φ→ (e1 ↔ e2)
and Φ → I in rule Sync). Thus, we can represent each relational proof rule R as a quadruple
R = (Rid,RG,RΩ,Rφ ), where Rid is the name of the rule, RG,RΩ represent the goal and subgoals
respectively, and Rφ is a formula that corresponds to the conjunction of all VCs. Observe that the
VCs can involve unknown predicates such as I in rule Sync or pre- and post-conditions P,Q in
rule Call; thus we represent VCs as a system of Constrained Horn Clauses (CHCs) [De Angelis et al.
2016b; Mordvinov and Fedyukovich 2017]. Furthermore, since standard Hoare triples can also be
encoded as CHCs [Bjørner et al. 2015; De Angelis et al. 2016a], we also think of the standard Hoare
triples that occur in the premises as part of the VC of the corresponding rule.

3 REPRESENTING PROOF STRATEGIES
Our goal in the rest of the paper is to automate relational verification by efficiently searching
through a large space of possible proof strategies. In this section, we describe our representation of
proof strategies and formalize what we mean by a strategy being successful.

Intuitively, a proof strategy specifies which rule to apply to discharge each subgoal. In this paper,
we represent relational proof strategies as trees where nodes correspond to proof subgoals and
edges represent the application of some proof rule.

Definition 3.1 (Proof strategy). A proof strategy is a tuple ϒ = (V , E,AR,Aφ ,AG) where
- V is a set of nodes.
- E is a set of arcs.
- AR maps each node to either a proof rule R or ⊥.
- Aφ maps each node to a verification condition.
- AG maps each node to the corresponding proof goal ⟨Φ⟩ S1 ⊛ S2 ⟨Ψ⟩ for its subtree.

We refer to AR,Aφ ,andAG as the rule, VC, and goal annotations respectively, and we use the
symbol ⊥ to indicate open branches of the proof. That is, if AR(v) is ⊥ where v ∈ V , this means
that we have not yet chosen a proof rule for proving the subgoal associated with v . Thus, we also
differentiate between complete and incomplete proof strategies:
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v1

(R1, φ1, G1)

v2

(R2, φ2, G2)

v4

(R4, φ4, G4)

v3

(⊥, true, G3)

(a) Before applying R3

v1

(R1, φ1, G1)

v2

(R2, φ2, G2)

v4

(R4, φ4, G4)

v3

(R3, φ3, G3)

v5

(⊥, true, G5)

(b) After applying R3

Fig. 4. Example proof strategies

Definition 3.2 (Complete proof strategy). We say that v ∈ V is an open branch of a relational
proof strategy if AR(v) = ⊥. A proof strategy is complete if it does not have any open branches and
incomplete otherwise.

Example 3.3. Figure 4a shows an example proof strategy ϒ. Based on the tree structure, we see
that nodesv2 andv3 correspond to subgoals ofv1, which represents the proof goal G1. Furthermore,
since v1 is annotated with rule R1, we can tell that proof subgoals v2 and v3 were obtained by
applying proof rule R1. Also, node v1 is annotated with verification condition φ1; this means φ1
must be discharged for the application of rule R1 to be valid. Finally, note that v3 is an open branch
of the proof since we have AR(v3) = ⊥. Thus, ϒ is incomplete.

Since our verification algorithm starts with a completely unconstrained strategy and iteratively
refines it, we define the notion of initial strategy for a given proof goal G:

Definition 3.4 (Initial strategy). Given a relational proof goal G, the initial strategy for G,
denoted ϒ0(G), is given by:

({v1}, ∅, {v1 7→ ⊥}, {v1 7→ true}, {v1 7→ G})

Thus, ϒ0(G) encodes all possible ways of proving goal G within the given relational program logic.
Since our verification algorithm will iteratively refine its strategy by expanding an open branch,
Algorithm 1 describes how we apply a proof rule R to strategy ϒ. Given an incomplete strategy
ϒ and a proof rule R , ApplyProofRule yields a refined strategy by generating (a) verification
conditions as prescribed by Rφ , and (b) new proof subgoals G1, . . . ,Gn according to RG . Note that
base cases in the proof system do not generate subgoals, and introduction of subgoals results in the
addition of new open branches in the refined strategy. 1

Example 3.5. Figure 4b shows the result of applying rule R3 to the open branch of Figure 4a. Here,
R3 generates one new subgoal G5 with associated verification conditions φ3. The rule application
introduces a new open branch v5 below v3, with Aφ (v5) initialized to true.

Definition 3.6 (Strategy refinement). We say that a strategy ϒ′ directly refines another strategy
ϒ, written ϒ′ ⪯1 ϒ, if ϒ′ is the result of calling ApplyProofRule on ϒ for some proof rule R. We
define ⪯ as the reflexive transitive closure of ⪯1 and say that ϒ′ refines ϒ whenever ϒ′ ⪯ ϒ.

Given a proof strategy, we need a way of determining whether it results in a valid proof. Towards
this goal, we define a successful proof strategy as follows:
1In Algorithm 1, GenVC and GenSubgoals take a proof rule and a proof goal as input and generate new VCs and new
subgoals according to the proof rules in Figure 3, respectively. The FirstOpenBranch function returns the first open branch
of the given strategy. Since every open branch must be closed eventually, we assume a canonical order for simplicity.
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Algorithm 1 Rule application
Input: ϒ = (V , E,AR,Aφ ,AG): incomplete proof strategy
Input: R = (Rid,RG,RΩ,Rφ ): rule to apply
Output: A refined proof strategy
1: procedure ApplyProofRule(ϒ, R)
2: v ← FirstOpenBranch(ϒ)
3: AR (v) ← Rid
4: Aφ (v) ← GenVC(Rφ ,AG(v))
5: Ω← GenSubgoals(RΩ,AG(v))
6: for Gi ∈ Ω do
7: v ′← fresh node
8: (V , E) ← (V ∪ { v ′ }, E ∪ { v → v ′ })
9: (AR, Aφ ) ← (AR [v ′ ← ⊥], Aφ [v ′ ← true])
10: AG ← AG[v

′ ← Gi ]

11: return (V , E,AR,Aφ ,AG)

Definition 3.7 (Successful strategy). A proof strategy ϒ = (V , E,AR,Aφ ,AG) is successful if
- ϒ is complete.
- The formula

∧
v ∈V Aφ (v) can be proven satisfiable.

Recall from Section 2 that we represent verification conditions as Constrained Horn Clauses
(CHCs) in this paper. Thus, the satisfiability of the formula

∧
v ∈V Aφ (v) means that there exists an

interpretation of the unknown relations under which the formula evaluates to true.

Definition 3.8 (Failing proof strategy). A proof strategy ϒ = (V , E,AR,Aφ ,AG) is failing if the
conjunction

∧
v ∈V Aφ (v) is unsatisfiable.

Note that, unlike successful proof strategies, failing strategies need not be complete. In particular,
the formula can become unsatisfiable

∧
v ∈V Aφ (v) even when the proof contains open branches.

Our proof search algorithm will take advantage of this observation in Section 6.

4 OVERVIEW
In this section, we give a high-level overview of our relational verification algorithm and highlight
its salient features.

Searching for relational proofs. As mentioned earlier, our verification algorithm performs back-
tracking search over proof strategies, prioritizing those that are most promising. To this end, we use
reinforcement learning to predict which proof strategies are most likely to be successful. Specifically,
our reinforcement learning algorithm produces a distribution p over complete proof strategies such
that, if p(ϒ1) > p(ϒ2), then ϒ1 is more likely to be a successful strategy compared to ϒ2 according to
the learned model.

Given a specific relational verification task t , we use the notation p(t ) to denote the distribution
of complete proof strategies ϒ that are applicable to verifying t (i.e., the root node of ϒ is annotated
with the initial proof goal for t ). Now, to solve a relational verification problem t , our search
algorithm initializes p0 = p(t ). Then, on each iteration i = 0, 1, 2, ... (up to some upper bound r )2, it
chooses a complete proof strategy ϒi that has high probability according to pi , and checks whether
2While the value of r used by the search algorithm is large (it corresponds to the timeout set on the search algorithm),
during training we choose r to be small. By doing so, we encourage the search algorithm to discover a successful proof
strategy earlier in the search.
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ϒi is successful. If so, the verification algorithm terminates and returns ϒi . Otherwise, based on
feedback explaining why ϒi was unsuccessful, our algorithm constrains the support of pi to obtain
a new distribution pi+1 that avoids making mistakes similar to those in ϒi . In Section 6, we describe
how our search strategy constructs pi+1 given pi and a failing proof strategy ϒi .

Learning objective. The goal of our learning algorithm is to generate a distribution p that places
high probability mass on successful proof strategies. In particular, it aims to solve the following
optimization problem:

p∗ = argmax
p

Prt∼T,ϒ∼ξ (t )r ,p [O(ϒ) = 1] (1)

Here, t ∼ T is a uniformly random task, O(ϒ) is 1 if ϒ is successful and 0 otherwise, and ξ (t )r ,p is a
distribution of proof strategies explored by the search algorithm, i.e.,

ξ (t )r ,p (ϒ) =
1
r

r∑
i=1

p(t )i (ϒ).

Essentially, the objective in Eq. (1) is to maximize the probability that our search algorithm discovers a
successful proof strategy for a uniformly random task within r iterations.

However, there are three challenges to solving the optimization problem from Eq. (1): First, we
do not have positive examples of successful proof strategies. Second, we only have a finite training
set of tasks Ttrain. Finally, standard reinforcement learning algorithms cannot be applied to optimize
Eq. (1) due to the modified distribution ξ (t )r ,p . Below, we discuss how we address these challenges.

Reinforcement learning. Since we do not have positive examples of successful proof strategies,
we cannot use standard supervised learning algorithms to optimize Eq. (1). Instead, we have
oracle access to O in the form of our proof checker, which makes it possible to use reinforcement
learning. In Section 5.2, we describe how to formulate the optimization problem from Eq. (1) as a
reinforcement learning problem.

Function approximation. Since we are only given a finite subset of tasks Ttrain ⊆ T , we can only
approximate the samples t ∼ T from Eq. (1) with uniformly random samples t ∼ Ttrain. However,
the solution to the approximate objective may not generalize to all of T . Thus, we use a feature map
to improve generalization. The essential idea is to restrict the search space to distributions p(ϒ) that
only depend on ϒ through a handcrafted feature map ϕ(ϒ) ∈ X = Rd , which is designed to map
similar proof strategies to similar features. In particular, given two strategies ϒ and ϒ′, we should
have ϕ(ϒ) ≈ ϕ(ϒ′) if the proof goals labeling their roots are similar, and ϕ(ϒ) 0 ϕ(ϒ′) otherwise.
Then, if the optimal distribution p∗ assigns high probability mass to ϒ, it similarly assigns high
probability mass to ϒ′ (assuming p∗ is reasonably smooth). Thus, knowledge can be transferred to
new tasks with proof goals that are different from those for training tasks t ∈ T . We describe this
approach in Section 5.3.

Reinforcement learning algorithm. Standard reinforcement learning algorithms can only be ap-
plied to optimizing Eq. (1) for the case ξ (t )r ,p = p(t ), i.e., where r = 1. In other words, these algorithms
can only optimize for the case where the search algorithm only considers a single proof strategy, so
they are not directly applicable to our setting where the search algorithm tries multiple consecutive
proof strategies.

One straightforward idea to solve this problem is to extend the horizon of the learning algorithm
and encode a history of every proof step taken so far. While such a solution would allow us to
account for past proof attempts, it suffers from two problems (namely state space explosion and
delayed reward) that make training prohibitively slow. Thus, rather than using this naive strategy,
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we propose an alternative solution for better solving the optimization problem from Eq. 2. We
describe this adaptation in Section 5.4.

5 REINFORCEMENT LEARNING
We now describe how to use reinforcement learning to generate a distribution p over complete
proof strategies that is used to guide our search algorithm. We first start with a brief primer on
Markov decision processes and reinforcement learning and then explain their application to our
relational verification problem.

5.1 Background on Reinforcement Learning
A reinforcement learning problem is typically specified as a Markov decision process (MDP). Infor-
mally, an MDP is a transition system where the process is in some state Si at each time step, and a
decision maker can take any of the actions A1, . . . ,An that is available at state Si and collects some
reward R. The goal of reinforcement learning is to find the optimal action to take in each state to
maximize the expected long-term reward.

Definition 5.1. A Markov decision process is a tupleM = (S,S0,SF ,A,P,R), where S is the
set of states, S0 is the initial distribution over states, SF is a set of terminal states, A is the set of
actions, P : S × A → S is the (possibly stochastic) transition function, and R : S → R is the
(possibly stochastic) reward function.3

Definition 5.2. A policy π for an MDPM is a (possibly stochastic) function π : S → A specifying
which action to take in each state.

We can use π to select which action to take at each state, which results in a (random) trajectory
through the state space. This trajectory is referred to as a rollout:

Definition 5.3. A rollout ζ ∼ π is a random sequence of tuples ζ ∈ (S × (A ∪ {∅}) × R)∗
constructed as follows:
• sample a random state S0 ∼ S0
• sample actions Ai = π (Si ), random transitions Si+1 = P(Si ,Ai ), and rewards Ri = R(Si ) for each
i ∈ {1, ...,T } until a terminal state ST ∈ SF is reached.

Then, ζ is the sequence

((S0,A0,R0), ..., (ST−1,AT−1,RT−1), (ST ,∅,RT )).

Note that there is no action AT for the last tuple since ST is a terminal state.

As mentioned earlier, the goal in reinforcement learning is to maximize expected long-term reward:

Definition 5.4. Given an MDPM, the reinforcement learning problem is to find the optimal policy
π ∗ = argmaxπ R(π ), where R(π ) denotes the cumulative reward of π :

R
(π ) = Eζ ∼π

[
T∑
i=0

Ri

]
.

Example 5.5. Figure 5 (a) shows an example of a robot planning task where the goal is to find
the treasure. The MDP representing this task is shown in Figure 5 (b). The states S are the circles,
the transitions P are the edges, the actions A = {right, down} are labels on the edges, and the
3Oftentimes, a discount factor γ ∈ (0, 1) is needed to ensure that the learning problem for the MDP is well-defined; however,
in our setting, the MDP always terminates after a finite number of steps.
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Fig. 5. (a) Example of a simple planning task, where the goal of the robot is to find the treasure. (b) Represen-
tation of the task as a Markov decision process (MDP).

...

...

Fig. 6. An example of an MDP constructed for a relational verification problem.

rewards R are shown below the states. 4 The initial state set S0 contains just A (i.e., S0 = A with
probability 1), and the final states are SF = {C,D, F }. The following are two examples of policies
for this MDP: 5

π1(A) = π1(B) = π1(E) = right
π2(A) = π2(E) = right, π2(B) = down.

Then, the cumulative rewards are R(π1) = 0 (since this policy terminates in state C) and R(π2) = 1
(since this policy terminates in state F ).

5.2 MDP for Relational Verification
To use reinforcement learning in our setting, we need to formulate an MDP Mproof encoding
relational verification problems. Intuitively, given an (incomplete) proof strategy ϒ, we want to
learn a policy that chooses a proof rule R to apply to ϒ that maximizes the chance of eventually
constructing a successful proof strategy. Thus, states in ourMDP are proof strategies, and actions are
proof rules that can be applied to the current strategy. We begin by describing the MDP constructed
for a single task. Then, we describe how to construct an MDP that encodes a distribution of tasks T .

Single-task MDP. Given a single relational verification task expressed as a proof goal G, we
construct the MDPMproof(G) = (S,S0,SF ,A,P,R) as follows:
• The states S are proof strategies ϒ.

4If an action A is unavailable in a state S (i.e., there is no edge coming out of S with label A), then it is treated as a self-loop.
5We can omit defining the policy for states C , D , and F since there are no available actions in these states.
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• S0 corresponds to the initial proof strategy ϒ0(G) for G (recall Def. 3.4); i.e., the initial state is
ϒ0(G) with probability 1.
• The terminal states SF are complete proof strategies.
• The actions A ∈ A are all pairs (v,R), where R is a proof rule that can be applied to node v in
the current proof strategy ϒ.
• The (deterministic) transitions are P(S,A) = S ′, where S ′ is the proof strategy obtained from S
by applying the proof rule A to the first open branch of S .
• The reward function is R(S) = O(S) (i.e., the reward is 1 if S is successful and 0 otherwise).
Intuitively, the actions inMproof incrementally construct a complete proof strategy ST ∈ SF from
the initial proof strategy S0, and the reward is whether ST is successful.

Example 5.6. Figure 6 shows an example of an MDP for a relational verification problem G1. Each
state is a proof strategy ϒ, and each action is a pair (v,R) consisting of a nodev in the current proof
strategy and a proof rule R that can be applied to v . The initial state is the left-most state. For each
action, an arrow shows the state transition that would occur if that action is taken. The right-most
state on the top is a final state with reward 1 since it represents a successful proof strategy; all
other states have reward 0.

Task-distribution MDP. The MDPMproof representing a distribution of relational verification
tasks is exactly the same as the single-task MDPMproof(G), except for the distribution S0 over
initial states. In particular, a state S0 ∈ S0 is sampled by sampling a task t ∼ T , and then letting S0
be the initial proof strategy ϒ0(Gt ) for the goal Gt corresponding to t .

Connection to our objective. Now, we describe the connection between the optimal policy for
Mproof and the optimization problem from Eq. (1). First, we define a correspondence between
distributions p over complete proof strategies and MDP policies π :

Definition 5.7. Given a policy π forMproof, its terminal state distribution is

pπ (ϒ) = Prζ ∼π (ST = ϒ),

where ST is the terminal state of rollout ζ .

In other words, pπ (ϒ) is the probability that a rollout ζ ∼ π ends in terminal state ST = ϒ. Since
the terminal states inMproof are complete proof strategies, pπ is a distribution over complete proof
strategies. Then, we have the following theorem, which relates the problem of maximizing Eq. (1)
to the reinforcement learning problem for our MDPMproof

6:

Theorem 5.8. Let π ∗ be the optimal policy forMproof, and

p∗ = argmax
p

Prt∼T,ϒ∼p(t ) [O(ϒ) = 1], (2)

where p is a distribution over complete proof strategies. Then, we have p∗ = pπ ∗ .

There is a key difference between our objective Eq. (1) and the objective Eq. (2) from Theorem 5.8:
In Eq. (1), the probability is taken with respect to complete proof strategies ϒ ∼ ξ (t )r ,p (i.e., the
distribution of proof strategies tried by our search algorithm given guiding distribution p(t )),
whereas in Eq. (2), the probability is taken with respect to ϒ ∼ p(t ) (i.e., a single proof strategy
according to p(t )). In other words, our objective optimizes over a sequence of complete proof
strategies tried by the search algorithm, whereas Eq. (2) optimizes for a single randomly sampled
proof strategy.
6Proofs of all theorems are in the Appendix.
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The point of Theorem 5.8 is to show that existing reinforcement learning algorithms cannot be
directly applied to optimizing Eq. (1). In particular, the optimal strategy computed by standard
reinforcement learning maximizes the probability of finding a successful proof strategy in a single
attempt, but we want to compute a policy that maximizes our chances of finding a successful proof
during a conflict-driven search algorithm that explores many different relational proof strategies.
In Section 5.4, we describe how we can adapt an existing reinforcement learning algorithm to
optimize Eq. (1) instead of Eq. (2).

5.3 Function Approximation
Recall that, when we only have a limited set of training tasks available, then the solution to
Eq. (1) may not generalize well beyond tasks in the training set. As standard, we use approximate
reinforcement learning to improve generalization power [Sutton and Barto 2018]. We first give
background on the approximate RL and then describe our design choices within this framework

Background on approximate reinforcement learning. In approximate reinforcement learning, one
needs to provide:
• A feature map ϕ : S → X, where X = Rd , which maps each state S to a feature vector ϕ(S)
representing S .
• A function family fθ : X → A, parameterized by θ ∈ Θ = Rm , which maps feature vectors
to actions.

Then, rather than search over all possible policies, the reinforcement learning algorithm restricts to
policies of the form fθ (ϕ(S)) (for θ ∈ Θ). For example, in deep reinforcement learning, the function
family fθ takes the form of a deep neural network, where θ corresponds to the weights of the
network.

Definition 5.9. Given a feature map ϕ : S → X and function family fθ , the approximate reinforce-
ment learning problem is to compute the optimal parameters

θ ∗ = argmax
θ ∈Θ
R
(θ ), (3)

where R(θ ) = R(πθ ) and πθ (S) = fθ (ϕ(S)).

In other words, the goal of approximate reinforcement learning is to find a policy within function
family fθ that maximizes expected cumulative reward.
In order for approximate reinforcement learning to be effective, the feature map ϕ must be

constructed using domain expertise to balance two competing goals: First, given two states S and S ′,
if the most promising actions to take in S and S ′ are similar, then we should have ϕ(S) ≈ ϕ(S ′). On
the other hand, if the most promising actions are very different, then we should have ϕ(S) 0 ϕ(S ′).
Thus, if the RL algorithm learns the best actions to take in state S , this knowledge is automatically
transferred to taking good actions in state S ′ (assuming smoothness of fθ ).

Feature map. Since our proof strategies are complex tree-structured objects involving many
relational Hoare triples, our feature map grossly over-approximates the states inMproof . Specifically,
we design ϕ(ϒ) to take into account both (a) the global aspects of the proof tree (e.g., depth and
breadth of its tree structure, number of open/closed branches, etc.) as well as (b) local properties of
the first open branch of ϒ. For (b), suppose that the active open branch is labeled with the proof
goal G = ⟨Φ⟩ S1 ⊛ S2 ⟨Ψ⟩. We featurize this relational Hoare triple by both considering which
proof rules are (syntactically) applicable for discharging G and also performing a lightweight “diff”
between S1 and S2. In particular, our differencing algorithm considers features such as whether
both S1, S2 start with the same type of statement, whether they involve loops or recursive functions,
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the ratio between their iteration count and step size (if both start with loops) etc. Thus, intuitively
two strategies ϒ1 and ϒ2 will be deemed similar under ϕ if (a) their tree structures are similar, and
(b) the same proof rule is likely to be successful for discharging the first open branches of ϒ1 and ϒ2.

Function family. In addition to the feature map, we also need a function family fθ for mapping
features (i.e., proof strategies) to actions (i.e., proof rules). For this, we use a standard choice in
the reinforcement learning literature, namely the function family fθ of neural networks with two
(fully-connected) hidden layers and ReLU activations. Then, θ is the concatenation of all the weight
and bias parameters of the layers in the neural network [Bastani et al. 2018a; Montgomery and
Levine 2016; Schulman et al. 2015; Xiong et al. 2017].

Approximating our objective. Given the feature map and function family described above, we can
approximate Eq. (1) as follows. First, given parameters θ ∈ Θ, we define its terminal state distribution
to be pθ = pπθ (i.e., pθ is a distribution over complete proof strategies defined by parameter θ ).
Then, rather than optimize over all distributions p, we restrict to optimizing over proof strategies
of the form pθ (for θ ∈ Θ):

θ ∗ = argmax
θ ∈Θ

Prt∼T,S∼ξ (t )r ,θ
[O(S) = 1], (4)

where ξr ,θ = ξr ,pθ . Observe that Eq. 4 differs from the standard approximate reinforcement learning
problem in the same way Eq. 2 differs from Eq. 1: That is, rather than finding parameters of θ
that maximize the likelihood of finding a successful proof in a single attempt, we want to find
parameters that maximize our chances of finding a proof during a backtracking search algorithm.

5.4 Reinforcement Learning Algorithm
Recall from Section 5.2 that an optimal policy for our MDP does not yield an optimal solution
to Eq. 1 (or Eq. 4 when we use approximation). In particular, standard RL algorithms maximize
the expected cumulative reward under the assumption that we will explore a single rollout of
the learned policy, whereas we want to maximize expected cumulative reward when exploring
multiple rollouts during a backtracking search algorithm. Towards this goal, we describe a modified
reinforcement learning algorithm that directly optimizes for our objective.

Our proposed optimization method builds on the policy gradient algorithm, which optimizes the
cumulative reward R(θ ) as a function of the policy parameters θ ∈ Θ using stochastic gradient
descent. There are two key reasons for building on top of the policy gradient algorithm: First, as we
discuss in the rest of this section, policy gradient is easy to adapt to directly optimize our objective.
Second, because our feature vector ϕ(ϒ) grossly overapproximates ϒ, we run into the so-called
perceptual aliasing problem [Chrisman 1992; McCallum 1993], where two states that are different
look the same under ϕ. In contrast to alternative algorithms like Q-learning, it is well-known that
policy gradient works better in this scenario.

Background on policy gradient. The key challenge solved by the policy gradient algorithm is
how to compute an estimate of the gradient d

dθ R
(θ ). This algorithm is based on the the following

well-known policy gradient theorem [Sutton et al. 2000]:

Theorem 5.10. We have
d
dθ
R
(θ ) = Eζ ∼πθ [ℓ(ζ )],

where

ℓ(ζ ) =
T−1∑
i=0

(
T∑

j=i+1
R j

)
d
dθ

logπθ (Si ,Ai ).
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Intuitively, in Theorem 5.10, the term d
dθ logπθ (Si ,Ai ) gives a direction in the parameter space

that, when moving the policy parameters towards it, increases the probability of taking action Ai
at state Si . Also note that the sum

∑T
j=i+1 R j is the total future reward after taking action Ai . In

other words, ℓ(ζ ) is simply the sum of different directions in the parameter space weighted by their
corresponding future reward. Thus, the gradient d

dθ R
θ moves the policy parameters in a direction

that increases the probability of taking actions associated with higher rewards.
Observe that Theorem 5.10 immediately gives a way to optimize the policy: Since we can compute

the gradient of the objective R(θ ), we can use gradient descent to optimize R(θ ) as a function of the
policy parameters θ .

Our algorithm. We now describe our algorithm for optimizing our objective in Eq. (4), i.e.,

J (θ ) = Prt∼T,S∼ξ (t )r ,θ
[O(S) = 1].

To solve this problem, we leverage additional structure of our search algorithm: Recall that, given
guiding distribution p over complete proof strategies, our search algorithm initializes p0 = p(t ), and
then iteratively constructs a sequence of distributions p0,p1,p2, ...,pr . As we describe in Section 6,
this sequence of distributions corresponds to a sequence of policies πθ ,0, πθ ,1, πθ ,2, ..., πθ ,r , where
pi = p

(t )
πθ ,i . Then, we have the following theorem:

Theorem 5.11. We have

dJ
dθ
(θ ) =

1
r

r∑
i=1
Eζ ∼πθ ,i [ℓ(ζ )],

where ℓ(ζ ) is the same as in Theorem 5.10.

Intuitively, the key difference between our algorithm and standard policy gradient is that we
maximize the likelihood that we will find a successful proof strategy during search rather than
during a single rollout. In particular, the gradient of our modified reward is computed by sampling
rollouts from r different distributions rather than a single distribution. Each distribution is obtained
from the previous one by (a) sampling a rollout ζi from the current distribution pi , and (b) if ζi
corresponds to a failing proof strategy, inferring other failing strategies (see Section 6.2) to constrain
the support of pi .

As in standard policy gradient, we can use known techniques [Sutton et al. 2000] to approximate
the gradient of J (θ ):

dJ
dθ
(θ ) ≈

1
r

r∑
i=1

1
n

n∑
k=1
ℓ(ζ (i ,k )),

where ζ (i ,k) ∼ πi ,θ . Thus, we can use this approximate gradient in conjunction with gradient
descent to compute the optimal parameters:

θ ∗ = argmax
θ ∈Θ

J (θ ).

6 POLICY-GUIDED PROOF SEARCH
In this section, we show how to use the optimal policy π synthesized using reinforcement learning
to perform backtracking search over proof strategies.

Our relational verification algorithm, called RelVerif, is shown in Algorithm 2. Given a relational
Hoare triple G and the stochastic policy π learned from the training examples, RelVerif returns
a successful proof strategy if one exists and ⊥ otherwise. At a high level, the algorithm works
as follows: It maintains a worklistW of (incomplete) proof strategies, which initially contains

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 141. Publication date: October 2019.



Relational Verification using Reinforcement Learning 141:15

Algorithm 2 Policy-guided backtracking proof search
Input: G - target proof goal
Input: π - learned stochastic policy
Input: ∆ - available proof rules
Output: A successful proof strategy for G, or ⊥ if it does not exist
1: procedure RelVerif(G, π ,∆)
2: W ← {ϒ0(G)} ▷ worklist of proof strategies
3: B← ∅ ▷ blocked proof strategies
4: whileW , ∅ do
5: ϒ← ChooseStrategy(π ,W ) ▷ Use policy
6: W ←W \ {ϒ}
7: for Ri ∈ ∆ do
8: if ¬Applies(Ri , ϒ) then
9: continue
10: ϒi ← ApplyProofRule(ϒ,Ri )
11: if ∃ϒ′ ∈ B. ϒi ⪯ ϒ′ then
12: continue
13: if IsSuccessful(ϒi ) then return ϒi

14: if IsFailing(ϒi ) then
15: B← B ∪ { Minimize(ϒi ) }
16: else if ¬IsComplete(ϒi ) then
17: W ←W ∪ { ϒi }

18: return ⊥

the unconstrained strategy ϒ0(G) (recall Def. 3.4). During each iteration, the algorithm invokes a
procedure called ChooseStrategy, discussed in Section 6.1, to pick the most promising strategy
according to policy π (line 5) and constructs a series of refinements ϒ1, . . . , ϒn by applying each
one of the applicable proof rules Ri in the relational proof system ∆ (line 10). If we are guaranteed
that ϒi is a failing strategy (i.e., ϒi is a refinement of one of the blocked strategies B), then we move
on to the next proof rule without adding ϒi to the worklistW (lines 11-12). On the other hand, if ϒi
is successful (i.e., it is complete and the corresponding CHCs are satisfiable), then we return ϒi as a
solution to the relational verification problem (line 13). Otherwise, if ϒi is failing, we compute an
unsatisfiable core of the VCs used in ϒi and add the corresponding minimal failing strategy to the
blocked strategies B (lines 14-15). The use of blocking set B allows us to prune strategies that are
guaranteed to be unsuccessful.

6.1 Using Policy to Guide Search
In order to use policy π to guide search, we need a suitable way to prioritize which states to explore
first. Intuitively, we want our search algorithm to have two desired properties: First, complete proof
strategies that have a higher probability of being successful according to pπ should be explored first.
Second, to guarantee completeness of our approach, the search must be exhaustive. That is, given a
large enough time limit, the algorithm should return a successful proof strategy if one exists.
One straightforward way to utilize π is to use a stochastic search algorithm that repeatedly

samples complete proof strategies according to the distribution given bypπ . However, implementing
an efficient random sampling algorithm that guarantees exhaustiveness is a challenging task.
Instead, we use a deterministic search algorithm that simply enumerates complete proof strategies
in decreasing order of their probability according pπ . The intuition is that strategies that are more
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probable under pπ are more likely to lead to a successful proof; thus, they should be investigated
first.
To ensure that the algorithm prioritizes complete strategies that correspond to more likely

rollouts of π , we introduce a prioritization function ℓπ as follows:

ℓπ (ϒ) =

{
1 if ϒ = ϒ0(G)

ℓπ (ϒ
′) − log Pr[π (ϒ′) = R] otherwise,

where ϒ =ApplyProofRule(ϒ′,R). Note that for a complete proof strategy ϒ, we have ℓπ (ϒ) =
−log pπ (ϒ). Thus, complete proof strategies that are more likely to be successful according to pπ
are assigned a lower value according to ℓπ .

Going back to Algorithm 2, the function ChooseStrategy simply uses the function ℓπ to figure
out which proof strategy to dequeue fromW . In particular, ChooseStrategy dequeues the strategy
with the lowest ℓπ value.

Theorem 6.1. Let ϒ1 and ϒ2 be two complete non-failing proof strategies. If pπ (ϒ1) > pπ (ϒ2), then
ϒ1 will be explored (i.e., dequeued fromW ) before ϒ2 by Algorithm 2.

6.2 Finding Minimal Failing Strategies
To avoid exploring failing strategies that share the same root cause of failure as previously explored
ones, our proof search algorithm uses minimal failing proof strategies to block strategies that are
guaranteed to be unsuccessful. More, formally, a minimal failing proof strategy is defined as follows:

Definition 6.2 (Minimal failing proof strategy). Given a failing proof strategy ϒ, we say that
ϒ′ is a minimally failing proof strategy of ϒ if the following conditions hold:

- ϒ ⪯ ϒ′

- ϒ′ is failing
- There does not exist ϒ′′ , ϒ′ such that ϒ′ ⪯ ϒ′′.

Essentially, a minimally failing proof strategy ϒ′ for ϒ captures the root cause of failure in the
sense that every proof rule in ϒ′ is necessary for generating an unsatisfiable system of CHCs in
ϒ. Thus, any proof strategy that refines ϒ′ is also guaranteed to fail and can be pruned from the
search space without losing completeness.
The Minimize procedure used at line 15 of Algorithm 2 computes a minimum failing strategy

as follows: First, it computes a minimal unsatisfiable core of the VCs for a given failing strategy
ϒ = (V , E,AG,AR,Aφ ). Then, it identifies a subset of nodes V⊥ ⊆ V such that

∧
v ∈V⊥ Aφ (v) is

unsatisfiable but for everyU ⊂ V⊥ we have
∧

v ∈U Aφ (v) is satisfiable. Hence, V⊥ has the following
key properties:
• If we remove nodes that are not in V⊥ from ϒ, we still get a failing strategy.
• Removing any node in V⊥ from ϒ will make it not failing.
In other words, we can view V⊥ as the root cause of failure for strategy ϒ; thus, all nodes that

are descendants of V⊥ can be removed from ϒ while preserving unsatisfiability. The Minimize
algorithm essentially removes all nodes V⊥ from ϒ but adds open branches as necessary to ensure
that the resulting proof strategy is structurally well-formed.
The following theorem states that our search algorithm does not prune any successful proof

strategies:

Theorem 6.3. If there exists a complete proof strategy ϒ for goal G such that
∧

v ∈V Aφ (v) can be
proven satisfiable by the CHC solver, then Algorithm 2 will produce a proof of correctness of G.
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7 IMPLEMENTATION
We have implemented the proposed ideas in a prototype called Coeus. Our tool takes as input two
C programs and a relational property and outputs a successful proof strategy if the property can be
verified.

As depicted schematically in Figure 7, Coeus consists of three major components: First, the
Proof System component implements the relational proof rules for reducing relational verification
to standard safety. The Reinforcement Learning component implements the learning algorithm
described in Section 5 and requires a set of representative training examples. Finally, the Proof
Search component implements the backtracking search algorithm discussed in Section 6.

Proof System Reinforcement Learning

Proof Searcher

Search Policy

Training Input

Input

Proof

Coeus

Fig. 7. Coeus architecture

The Reinforcement Learning module is im-
plemented in Python and uses the PyTorch li-
brary [Paszke et al. 2017]. The Proof System
and the Proof Search components are both im-
plemented in OCaml and use the front-end
of the CompCert compiler [Leroy 2009] for
parsing the input C files. As mentioned in
Section 2, our implementation uses a CHC
solver to both find relational loop invariants
and discharge the resulting safety verification
problems. For this purpose, our implemen-
tation leverages an enhanced version of the
Spacer CHC solver [Komuravelli et al. 2016]
distributed with Z3 [de Moura and Bjørner 2008]. 7

8 EVALUATION
We evaluate the proposed approach by designing a series of experiments that address the following
questions:
(1) How does our proposed approach perform compared to state-of-the-art relational verification

tools?
(2) What is the impact of using the learned policy during search?
(3) What is the impact of backtracking search compared to directly sampling proof strategies from

the learned policy?
(4) What kinds of policies does Coeus learn?
(5) What is the impact of training on the success of the learned policy?

To answer these questions, we evaluate Coeus on two different benchmark suites and compare
it against several baselines. For all experiments, we set a time limit of 300 seconds and a memory
limit of 10GB for the proof search algorithm, and we set a time limit of 15 seconds per each CHC
solver invocation. All experiments are conducted on an Arch Linux workstation with an Intel Xeon
E5-2630 CPU (2.6GHz) and 64GB of RAM.

8.1 Translation Validation Benchmarks
In our first experiment, we evaluate our approach in the context of translation validation [Pnueli et al.
1998]. Specifically, we use Coeus to check the correctness of various transformations performed by
the ROSE compiler infrastructure [Quinlan and Liao 2011] from the Lawrence Livermore Laboratory.

7Similar to the SeaHorn verifier [Gurfinkel et al. 2015], our implementation augments Spacer by incorporating a Houdini-style
algorithm [Flanagan and Leino 2001].
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For this experiment, we consider five (intra-procedural) transformation passes from ROSE. These
transformations include loop unrolling, loop splitting, loop fission, constant propagation, and
partial redundancy elimination. Given an original C program P , we obtain multiple transformed
programs by applying all possible combinations of these transformations to P and then use Coeus
to check equivalence between P and its transformed versions.
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Fig. 8. Training performance on translation validation
training benchmarks

Training set. Recall that Coeus has an off-
line training phase that is used for learning an
optimal search policy via reinforcement learn-
ing. Towards this goal, we wrote a simple pro-
gram generator that produces random, self-
contained C functions. For each randomly gen-
erated program P , we obtain multiple trans-
formed programs P1, . . . , Pn as described above
and use each (P, Pi ) pair as a training example.
Using this methodology, we trained Coeus on a
total of 400 translation validation benchmarks.
To give the reader some idea about the impact
of training, Figure 8 plots the success rate of the
learned policy against the number of training
iterations. As we can see from this figure, the
policy gradually adapts itself to better solve the problems in our training set.
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Fig. 9. Results for translation validation

Test set. The programs in our test set come
from 80 functions collected from popular open-
source C programs (e.g., OpenSSL, curl, etc.)
that are available on Github. Given an original
function proc from one of these applications,
we apply a combination of ROSE transforma-
tions to obtain a new program proc’. After
eliminating duplicates, we obtain a total of 153
translation validation benchmarks (i.e., pairs of
programs) for our test set.

Results. Figure 9 summarizes the results of
our evaluation on the translation validation
domain. The x-axis shows the time limit per
benchmark, and the y-axis shows the percent-
age of benchmarks that can be solved within

that time limit. Different graphs in the figure correspond to the following variants of Coeus:
• The blue line (with circles) is the full Coeus system.
• The orange and green lines (with squares and triangles respectively) correspond to variants of
Coeus that use the learned policy but not our proposed search algorithm. Specifically, Single-
Rollout only explores a single rollout of the learned policy andMulti-Rollout samples multiple
rollouts until a time limit is reached.
• Both the red graph (with crosses) and the purple graph (with pluses) correspond to variants
that do not use the learned policy to guide search. The first variant (labeled Random) uses our
search algorithm with a randomly generated policy, and the latter variant (BFS) uses breadth-first
search.
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Table 1. Comparison with other relational verification tools on translation validation benchmarks .

Tools
Coeus Descartes VeriMap

Number of benchmarks 153
Number of benchmarks supported by each tool 153 153 23

Number of solved benchmarks 144 77 17
Solved benchmarks / All benchmarks 94.1% 50.3% 11.1%

Solved benchmarks / Supported benchmarks 94.1% 50.3% 73.9%
Number of commonly supported benchmarks 23

Number of solved commonly supported benchmarks 23 20 17
Solved commonly supported benchmarks
/ Commonly supported benchmarks 100% 87% 73.9%

Average running time for solved benchmarks (sec) 10.9 12.3 32.29

One of the key conclusions to draw from Figure 9 is that policy-guided search significantly
boosts the percentage of benchmarks that can be solved within a given time limit. In particular,
both BFS and Random solve less than 58% of the benchmarks within a 5 minute time-limit whereas
Coeus can solve 88.9% of the benchmarks within the same limit. The second important conclusion
is that our proposed search algorithm allows us to effectively utilize the learned policy. Specifically,
the Single-Rollout andMulti-Rollout variants plateau at 67% and 73% respectively, whereas
Coeus can continue to solve more benchmarks as we increase the time limit.

Comparison against other tools. In addition to comparing Coeus against its own variants, we also
compare it against two state-of-the-art relational verification tools, namely VeriMap [De Angelis
et al. 2016b] and a re-implementation of Descartes [Sousa and Dillig 2016]. VeriMap is a relational
verification tool that uses a method called predicate pairing for solving constrained Horn clauses
that arise in relational proofs. In contrast, Descartes is based on the CHL program logic and
performs heuristic-guided backtracking search over the CHL proof rules. Since the original version
of Descartes is for Java programs, we re-implemented a version of Descartes for C that uses the
same proof rules and search heuristics.
As summarized in Table 1, Coeus outperforms both VeriMap and Descartes. Specifically,

VeriMap can solve only 11% of these benchmarks within the 5 minute time limit. Upon further
inspection, the low success rate of VeriMap is in part because the benchmarks constains features
(e.g., bitvectors, multi-dimensional arrays) that are not supported by this tool. Nevertheless, even if
we exclude 130 out of 153 benchmarks that are not supported by VeriMap, Coeus still performs
significantly better: VeriMap solves 17 out of the these 23 benchmarks, whereas Coeus solves 22
out of 23. Finally, Coeus also substantially outperforms Descartes: the success rate of Descartes
on the full benchmark set is around 50.3%, compared to 88.9% for Coeus.

Bugs found in ROSE. During the process of running this experiment,Coeus uncovered two sources
of unsoundness in the ROSE compiler. Specifically, since the accuracy of Coeus on the training set
was initially quite low, we manually inspected the benchmarks that could not be verified using
Coeus. Our inspection revealed two subtle bugs in the loop unrolling and fission transformation
passes implemented in ROSE. Note that the results shown in Figure 9 are obtained after fixing the
loop unrolling bug and filtering out benchmarks that trigger the source of unsoundness in the loop
fission pass. 8

8We did not fix the latter bug since it did not seem to admit an easy fix.
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8.2 Multiple Programs Written by Humans
In our previous evaluation, we considered pairs of programs where one of the programs is obtained
by automatically transforming the other. In this section, we consider a slightly more challenging
scenario for relational verification in which both programs are written by humans. Specifically,
for this experiment, we collected pairs of manually-written programs by considering different
solutions to programming challenge problems from LeetCode and HackerRank as well as pairs of
programs considered in previous work [De Angelis et al. 2016b]. Furthermore, these benchmarks
involve multiple different relational properties, including equivalence, non-equivalence, conditional
disequality (i.e., if inputs satisfy some relationship, then outputs should be different) etc. In total,
we consider 292 relational verification benchmarks and split them into training and test sets as
follows: Programs with size smaller than a certain threshold are used for training, whereas the
larger programs are used for testing.
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Fig. 10. Training performance for second experiment

This approach gives us a training set consist-
ing of 186 benchmarks, and a test set consisting
of 106. By splitting the benchmark in this way,
we demonstrate how our learning-based search
algorithm can generalize from the smaller ex-
amples seen during training to more complex
and challenging benchmarks in the test set.
As we can see from Figure 10, the training

phase shows a similar trend as in the first ex-
periment. In particular, the accuracy is initially
quite low and steadily improves until approx-
imately 1000 training iterations, after which it
seems to plateau at around 65%.

Results. Figure 11 compares the performance
of Coeus on the testing set with several base-
lines. As in the previous subsection, the x-axis shows the time limit per benchmark, and the y-axis
shows the percentage of benchmarks that can be solved within that time limit. Also as before, the
different graphs from Figure 11 correspond to theMulti-Rollout, Single-Rollout, Random, and
BFS variants of Coeus.
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Fig. 11. Comparison on test set

The trend we see in Figure 11 largely follows
the one in Figure 9. Specifically, we observe that
Coeus performs significantly better than both
BFS and Random, highlighting the importance
of guiding search using the RL policy. We also
observe thatCoeus can solve significantlymore
benchmarks compared to Single-Rollout and
Multi-Rollout as we increase the time limit,
and this pattern is even more pronounced on
this dataset compared to the translation vali-
dation benchmarks. This observation corrob-
orates our hypothesis that our policy-guided
search algorithm from Section 6 allows us to
use the policy much more effectively.

Comparison against other tools. As in Section 8.1, we also compare the performance of Coeus
against Descartes and VeriMap on this benchmark set. As shown in Table 2, Coeus solves
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Table 2. Comparison with other relational verification tools on second set of benchmarks.

Tools
Coeus Descartes VeriMap

Number of benchmarks 106
Number of benchmarks supported by each tool 106 79 65

Number of solved benchmarks 91 44 35
Solved benchmarks / All benchmarks 85.8% 41.5% 33.0%

Solved benchmarks / Supported benchmarks 85.8% 55.7% 53.8%
Number of commonly supported benchmarks 52

Number of solved commonly supported benchmarks 48 37 23
Solved commonly supported benchmarks
/ Commonly supported benchmarks 92.3% 71.2% 44.2%

Average running time for solved benchmarks (sec) 33.9 16.8 66.52
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(a) Benchmarks used in section 8.1
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(b) Benchmarks used in section 8.2

Fig. 12. Running Coeus with policies learned from different tasks

significantly more benchmarks compared to the other tools. Specifically, VeriMap and Descartes
solve 35 and 44 of the 106 benchmarks respectively, whereas Coeus solves 93. Furthermore, if we
exclude benchmarks that contain features not supported by either Descartes or VeriMap, we
find that Coeus solves 92.3% of the benchmarks, whereas VeriMap solves 44.2% and Descartes
solves 71.2%. We believe these results demonstrate that our proposed approach improves the
state-of-the-art in relational verification.

8.3 Discussion
In this section, we discuss a number of additional aspects of our algorithm, including (i) evaluating
the advantages of being data-driven, (ii) analyzing the learned properties, and (iii) explaining why
using policy-guided search may outperform the single-rollout policy.

Advantages of being data-driven. An important advantage of our proposed approach is that it is
data-driven. In particular, a key challenge for traditional verification tools is that different problem
domains typically require different sets of search heuristics. Thus, to improve performance, a user
must manually design search heuristics tailored to their specific domain of interest. This process
can be challenging since it requires that the user is an expert both in their application domain and
also in the internal workings of the verification algorithm (e.g., the underlying CHC solver). In
contrast, given training data that is representative of a target domain, Coeus automatically learns
a policy that works well specifically for that domain.
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We empirically evaluate the advantages of being data-driven by applying the policy from Sec-
tion 8.1 to the benchmarks from Section 8.2 and vice versa. In particular, in Figure 12a, we show two
single-rollout performance curves of Coeus on the translation validation benchmarks. Here, the
blue dotted line represents the performance of Coeus if it uses a policy trained for the translation
validation task, whereas the orange line (with squares) represents the performance of Coeus if it
uses a policy trained on the hand-written programs from Section 8.2. As we can see from the large
gap between the blue and orange lines, Coeus performs significantly better when using a policy
that has been trained on translation validation benchmarks. We also see this trend in Figure 12b:
the policy trained on the translation validation benchmarks performs significantly worse when
evaluated on the benchmarks from Section 8.2. Overall, we believe these results demonstrate the
usefulness of learning data-driven relational proof search strategies that are able to automatically
infer domain-specific insights and leverage them to boost performance.

Analysis of learned policies. We examine the policies learned by Coeus to better understand
the domain-specific insights that they have inferred. Recall from Section 5 that Coeus represents
policies using neural networks, which are notoriously difficult to interpret [Towell and Shavlik
1992]. To better understand the policies learned by Coeus, we approximated each of the two neural
networks (i.e., representing the policies from Sections 8.1 & 8.2) using decision trees, and then
manually inspect these trees. 9 Based on this analysis, we made the following observations:
• The policy learns to prioritize rules that minimize the proof length for loop-free code.
• For our first benchmark (translation validation) in Section 8.1, the policy learns to ignore
proof rules that are not relevant to the kinds of transformations that ROSE performs.
• For our first benchmark, the policy learns to unroll loops when unrolling would equalize the
number of loop iterations. For our second benchmark, unrolling is picked less often since it
is turns out not to be very useful for the training examples in Section 8.2.
• For our second benchmark in Section 8.2, when encountering a loop in one program and
function call in the other, the policy often converts the loop into a tail-recursive procedure.

Despite these fairly intuitive patterns that we have uncovered from the decision tree, we also
found that the learned policy is actually quite complex. In particular, it takes a decision tree of depth
more than 7 to reasonably imitate the intricate behavior of the neural network policy. Furthermore,
it is worth noting that the learned policy may perform actions that are quite unintuitive and
that seem to be correlated with the quirks of the underlying CHC solver. For instance, we find
cases where the underlying CHC solver can much more easily discharge the resulting VCs if two
independent statements are swapped in certain kinds of situations. Surprisingly, the reinforcement
learning algorithm picks up on such quirks of the underlying safety checker. Thus, Coeus is able
to infer unintuitive heuristics that a human would be unlikely to devise.

Impact of search. As described previously, Figure 11 shows that the policy-guided proof search
algorithm substantially outperforms using the policy alone. We give an example that demonstrates
the benefits of our search algorithm. In particular, Figure 13 shows one of the equivalence checking
examples from Section 8.2. A successful proof strategy for this problem is to unroll the while loop in
tree0() and then synchronize it with the for loop in tree1(), since equalizing the iteration counts
of the two loops will drastically reduce the difficulty of solving the generated verification conditions.
However, our learned policy does not favor this strategy—instead, it first tries to “synchronize”
the loops directly and fails to prove equivalence, since the underlying CHC solver is not able to

9Note that this analysis does not consider the effects of using the learned policy in the context of a backtracking search
algorithm.
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int tree0(int n) {
assume(n >= 0 && n <= 60);
int h = 1; int turn = 0;
while (n > 0) {

if (turn == 0) {
h = h * 2; turn = 1;

} else {
h++; turn = 0;

}
n--;

}
return h;

}

int tree1(int n) {
assume(n >= 0 && n <= 60);
int i, x = 1;
if (n != 0) {

for (i = 1; i <= n; i++) {
x = x * 2; i++;
if (i % 2 == 0 && i <= n)

x = x + 1;
}

}
return x;

}

Fig. 13. Example benchmark programs which require loop unrolling to verify

discharge the VCs. Nevertheless, our search algorithm progressively explores other proof strategies
and discovers the right strategy after 12 failed proof attempts.

9 RELATEDWORK
In this section, we survey the related work on relational verification, reinforcement learning, and
the use of machine learning in programming languages.

Relational verification. As stated in Section 1, relational verification problems are typically solved
by reducing them to standard safety in one of several ways. Some approaches construct a new
program that is safe iff the original relational verification problem is valid [Barthe et al. 2011,
2016, 2004; Eilers et al. 2018]. Other approaches [Barthe et al. 2012; Benton 2004; Chen et al. 2017;
Sousa and Dillig 2016] propose program logics for decomposing the relational verification task
into a set of Hoare triples. Finally, some techniques [De Angelis et al. 2016b; Felsing et al. 2014;
Mordvinov and Fedyukovich 2017] directly encode the relational verification problem as a set of
constrained Horn clauses and propose new CHC solving techniques to deal with the resulting
constraints [De Angelis et al. 2016b; Mordvinov and Fedyukovich 2017]. While these approaches
define the space of strategies for reducing relational verification to safety checking, they do not
propose algorithms for efficiently exploring the large search space. In contrast, themain contribution
of this paper is to use reinforcement learning to guide proof search.

k-safety. Several papers [Chen et al. 2017; Clarkson and Schneider 2010; Sousa and Dillig 2016;
Terauchi and Aiken 2005] address k-safety verification, where the goal is to prove the absence
of an unintended interaction between k runs of the same program. Generally speaking, k-safety
properties can be viewed as a special kind of relational verification problem, where the programs
under analysis are all identical. While the ideas proposed in this paper are, in principle, applicable
to proving k-safety for arbitrary values of k , our current prototype only handles 2-safety properties.

Machine learning for PL. There have been several recent successes in applying (supervised)
machine learning to programming languages research. For example, machine learning has been
used to infer program invariants [Padhi et al. 2016; Sharma and Aiken 2014; Sharma et al. 2013],
improve program analysis [Liang et al. 2011; Mangal et al. 2015; Raghothaman et al. 2018; Raychev
et al. 2015] and synthesis [Balog et al. 2016; Feng et al. 2018, 2017; Kalyan et al. 2018; Lee et al.
2018; Raychev et al. 2016b; Schkufza et al. 2013, 2014], build probabilistic models of code [Bielik
et al. 2016; Raychev et al. 2016a, 2014], infer specifications [Bastani et al. 2017, 2018b; Beckman
and Nori 2011; Bielik et al. 2017; Heule et al. 2016; Kremenek et al. 2006; Livshits et al. 2009], test
software [Clapp et al. 2016; Godefroid et al. 2017; Liblit et al. 2005], and select lemmas for automated
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theorem proving [Irving et al. 2016; Wang et al. 2017]. However, these approaches treat the selection
of promising lemmas as a one-shot problem rather than a sequential decision making problem.

Reinforcement learning for PL. There has been recent interest in applying reinforcement learning
(RL) to solve challenging PL problems where large amounts of labeled training data are either
not available or too expensive to obtain. For instance, Si et al. use policy gradient to infer loop
invariants [Si et al. 2018a]; Singh et al. apply RL improve polyhedral analysis by choosing parameters
to approximate the join transformer[Singh et al. 2018], and Si et al. use reinforcement learning for
program synthesis [Si et al. 2018b]. Among these techniques, the first and third one both focus
on a specific problem and do not attempt to learn across different problem instances, as we do in
our setting. In contrast to Singh et al, the reinforcement learning problem in our setting is more
challenging, as we do not observe rewards until the very end of a rollout.

RL for game playing. Our work bears some similarities to the use of RL in game playing [Guo
et al. 2014; Silver et al. 2016, 2017]. These techniques simulate different games (rollouts) under the
assumption that the opponent follows the same (probabilistic) strategy and then evaluate each
move based on the outcome of these simulations. In contrast to our method, these approaches
all use Q-learning, which, as discussed in Section 5.4, requires mapping distinct states to distinct
feature vectors. While there are mature techniques for doing this in the context of game playing, it
is unclear how to featurize relational proof strategies in a way that avoids the perceptual aliasing
problem.

10 CONCLUSION
We have proposed a new relational verification algorithm that uses a policy learned using reinforce-
ment learning to guide relational proof search. We have shown how to formulate the relational
verification problem as a Markov decision process and proposed a variant of the policy gradi-
ent algorithm to find an optimal policy for this MDP. Finally, we have shown how to use the
learned policy to guide proof search. Experiments performed using our prototype, Coeus, show
that Coeus outperforms state-of-the-art relational verification tools and demonstrate the usefulness
of policy-guided proof search: Overall, Coeus solves 229 out of 259 relational verification problems
in our benchmark suite, while Descartes and VeriMap solve just 121 and 52, respectively. Our
experiments also highlight the importance of combining learning and backtracking search.
While some of the ideas proposed in this work could potentially be applicable to other proof

search problems beyond relational verification, we believe that the proposed approach is particularly
well-suited for relational verification: First, there are a large number of candidate proof rules that can
be applied at each state, and good search heuristics are domain-dependent and non-trivial to design.
Second, despite the large size of the search space, the models used for relational verification only
need to choose between n types of available in actions (i.e., which proof rule to apply). In contrast,
other proof search settings may require synthesizing auxiliary lemmas or inductive invariants that
are not fixed a priori. In future work, we plan to explore the use of RL in more general proof search
settings (e.g., in theorem provers like Coq and Isabelle).

A APPENDIX
A.1 Proof of Theorem 5.8
First, we show that the mapping from policies π to distributions p(π ) is invertible:

Lemma A.1. Given a distribution p over complete proof strategies, we have p(π ) = p, where

π (S , A) =

∑
S ′⪯∗P (S ,A) p̃(S ′)∑

S ′⪯∗S p̃(S ′)
.
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Proof. First, because transitions are deterministic, we have

p(π )(S ) ∝
∑
ζ

I[ST = S ] · p(S0 | S0) ·
T−1∏
i=0

π (Si , Ai ),

where p(S0 | S0) is the probability that the initial state is S0. Furthermore, note that there is a
unique way of constructing any given complete proof strategy S ∈ SF using actionsA ∈ A. Letting
ζS = ((S0,A0,R0), ..., (ST ,∅,RT )) denote the unique rollout with terminal state ST = S , we have

p(π )(S ) = p(S0 | S0) ·
T−1∏
i=0

π (Si , Ai ).

Expanding the right-hand side, we have

p(π )(S ) = p(S0 | S0) ·
T−1∏
i=0

∑
S ′⪯∗P (Si ,Ai ) p(S

′)∑
S ′⪯∗Si p(S

′)
= p(S0 | S0) ·

T−1∏
i=0

∑
S ′⪯∗Si+1 p(S

′)∑
S ′⪯∗Si p(S

′)

= p(S0 | S0) ·

∑
S ′⪯∗ST p(S ′)∑
S ′⪯∗S0 p(S

′)
.

Note that the numerator of the last line equals p(ST ), since the only S ′ such that S ′ ⪯∗ ST for
a complete state ST is ST itself. Similarly, the denominator equals p(S0 | S0), since the sets of
states {S ′ | S ′ ⪯∗ S0} are disjoint for different initial states S0. In other words, p(π )(S) = p(S), as
claimed. □

As a consequence, the space over policies (which reinforcement learning algorithms optimize over)
and the space of distributions (which (1) optimizes over) are equal. Next, we prove that given a
policy π , its cumulative reward of π equals the objective (1) evaluated at p̃ = p(π ):

Lemma A.2. For any policy π forMproof, we have

R
(π ) = Pr

t∼T,S∼p(π )t
[O(S )],

where p(π )t is the distribution p(π ) conditioned on task t :

p(π )t = p(π ) | S is labeled with the initial proof goal for t .

Proof. Note that since complete proofs are terminal states, and we only obtain reward on
successful proofs (which are complete by definition). Thus, we have

R
(π ) = Eζ ∼π

[
T∑
i=0

Ri

]
= Eζ ∼π [RT ] = Eζ ∼π [O(ST )].

Finally, by definition, the distribution of ST given a randomly sampled rollout ζ ∼ π equals the
distribution p(π ). So R(π ) = PrS∼p(π ) [O(S)], as claimed. □

The proof of Theorem 5.8 follows from Lemma A.1 and Lemma A.2.

A.2 Proof of Theorem 5.11
We can rewrite the objective J (θ ) of (4) as follows:

Lemma A.3. We have

J (θ ) =
1

r + 1

r∑
i=0
R
(πθ ,i ) .
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Proof. Note that ξ (t )r ,θ (S) =
1

r+1
∑r

i=0 pi where pi = pπθ ,i . Thus, we have

J (θ ) = Pr
t∼T,S∼ξ (t )r ,θ

[O(S ) = 1] = E
t∼T,S∼ξ (t )r ,θ

[O(S )] = Et∼T

[
1

r + 1

r∑
i=0
E
S∼p(t )πθ ,i

[O(S )]

]
=

1
r + 1

r∑
i=0
E
t∼T,S∼p(t )πθ ,i

[O(S )]

=
1

r + 1

r∑
i=0
ES∼pπθ ,i

[O(S )]

=
1

r + 1

r∑
i=0
Eζ ∼πθ ,i [O(ST )]

=
1

r + 1

r∑
i=0
R
(πθ ,i ),

as claimed. □

Now, let τ denote the function by which our search algorithm constructs πθ ,i+1 from πθ ,i , i.e.,

πθ ,i =

{
πθ if i = 0
τ (πθ ,i−1, θ ) otherwise.

Then, consider the derivative of τ with respect to θ :
dτ
dθ
(π , θ ) =

∂τ
∂π
(π , θ )

dπ
dθ
+

∂τ
∂θ
(π , θ ),

where the gradient with respect to π is the gradient with respect to the probabilities π (S,A) of
taking action A in state S . We have the following important fact about τ :

Lemma A.4. We have
∂τ
∂π
(π , θ ) = 0,

except on a measure zero subset.

Proof. (sketch) Our search algorithm constructs πθ ,i from πθ ,i−1 by first constructing the most
probable rollout ζmax according to πθ ,i−1, and constructing πθ ,i deterministically from ζmax and θ ,
i.e.,

πθ ,i = τ̃ (ζmax, θ ).

In other words, τ (π , θ ) = τ̃ (ζmax, θ ), where ζmax is the most probable rollout according to π . However,
note that ζmax is from a discrete set. Therefore, for fixed θ , τ must be a piecewise constant function
of π , so the claim follows. □

Intuitively, this lemma says that the way in which we construct the sequence of policies πθ ,0, πθ ,1, ...
is not affected by small changes to θ . An important consequence is that

dτ
dθ
(π , θ ) =

∂τ
∂θ
(π , θ ).

Finally, Theorem 5.11 follows directly from Lemma A.3, Theorem 5.10, and Lemma A.4.

A.3 Proof Sketch of Theorem 6.1
First, we need to introduce the notion of the length of a proof strategy.

Definition A.5. The length of a proof strategy ϒ, written as L(ϒ), is defined as follows:
- For any proof goal G, L (ϒ0(G)) = 0.
- If ϒ ⪯1 ϒ′, then L(ϒ) = 1 + L(ϒ′).
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Intuitively, proof length keeps track of how many proof rules have been applied. In this paper,
we only consider proof strategies of finite length.

Lemma A.6. Given two proof strategies ϒ1 and ϒ2, if ϒ1 ⪯ ϒ2, then ℓπ (ϒ1) ≥ ℓπ (ϒ2).

Proof. The lemma can be proved by induction on the difference of length between ϒ1 and ϒ2. □

Lemma A.7. If a proof strategy ϒ is non-failing, then for all strategy ϒ′ such that ϒ ⪯ ϒ′, ϒ′ is
non-failing.

Proof. This lemma follows directly from the definition 3.8: for ϒ = (V , E,AR,Aφ ,AG) and ϒ′ =
(V ′, E ′,A′

R
,A′φ ,A

′
G
), if ϒ ⪯ ϒ′, then

∧
v ∈V ′ A

′
φ (v) contains strictly less clauses than

∧
v ∈V Aφ (v). If

the latter is satisfiable, the former must also be satisfiable as it is strictly weaker. □

We now prove Theorem 6.1 by contradiction. Let ϒ1 and ϒ2 be two complete non-failing proof
strategies and pπ (ϒ1) > pπ (ϒ2) (thus ℓπ (ϒ1) < ℓπ (ϒ2)). Suppose ϒ2 gets dequeued fromW before ϒ1
on line 5 in Algorithm 2. Since ChooseStrategy always picks the strategy with the smallest value
of ℓπ , we know that ϒ1 must not be inW when ϒ2 gets dequeued.
We now consider the “predecessors” of ϒ1 in the search algorithm, i.e. P = {ϒ∗ |ϒ1 ⪯ ϒ∗}. We

know that ϒ1 is non-failing, so according to Lemma A.7 strategies in P will also be non-failing and
thus will not be blocked by B on line 11 to 12. Since all proof strategies explored in Algorithm 2
refines the initial strategy ϒ0(G) for the initial goal G, and the initial strategy is enqueued intoW
on line 2, there must exist one ϒ∗ ∈ P such that ϒ∗ is inW when ϒ2 is dequeued.
According to lemma A.6, we have ℓπ (ϒ∗) ≤ ℓπ (ϒ1). Hence ℓπ (ϒ∗) < ℓπ (ϒ2), which means that

when ϒ∗ and ϒ2 are both inW , ϒ∗ will be dequeued first. This contradicts our earlier assumption
that ϒ2 is dequeued before ϒ∗.

A.4 Proof Sketch of Theorem 6.3
We only need to prove the proposition that when the function RelVerif(G, π ,∆) returns ⊥, every
non-failing strategy must have been checked for successfulness on by Algorithm 2 on line 13.
Theorem 6.3 is a direct corollary of this proposition.

The proof can be carried out by induction on the length of the non-failing strategies.
- When L(ϒ) = 0, ϒ = ϒ0(G). The conclusion hold trivially as the initial strategy is guaranteed to
reach line 13 in the first iteration of the for loop.

- Assume the proposition holds for non-failing strategies with length n − 1 where n ≥ 1.
Let ϒ = ApplyProofRule(ϒ′,R) with L(ϒ) = n. By inductive hypothesis we know that line 13
must have been reached with ϒi = ϒ′ before. As ϒ′ is both not failing and not complete by
definition, line 17 will be reached and ϒ′ will be enqueued inW .
Now consider the iteration when ϒ′ gets dequeued at line 5. Line 10 is guaranteed be reached
with ϒi = ϒ. Since ϒ is also non-failing, it will not be blocked by B on line 11 to 12. Therefore, ϒ
will be checked for successfulnesss on line 13 as well.
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