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Abstract
We present an algorithm for synthesizing a context-free
grammar encoding the language of valid program inputs
from a set of input examples and blackbox access to the
program. Our algorithm addresses shortcomings of existing
grammar inference algorithms, which both severely over-
generalize and are prohibitively slow. Our implementation,
GLADE, leverages the grammar synthesized by our algo-
rithm to fuzz test programs with structured inputs. We show
that GLADE substantially increases the incremental cover-
age on valid inputs compared to two baseline fuzzers.

CCS Concepts •Theory of computation → Program
analysis

Keywords grammar synthesis; fuzzing

1. Introduction
Documentation of program input formats, if available in a
machine-readable form, can significantly aid many software
analysis tools. However, such documentation is often poor;
for example, the specifications of Flex [61] and Bison [20]
input syntaxes are limited to informal documentation. Even
when detailed specifications are available, they are often not
in a machine-readable form; for example, the specification
for ECMAScript 6 syntax is 20 pages in Annex A of [15],
and the specification for Java class files is 268 pages in
Chapter 4 of [45].

In this paper, we study the problem of automatically syn-
thesizing grammars representing program input languages.
Such a grammar synthesis algorithm has many potential ap-

plications. Our primary motivation is the possibility of using
synthesized grammars with grammar-based fuzzers [23, 28,
38]. For example, such inputs can be used to find bugs in
real-world programs [24, 39, 48, 67], learn abstractions [41],
predict performance [30], and aid dynamic analysis [42]. Be-
yond fuzzing, a grammar synthesis algorithm could be used
to reverse engineer input formats [29], in particular, network
protocol message formats can help security analysts discover
vulnerabilities in network programs [8, 35, 36, 66]. Synthe-
sized grammars could also be used to whitelist program in-
puts, thereby preventing exploits [49, 50, 58].

Approaches to synthesizing program input grammars typ-
ically examine executions of the program, and then gen-
eralize these observations to a representation of valid in-
puts. These approaches can be either whitebox or blackbox.
Whitebox approaches assume that the program code is avail-
able for analysis and instrumentation, for example, using dy-
namic taint analysis [29]. Such an approach is difficult when
only the program binaries are available or when parts of the
code (e.g., libraries) are missing. Furthermore, these tech-
niques often require program-specific configuration or tun-
ing, and may be affected by the structure of the code. We
consider the blackbox setting, where we only require the
ability to execute the program on a given input and observe
its corresponding output. Since the algorithm does not exam-
ine the program’s code, its performance depends only on the
language of valid inputs, and not on implementation details.

A number of existing language inference algorithms can
be adapted to this setting [14]. However, we found them
to be unsuitable for synthesizing program input grammars.
In particular, L-Star [3] and RPNI [44], the most widely
studied algorithms [6, 12, 13, 19, 62], were unable to learn or
approximate even simple input languages such as XML, and
furthermore do not scale even to small sets of seed inputs.
Surprisingly, we found that L-Star and RPNI perform poorly
even on the class of regular languages they target.

The problem with these algorithms is that despite having
theoretical guarantees, they depend on assumptions that do



not hold in the setting of learning program input grammars.
For example, they typically avoid overgeneralizing by rely-
ing on an “oracle” to provide negative examples that are used
by the algorithm to identify and remove overly general por-
tions of the language. However, these oracles are not avail-
able in our setting—e.g., L-Star obtains such examples from
an equivalence oracle, and RPNI obtains them “in the limit”.
They likewise assume that positive examples exercising all
interesting behaviors are provided by this oracle. In our set-
ting, the needed positive and negative examples are difficult
to find, and existing algorithms consistently overgeneralize
(e.g., return Σ∗) or undergeneralize (e.g., return ∅). Addi-
tionally, despite having polynomial running time, they can
be very slow on our problem instances. To the best of our
knowledge, other existing grammar inference algorithms are
either impractical [14, 33] or make assumptions similar to
L-Star and RPNI [31].

This paper presents the first practical algorithm for syn-
thesizing program input grammars in the blackbox setting.
Our algorithm synthesizes a context-free grammar Ĉ encod-
ing the language L∗ of valid program inputs, given

• A small set of seed inputs Ein ⊆ L∗ (i.e., exam-
ples of valid inputs). Typically, seed inputs are readily
available—in our evaluation, we use small test suites that
come with programs or examples from documentation.
• Blackbox access to the program executable to answer

membership queries (i.e., whether a given input is valid).

Our algorithm adopts a high-level design commonly used
by language learning algorithms (e.g., RPNI)—it starts with
the language containing exactly the given positive exam-
ples, and then incrementally generalizes this language, using
negative examples to avoid overgeneralizing. Our algorithm
avoids the shortcomings of existing algorithms in two ways:

• It considers a much richer set of potential generalizations,
which addresses the issue of omitted positive examples.
• It generates negative examples on the fly to avoid over-

generalizing, which addresses the issue of omitted nega-
tive examples.

In particular, our algorithm constructs a series of increas-
ingly general languages using generalization steps. Each
step first proposes a number of candidate languages that gen-
eralize the current language, and then uses carefully crafted
membership queries to reject candidates that overgeneral-
ize. Our algorithm considers candidates that (i) add repeti-
tion and alternation constructs characteristic of regular ex-
pressions, (ii) induce recursive productions characteristic of
context-free grammars, in particular, parentheses matching
grammars, and (iii) generalize constants in the grammar.

We implement our approach in a tool called GLADE,1.
We conduct an extensive empirical evaluation of GLADE

1 GLADE stands for Grammar Learning for AutomateD Execution, and is
available at https://github.com/obastani/glade.

(Section 8), and show that GLADE substantially outperforms
both L-Star and RPNI, even when restricted to synthesiz-
ing regular expressions. Furthermore, we show that GLADE
successfully synthesizes input grammars for real programs,
which can be used to fuzz test those programs. In particular,
GLADE automatically synthesizes a program input grammar,
and then uses the synthesized grammar in conjunction with
a standard grammar-based fuzzer (described in Section 8.3)
to generate new test inputs. Many fuzzing applications re-
quire valid inputs, for example, differential testing [67]. We
show that when restricted to generating valid inputs, GLADE
increases line coverage compared to both a naı̈ve fuzzer and
a production fuzzer afl-fuzz [68]. Our contributions are:

• We introduce an algorithm for synthesizing program in-
put grammars from seed inputs and blackbox program ac-
cess (Section 3). Our algorithm first learns regular prop-
erties such as repetitions and alternations (Section 4), and
then learns recursive productions characteristic of match-
ing parentheses grammars (Section 5).
• We implement our grammar synthesis algorithm in a tool

called GLADE, and show that GLADE outperforms two
widely studied language learning algorithms, L-Star and
RPNI, in our application domain (Section 8.2).
• We use GLADE to fuzz test programs, showing that it

increases the number of newly covered lines of code
using valid inputs by up to 6× compared to two baseline
fuzzers (Section 8.3).

2. Problem Formulation
Suppose we are given a program that takes inputs in Σ∗,
where Σ is the input alphabet (e.g., ASCII characters). We
let L∗ ⊆ Σ∗ denote the target language of valid program
inputs; typically, L∗ is a highly structured subset of Σ∗.
Our goal is to synthesize a language L̂ approximating L∗
from blackbox program access and seed inputs Ein ⊆ L∗.
We represent blackbox program access as an oracle O such
that O(α) = I[α ∈ L∗] (here, I is the indicator function,
so I[C] is 1 if C is true and 0 otherwise). In particular, we
run the program on input α ∈ Σ∗, and conclude that α is
a valid input (i.e., α ∈ L∗) if the program does not print
an error message. Access to the oracle is crucial to avoid
overgeneralizing, e.g., rejecting L̂ = Σ∗, whereas the seed
inputs give a starting point from which to generalize.

As a running example, suppose the program input lan-
guage is the XML-like grammar CXML shown in Figure 1.
We use + to denote alternations and ∗ (the Kleene star)
to denote repetitions. Terminals that are part of regular ex-
pressions or context-free grammars are highlighted in blue.
Given seed input αXML and oracle OXML, our goal is to syn-
thesize a language L̂ approximating L∗ = L(CXML).

Ideally, we would learn L∗ exactly, i.e., L̂ = L∗, but it
is impossible to guarantee exact learning [25]. Instead, we
want L̂ to be a good approximation of L∗. To measure the



• Target language L(CXML), where the context-free grammar
CXML has terminals ΣXML = {a, ..., z, <, >, /}, start symbol
AXML, and production

AXML → (a + ...+ z + <a>AXML</a>)∗

• Oracle OXML(α) = I[α ∈ L(CXML)]

• Seed inputs EXML = {αXML}, where αXML = <a>hi</a>

Figure 1. A context-free language L(CXML) of XML-like strings,
along with an oracleOXML for this language and a seed input αXML.

approximation quality, we require probability distributions
over L∗ and L̂. In Section 8.1, we define the distributions
we use in detail. Briefly, we convert the context-free gram-
mar into a probabilistic context-free grammar, and use the
distribution induced by sampling strings in this probabilistic
grammar. Then, we measure the quality of L̂ as follows:

DEFINITION 2.1. Let PL∗ and PL̂ be probability distribu-
tions over L∗ and L̂, respectively. The precision of L̂ is
Prα∼PL̂

[α ∈ L∗] and the recall of L̂ is Prα∼PL∗
[α ∈ L̂]

(here, α ∼ P denotes a random sample from P).

For high precision, a randomly sampled string α ∼ PL̂ must
be valid with high probability, i.e.,α ∈ L∗. For high recall, L̂
must contain a randomly sampled valid string α ∼ PL∗ with
high probability. Both are desirable: L̂ = {αin} has perfect
precision but typically low recall, whereas L̂ = Σ∗ has
perfect recall but typically low precision. Finally, while the
synthesized language L̂ is context-free, it is often possible
for L̂ to approximate L∗ with high precision and recall even
if L∗ is not context-free (e.g., L∗ is context-sensitive).

3. Overview
In this section, we give an overview of our grammar syn-
thesis algorithm (summarized in Algorithm 1). We consider
the case where Ein consists of a single seed input αin ∈ L∗;
an extension to multiple seed inputs is given in Section 6.1.
Our algorithm starts with the language L̂1 = {αin} contain-
ing only the seed input, and constructs a series of languages

{αin} = L̂1 ⇒ L̂2 ⇒ ...,

where L̂i+1 results from applying a generalization step to
L̂i. On one hand, we want the languages to become succes-
sively larger (i.e., L̂i ⊆ L̂i+1); on the other hand, we want
to avoid overgeneralizing (ideally, the newly added strings
L̂i+1 \ L̂i should be contained in L∗). Our framework re-
turns the current language L̂i if it is unable to generalize
L̂i in any way. Figure 2 shows the series of languages con-
structed by our algorithm for the example in Figure 1. Steps
R1-R9 (detailed in Section 4) generalize the initial language
L̂1 = {αXML} by adding repetitions and alternations. Steps
C1-C2 (detailed in Section 5) add recursive productions.

We now describe generalization steps at a high level.

Algorithm 1 Our grammar synthesis algorithm. Given seed input
αin ∈ L∗ and oracle O for L∗, it returns an approximation of L∗.

procedure LEARNLANGUAGE(αin,O)
L̂current ← {αin}
while true do

M ← CONSTRUCTCANDIDATES(L̂current)
L̃chosen ← ∅
for all L̃ ∈M do

S ← CONSTRUCTCHECKS(L̂current, L̃)
if CHECKCANDIDATE(S,O) then

L̃chosen ← L̃
break

end if
end for
if L̃chosen = ∅ then

return L̂current
end if
L̂current ← L̃chosen

end while
end procedure
procedure CHECKCANDIDATE(S,O)

for all α ∈ S do
ifO(α) = 0 then

return false
end if

end for
return true

end procedure

Candidates. The ith generalization step first constructs
candidate languages L̃1, ..., L̃n, with the goal of choosing
L̂i+1 to be the candidate that increases recall the most with-
out sacrificing precision. To ensure candidates can only in-
crease recall, we consider monotone candidates L̃ ⊇ L̂i.
Furthermore, the candidates are ranked from most preferable
(L̃1) to least preferable (L̃n). Figure 2 shows the candidates
considered for our running example. They are listed in order
of preference, with the top candidate being the most pre-
ferred. In steps R1-R9, the candidates add a single repetition
or alternation to the current regular expression; in steps C1-
C2, the candidates try to equate nonterminals in the current
context-free grammar.

Checks. To ensure high precision, we want to avoid over-
generalizing. Ideally, we want to select a candidate that is
precision-preserving, i.e., L̃ \ L̂i ⊆ L∗. In other words, all
strings added to the candidate L̃ (compared to the current
language L̂i) are contained in the target language L∗. How-
ever, we only have access to a membership oracle for L∗, so
it is typically impossible to prove that a given candidate L̃
is precision-preserving—we would have to checkO(α) = 1
for every α ∈ L̃ \ L̂i, but this set is often infinite.

Instead, we carefully choose a finite number of heuristic
checks S ⊆ L̃ \ L̂i. Then, our algorithm rejects L̃ ifO(α) =
0 for any α ∈ S. Alternatively, if all checks pass (i.e.,
O(α) = 1), then L̃ is potentially precision-preserving. Since
the candidates are ranked in order of preference, we choose
the first potentially precision-preserving candidate. Figure 2
shows examples of checks our algorithm constructs.



Step Language Candidates Checks

R1 [<a>hi</a>]rep

? ([<a>hi</a>]alt)
∗

? ([<a>hi</a]alt)
∗[>]rep

? ...
? <a>([hi]alt)

∗[</a>]rep
? ...

{ε 3, <a>hi</a><a>hi</a> 3}
{<a>hi</a 7, <a>hi</a<a>hi</a> 7}
...
{<a></a> 3, <a>hihi</a> 3}
...

R2 ([<a>hi</a>]alt)
∗

? ([<]rep + [a>hi</a>]alt)
∗

? ...
? ([<a>hi</a>]rep)∗

{< 7, a>hi</a> 7}
...
∅

R3 ([<a>hi</a>]rep)∗

? (([<a>hi</a]alt)
∗[>]rep)∗

? ...
? (<a>([hi]alt)

∗[</a>]rep)∗

? ...

{<a>hi</a 7, <a>hi</a<a>hi</a> 7}
...
{<a></a> 3, <a>hihi</a> 3}
...

R4 (<a>([hi]alt)
∗[</a>]rep)∗

? (<a>([hi]alt)
∗([</a>]alt)

∗)∗

? ...
? (<a>([hi]alt)

∗</a([>]alt)
∗)∗

? (<a>([hi]alt)
∗</a>)∗

{<a>hi 7, <a>hi</a></a> 7}
...
{<a>hi</a 7, <a>hi</a>> 7}
∅

R5 (<a>([hi]alt)
∗</a>)∗

? (<a>([h]rep + [i]alt)
∗</a>)∗

? (<a>([hi]rep)∗</a>)∗
{<a>h</a> 3, <a>i</a> 3}
∅

R6 (<a>([h]rep + [i]alt)
∗</a>)∗ ? (<a>([h]rep + [i]rep)∗</a>)∗ ∅

R7 (<a>([h]rep + [i]rep)∗</a>)∗ ? (<a>([h]rep + i)∗</a>)∗ ∅
R8 (<a>([h]rep + i)∗</a>)∗ ? (<a>(h+ i)∗</a>)∗ ∅
R9 (<a>(h+ i)∗</a>)∗ – –

C1
(
A′R1 → (<a>A′R3</a>)

∗

A′R3 → (h+ i)∗
, {(A′R1, A

′
R3)}

) ?

(
A→ (<a>A</a>)∗

A→ (h+ i)∗
, ∅

)
?

(
A′R1 → (<a>A′R3</a>)

∗

A′R3 → (h+ i)∗
, ∅

) {hihi 3, <a><a>hi</a><a>hi</a></a> 3}

∅

C2
(
A→ (<a>A</a>)∗

A→ (h+ i)∗
, ∅

)
– –

Figure 2. The generalization steps taken by our algorithm given seed input αXML and oracle OXML. The initial language {αXML} is
generalized to a regular expression in steps R1-R9. The resulting regular expression is translated to a context-free grammar, which is further
generalized in steps C1-C2. The candidates at each step are shown in order of preference, with the most preferable on top (ellipses indicate
omitted candidates). Checks for each candidate are shown; a green check mark 3 indicates that the check passes and a red cross 7 indicates
that it fails. A star ? is shown next to the selected candidate.

4. Phase One: Regular Expression Synthesis
We describe the first phase of generalization steps, which
generalize the seed input into a regular expression.

4.1 Candidates
In phase one, the current language is represented by a regular
expression annotated with extra data: substrings of terminals
α = σ1...σk may be enclosed in square brackets, i.e., [α]τ ,
where τ ∈ {rep, alt}. These annotations indicate that the
bracketed substring in the current regular expression can be
generalized by adding either a repetition (if τ = rep) or an
alternation (if τ = alt). The seed input αin is automatically
annotated as [αin]rep. Then, each generalization step selects
a single bracketed substring [α]τ and generates candidates
based on decompositions of α (i.e., an expression of α as a
sequence of substrings α = α1...αk):

• Repetitions: If generalizing P [α]repQ, for each decom-
position α = α1α2α3 such that α2 6= ε, generate

Pα1([α2]alt)
∗[α3]repQ.

• Alternations: If generalizing P [α]altQ, for each decom-
position α = α1α2, where α1 6= ε and α2 6= ε, generate

P ([α1]rep + [α2]alt)Q.

In both cases, the candidate PαQ is also generated. For
example, in Figure 2, step R1 selects [<a>hi</a>]rep and
applies the repetition rule.

The candidates are monotonic (proven in Appendix A.1):

PROPOSITION 4.1. Each candidate constructed in phase
one of our algorithm is monotone.

We briefly describe the intuition behind these rules. In
particular, we define a meta-grammar2 Cregex, which is a
context-free grammar whose members R ∈ L(Cregex) are
regular expressions. The terminals of Cregex are Σregex =
Σ ∪ {+, ∗}, where + denotes alternations and ∗ denotes
repetitions. The nonterminals are Vregex = {Trep, Talt}, where
Trep corresponds to repetitions (and is also the start symbol)
and Talt corresponds to alternations. The productions are

Trep ::= β | T ∗alt | βT ∗alt | T ∗altTrep | βT ∗altTrep

Talt ::= Trep | Trep + Talt

where β ∈ Σ∗−{ε} ranges over nonempty substrings of αin.
Consider the series of regular expressions R1 ⇒ ... ⇒

Rn in phase one. For each regular expression, we can re-
place each bracketed substring [α]τ with the nonterminal Tτ .

2 We use the term meta-grammar to distinguish Cregex from the context-free
grammars we synthesize.



Doing so produces a derivation in Cregex, for example, steps
R1-R9 in Figure 2 correspond to the derivation:

[<a>hi</a>]rep Trep

⇒ ([<a>hi</a>]alt)
∗ ⇒ T ∗alt

⇒ ([<a>hi</a>]rep)
∗ ⇒ T ∗rep

⇒ (<a>([hi]alt)
∗[</a>]rep)

∗ ⇒ (<a>T ∗altTrep)
∗

⇒ (<a>([hi]alt)
∗
</a>)∗ ⇒ (<a>T ∗alt</a>)∗

⇒ (<a>([h]rep + [i]alt)
∗
</a>)∗ ⇒ (<a>(Trep + Talt)

∗
</a>)∗

⇒ (<a>([h]rep + [i]rep)
∗
</a>)∗ ⇒ (<a>(Trep + Trep)

∗
</a>)∗

⇒ (<a>([h]rep + i)∗</a>)∗ ⇒ (<a>(Trep + i)∗</a>)∗

⇒ (<a>(h + i)∗</a>)∗ ⇒ (<a>(h + i)∗</a>)∗

In fact, this correspondence goes backwards as well:

PROPOSITION 4.2. For any derivation Trep
∗

=⇒ R in Cregex
(where R ∈ L(Cregex)), there exists αin ∈ L(R) such that R
can be derived from αin via a series of generalization steps

{αin} = R1 ⇒ ...⇒ Rn = R

We give a proof in Appendix B.1. Furthermore, L(Cregex)
almost contains every regular expression:

PROPOSITION 4.3. For any regular language L∗, there exist
R1, ..., Rm ∈ L(Cregex) such that L∗ = L(R1 + ...+Rm).

We give a proof in Appendix B.2. In other words, phase one
can synthesize almost any regular language L∗, assuming
the “right” sequence of generalization steps is taken. Our
extension to multiple inputs in Section 6.1 extends this re-
sult to any regular language. However, the space of all reg-
ular expressions is too large to search exhaustively. We sac-
rifice completeness for efficiency—our algorithm greedily
chooses the first candidate according to the candidate order-
ing described in Section 4.2.

The productions in Cregex are unambiguous, so each reg-
ular expression R ∈ L(Cregex) has a single valid parse tree.
This disambiguation allows our algorithm to avoid consider-
ing candidate regular expressions multiple times.

4.2 Candidate Ordering
The candidate ordering is a heuristic designed to maximize
the generality of the regular expression synthesized at the
end of phase one. We use the following ordering for candi-
dates constructed by phase one generalization steps:

• Repetitions: If generalizing P [α]repQ, among

Pα1([α2]alt)
∗[α3]repQ,

we first prioritize shorter α1, since α1 is not further
generalized. Second, we prioritize longer α2—for exam-
ple, in step R3 of Figure 2, if we instead chose can-
didate <a>([h]alt)

∗[i</a>]rep, then we would synthesize
(<a>h∗i∗</a>)∗, which is less general than step R9.

• Alternations: If generalizing P [α]altQ, among

P ([α1]rep + [α2]alt)Q,

we prioritize shorter α1—for example, in step R5 of Fig-
ure 2, if we instead chose candidate (<a>([hi]rep)∗</a>)∗,
then step R6 would instead be (<a>([hi]rep)∗</a>)∗,
which is less general than the one we obtain.

In either case, the final candidate PαQ is ranked last. Note
that candidate repetitions and candidate alternations can be
ordered independently—each generalization step considers
only repetitions (if the chosen bracketed string has form
[α]rep) or only alternations (if it has form [α]alt).

4.3 Check Construction
We describe how phase one of our algorithm constructs
checks S ⊆ L̃ \ L̂i. Each check α ∈ S has form α = γρδ,
where ρ is a residual capturing the portion of L̃ that is
generalized compared to L̂i, and (γ, δ) is a context captur-
ing the portion of L̃ which is in common with L̂i. More
precisely, suppose the current language is P [α]τQ, where
[α]τ is chosen to be generalized, and the candidate language
is PRαQ, i.e., α is generalized to Rα. Then, a residual
ρ ∈ L(Rα) \ {α} captures how Rα is generalized com-
pared to the substring α, and a context (γ, δ) captures the
semantics of the expressions (P,Q).

We may want to choose γ ∈ L(P ) and δ ∈ L(Q).
However, P and Q may not be regular expressions. For
example, on step R5 in Figure 2, P = “(<a>”, α = “hi”, and
Q = “</a>)∗” (the expressions are quoted to emphasize the
placement of parentheses). Instead, P and Q form a regular
expression when sequenced together, possibly with a string
α′ in between, i.e., Pα′Q. We want contexts (γ, δ) such that

γα′δ ∈ L(Pα′Q) (∀α′ ∈ Σ∗). (1)

Then, the constructed check α = γρδ satisfies

γρδ ∈ L(PρQ) ⊆ L(PRαQ),

where the first inclusion follows from (1) and the second
inclusion follows since ρ ∈ L(Rα). We discard α such that
α ∈ L(L̂i) to obtain valid checks α ∈ L̃ \ L̂i.

Next, we explain the construction of residuals and con-
texts. Our algorithm generates residuals as follows:

• Repetitions: For current language P [α]repQ and candi-
date Pα1([α2]alt)

∗[α3]repQ, generate residuals α1α3 and
α1α2α2α3.
• Alternations: For current language P [α]altQ and candi-

date P (α1 + α2)Q, generate residuals α1 and α2.

Next, our algorithm associates a context (γ, δ) with each
bracketed string [α]τ . The context for the initial bracketed
string [αin]rep is (ε, ε). After each generalization step, con-
texts for new bracketed substrings are generated:



• Repetitions: For current language P [α]repQ, where [α]rep
has context (γ, δ), and candidate Pα1([α2]alt)

∗[α3]repQ,
the context generated for the new bracketed substring
[α2]alt is (γα1, α3δ), and for [α3]rep is (γα1α2, δ).
• Alternations: For current language P [α]altQ, where

[α]alt has context (γ, δ), and candidateP ([α1]rep+[α2]alt)Q,
the context generated for the new bracketed substring
[α1]rep is (γ, α2δ), and for [α2]alt is (γα1, δ).

For example, on step R3, the context for [<a>hi</a>]rep
is (ε, ε). The residuals for candidate (([<a>hi</a]alt)

∗[>]rep)∗

are <a>hi</a and <a>hi</a>>; since the context is empty,
these residuals are also the checks, and they are rejected
by the oracle, so the candidate is rejected. On the other
hand, the residuals (and checks) for the chosen candidate
(<a>([hi]alt)

∗[</a>]rep)∗ are <a></a> and <a>hihi</a>,
which are accepted by the oracle. For the new brack-
eted string [hi]alt, the algorithm constructs the context
(<a>, </a>), and for the new bracketed string [</a>]rep, the
algorithm constructs the context (<a>hi, ε).

Similarly, on step R5, the context for [hi]alt is (<a>, </a>).
The residuals constructed for the chosen candidate (<a>([h]rep+
[i]alt)

∗</a>)∗ are h and i, so the constructed checks are
<a>h</a> and <a>i</a>. Our algorithm constructs the con-
text (<a>, i</a>) for the new bracketed string [h]rep and the
context (<a>h, </a>) for the new bracketed string [i]alt.

We have the following result:

PROPOSITION 4.4. The contexts constructed by phase one
generalization steps satisfy (1).

We give a proof in Appendix A.2, which ensures that the
constructed checks are valid (i.e., belong to L̃ \ L̂i).

4.4 Computational Complexity
Let n be the length of the seed input αin. In phase one,
our algorithm considers at most O(n2) repetition candidates
(since each of the n2 substrings of αin is considered at
most once), and O(n3) alternation candidates (since at most
O(n) alternation candidates are considered per discovered
repetition). Examining each candidate takes constant time
(assuming each query to O takes constant time), so the
complexity of phase one is O(n3). In our evaluation, we
show that our algorithm is quite scalable.

5. Phase Two: Recursive Properties
The second phase of generalization steps learn recursive
properties of program input languages that cannot be rep-
resented using regular expressions. Consider the regular
expression (<a>(h + i)∗</a>)∗ obtained at the end of
phase one in Figure 2, which can be written as R̂XML =
(<a>Rhi</a>)∗, where Rhi = (h + i)∗. Since every regular
language is also context-free, we can begin by translating
R̂XML to the context-free grammar

{AXML → (<a>Ahi</a>)∗, Ahi → (h + i)∗}.

Then, we can equate the nonterminals AXML and Ahi to
obtain the context-free grammar ĈXML:

{A→ (<a>A</a>)∗, A→ (h + i)∗},

which does not overgeneralize, since L(ĈXML) ⊆ L(CXML).
Furthermore, L(ĈXML) is not regular, as it contains the lan-
guage of matching tags <a> and </a>.

In general, phase two of algorithm first translates the syn-
thesized regular expression R̂ into a context-free grammar
Ĉ. Then, each generalization step considers equating a pair
(A,B) of nonterminals in Ĉ, where A and B correspond to
repetition subexpressions of R̂, which are subexpressions R
of R̂ of the form R = R∗1. The restriction to equating repe-
tition subexpressions is empirically motivated—in practice,
recursive constructs can typically also be repeated, e.g., in
matching parentheses grammars, so constraining the search
space reduces the potential for imprecision without sacri-
ficing recall. In our example, AXML corresponds to repe-
tition subexpression R̂XML, and Ahi corresponds to repeti-
tion subexpression Rhi, so our algorithm considers equating
AXML and Ahi.

In the remainder of this section, we first describe how we
translate regular expressions to context-free grammars, and
then describe phase two candidates and checks.

5.1 Translating R̂ to a Context-Free Grammar
Our algorithm translates the regular expression R̂ to a
context-free grammar Ĉ = (V,Σ, P, T ) such that L(R̂) =
L(Ĉ) and subexpressions in R̂ correspond to nonterminals
in Ĉ. Intuitively, the translation follows the derivation of R̂
in the meta-grammar Cregex (described in Section 4.1). First,
the terminals in Ĉ are the program input alphabet Σ. Next,
the nonterminals V of Ĉ correspond to generalization steps,
additionally including an auxiliary nonterminal for steps that
generalize repetition nodes:

V = {Ai | step i} ∪ {A′i | step i generalizes P [α]repQ}.

The start symbol is A1. Finally, the productions are gener-
ated according to the following rules:

• Repetition: If step i generalizes current languageP [α]repQ
to Pα1([α2]alt)

∗[α3]repQ, we generate productions

Ai → α1A
′
iAk, A′i → ε+A′iAj ,

where j is the step that generalizes [α2]alt and k is the step
that generalizes [α3]rep. Intuitively, these productions are
equivalent to the “production” Ai → α1A

∗
jAk.

• Alternation: If step i generalizes P [α]altQ to P ([α1]rep+
[α2]alt)Q, we include production Ai → Aj + Ak, where
j is the step that generalizes [α1]rep and k is the step that
generalizes [α2]alt.

For example, Figure 3 shows the result of the translation al-
gorithm applied to the generalization steps in the first phase



Step Chosen Generalization Productions Language L(Ĉ, Ai)

R1 [<a>hi</a>]R1
rep ⇒ ([<a>hi</a>]R2

alt )
∗ {AR1 → A′R1, A

′
R1 → ε+A′R1AR2} (<a>(h + i)∗</a>)∗

R2 [<a>hi</a>]R2
alt ⇒ [<a>hi</a>]R3

rep {AR2 → AR3} <a>(h + i)∗</a>
R3 [<a>hi</a>]R3

rep ⇒ <a>([hi]R5
alt )
∗[</a>]R4

rep {AR3 → <a>A′R3AR4, A
′
R3 → ε+A′R3AR5} <a>(h + i)∗</a>

R4 [</a>]R4
rep ⇒ </a> {AR4 → </a>} <a>

R5 [hi]R5
alt ⇒ [h]R8

rep + [i]R6
alt {AR5 → AR8 +AR6} h + i

R6 [i]R6
alt ⇒ [i]R7

rep {AR6 → AR7} i

R7 [i]R7
rep ⇒ i {AR7 → i} i

R8 [h]R8
alt ⇒ h {AR8 → h} h

R9 – – –

Figure 3. The productions added to ĈXML corresponding to each generalization step are shown. The derivation shows the bracketed
subexpression [α]iτ (annotated with the step number i) selected to be generalized at step i, as well as the subexpression to which [α]iτ is
generalized. The language L(Ĉ, Ai) (i.e., strings derivable from Ai) equals the subexpression in R̂ that eventually replaces [α]iτ . As before,
steps that select a candidate that strictly generalizes the language are bolded (in the first column).

of Figure 2 to produce a context-free grammar ĈXML equiv-
alent to R̂XML. Here, steps R1 and R3 handle the semantics
of repetitions, step R5 handles the semantics of the alterna-
tion, steps R2 and R6 only affect brackets so they are iden-
tities, and steps R4, R7, and R8 are constant expressions.
Furthermore, L(Ĉ, Ai) is the language of strings matched
by the subexpression that eventually replaces the bracketed
substring [α]τ generalized on step i; this language is shown
in the last column of Figure 3.

The auxiliary nonterminals A′i correspond to repeti-
tion subexpressions in R̂—if step i generalizes [α]rep to
α1([α2]alt)

∗[α3]rep, then L(Ĉ, A′i) = L(R∗), where R
is the subexpression to which [α2]alt is eventually gen-
eralized. In our example, A′R1 corresponds to R̂XML =
(<a>(h+i)∗</a>)∗, andA′R3 corresponds toRhi = (h+i)∗.

For conciseness, we redefine ĈXML to be the equivalent
context-free grammar with start symbolA′R1 and productions

A′R1 → (<a>A′R3</a>)∗, A′R3 → (h + i)∗

where the Kleene star implicitly expands to the productions
described in the repetition case.

5.2 Candidates and Ordering
The candidates considered in phase two of our algorithm
are merges, which are (unordered) pairs of nonterminals
(A′i, A

′
j) in Ĉ, where i and j are generalization steps of

phase one. Recall that these nonterminals correspond to rep-
etition subexpressions in R̂. In particular, associated to Ĉ
is the set M of all such pairs of nonterminals. In Figure 2,
the regular expression R̂XML on step R9 is translated into the
context-free grammar ĈXML on step C1, with its correspond-
ing set of merges MXML containing just (A′R1, A

′
R3).

Each phase two generalization step selects a pair (A′i, A
′
j) ∈

M and considers two candidates (in order of preference):

• The first candidate C̃ equatesA′i andA′j by introducing a
fresh nonterminal A and replacing all occurrences of A′i
and A′j in Ĉ with A.

• The second candidate equals the current language Ĉ.

In either case, the selected pair is removed from M . The
candidates are monotone since equating two nonterminals
can only enlarge the generated language.

For example, in step C1 of Figure 2, the candidate
(A′R1, A

′
R3) is removed from MXML; the first candidate is

constructed by equating A′R1 and A′R3 in ĈXML to obtain

C̃XML = {A→ (<a>A</a>)∗, A→ (h + i)∗},

where L(C̃XML) is not regular. The chosen candidate is
Ĉ ′XML = C̃XML, since the checks (described in Section 5.3)
pass. On step C2, M is empty, so our algorithm returns
Ĉ ′XML. In particular, Ĉ ′XML equals L(CXML), except the char-
acters a + ... + z are restricted to h + i. In Section 6.2, we
describe an extension that generalizes characters in Ĉ ′XML.

Finally, we formalize the intuition that equating (A′i, A
′
j) ∈

M corresponds to merging repetition subexpressions:

PROPOSITION 5.1. Let regular expression R̂ translate to
context-free grammar Ĉ. Suppose that nonterminal Ai in Ĉ
corresponds to repetition subexpression R, so R̂ = PRQ,
and Aj to R′, so R̂ = P ′R′Q′. Let C̃ be obtained by equat-
ing Ai and Aj in Ĉ. Then, L(PR′Q) ⊆ L(C̃) (and sym-
metrically, L(P ′RQ′) ⊆ L(C̃)).

In other words, equating (A′i, A
′
j) ∈M merges R and R′ in

R̂. We give a proof in Appendix C.1.

5.3 Check Construction
Consider the candidate C̃ obtained by merging (A′i, A

′
j) ∈

M in the current language Ĉ, where A′i corresponds to rep-
etition subexpression R and A′j to R′. Suppose that step i
generalizes P [α]repQ to α1([α2]alt)

∗[α3]rep, and step j gen-
eralizes [α′]rep to α′1([α′2]alt)

∗[α′3]rep. Note that ([α2]alt)
∗ is

eventually generalized to the repetition subexpression R in
R̂, and ([α′2]alt)

∗ is eventually generalized to R′ in R̂.
Our algorithm constructs the check γρ′δ, where ρ′ =

α′α′ ∈ L(R′) is a residual for R′, and (γ, δ) is the context
for ([α2]alt)

∗. This check satisfies

γρ′δ ∈ L(PR′Q) ⊆ L(C̃),



where the first inclusion follows by the property (1) for con-
texts described in Section 4.3, and the second inclusion fol-
lows from Proposition 5.1. A similar argument to Proposi-
tion 4.4 shows that this context satisfies property (1).

The check γρ′δ tries to ensure that R′ can be substituted
for R without overgeneralizing, i.e., L(PR′Q) ⊆ L∗. Our
algorithm similarly generates a second check trying to en-
sure that R can be substituted for R′, i.e., L(P ′RQ) ⊆ L∗.

For example, in Figure 2, the context for the repetition
subexpression R̂XML = (<a>(h+i)∗</a>)∗ is (ε, ε), and the
residual for Rhi is hihi, so the constructed check is hihi.
Similarly, the context for Rhi is (<a>, </a>) and the resid-
ual for R̂XML is <a>hi</a><a>hi</a>, so the constructed
check is <a><a>hi</a><a>hi</a></a>.

5.4 Learning Matching Parentheses Grammars
To demonstrate the expressive power of merges, we show
that they can represent the following class of generalized
matching parentheses grammars:

DEFINITION 5.2. A generalized matching parentheses gram-
mar is a context-free grammar C = (V,Σ, P, S1), with

V = {S1, ..., Sn, R1, ..., Rn, R
′
1, ..., R

′
n}

and productions

Si → (Ri(Si1 + ...+ Siki
)∗R′i)

∗,

where for 1 ≤ i ≤ n, Ri, R′i are regular expressions over Σ.

In other words, Ri and R′i are pairs of matching paren-
theses, except that they are allowed to be regular expres-
sions, e.g., XML tags. They may also match the empty string
ε, e.g., to permit unmatched open parentheses. Then, the
valid matched parentheses strings matched by the grammars
Si1 , ..., Siki

can occur between Ri and R′i. In particular,
the XML-like grammar shown in Figure 1 is a generalized
matching parentheses grammar, where the “parentheses” are
<a> and </a>. We have the following result:

PROPOSITION 5.3. For any generalized matching parenthe-
ses grammar C, there exists a regular expression R and
merges M over R such that letting C ′ be the grammar ob-
tained by transforming R into a context-free grammar and
performing the merges in M , we have L(C) = L(C ′).

In other words, phase two of our algorithm at least allows us
to learn the common class of generalized matching paren-
theses grammars. We give a proof in Appendix D.

5.5 Computational Complexity
The complexity of phase two isO(n4), where n is the length
of the seed input αin, since each pair of repetition subexpres-
sions is a merge candidate, and as shown in Section 4.4, there
are at mostO(n2) repetition candidates. Therefore, the over-
all complexity is O(n4).

6. Extensions
In this section, we discuss two extensions to our algorithm.

6.1 Multiple Seed Inputs
Given multiple seed inputs Ein = {α1, ..., αn}, our algo-
rithm first applies phase one separately to each αi to syn-
thesize a corresponding regular expression R̂i. Then, it com-
bines these into a single regular expression R̂ = R̂1+...+R̂n
and applies phase two to R̂. Repetition subexpressions in
different components R̂i of R̂ may be merged. A useful
optimization is to construct R̂ incrementally—if we have
αi ∈ L(R̂1 + ...+ R̂i−1), then αi can be skipped.

6.2 Character Generalization
After phase one, we include a character generalization
phase that generalizes terminals in the synthesized regu-
lar expression R̂. At each generalization step, the algo-
rithm selects a terminal string α = σ1...σk in R̂, i.e.,
R̂ = PαQ, and a terminal σi in α, and a different termi-
nal σ ∈ Σ such that σ 6= σi, and considers two candidates.
First, R̃ = Pσ1...σi−1(σ + σi)σi+1...σkQ replaces σi with
(σi + σ). Second, the current language R̂. Each such gener-
alization is considered exactly once in this phase.

For the first candidate, we construct residual ρ = σ.
Every terminal string α in R̂ was added by generalizing
[α′rep] to α1([α2]alt)

∗[α3]rep, where α = α1. Supposing
that the context for [α′rep] is (γ, δ), we construct context
(γσ1...σi−1, σi+1...σkα3δ). The generated checks are γρδ.

For example, in the regular expression R̂XML output by
phase one in Figure 2, our algorithm considers generaliz-
ing each terminal in <a>, h, i, and </a> to every (differ-
ent) terminal σ ∈ Σ. Generalizing < to a is ruled out by the
check aa>hi</a>. Alternatively, h is generalized to a since
the generated checks <a>ai</a> and <a>a</a> pass. Even-
tually, R̂XML generalizes to

R̂′XML = (<a>((a + ...+ z) + (a + ...+ z))∗</a>)∗,

which phase two generalizes to the grammar Ĉ ′XML:{
A→ (<a>A</a>)∗,
A→ ((a + ...+ z) + (a + ...+ z))∗

}
.

In particular, L(Ĉ ′XML) = L(CXML).

7. Discussion
Phases of GLADE. We have described GLADE as proceed-
ing in three phases, but the distinction is primarily for pur-
poses of clarity. More precisely, the character generalization
phase can equivalently be performed at any time. Phase two
(the merging phase) depends on phase one to identify can-
didate repetition subexpressions to merge, but these phases
could be interleaved if desired.
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Figure 4. We show (a) the F1 score, and (b) the running time of L-Star (white), RPNI (light grey), GLADE omitting phase two (dark
grey), and GLADE (black) for each of the four test grammars C. The algorithms are trained on 50 random samples from the target language
L∗ = L(C). In (c), for the XML grammar, we show how the precision (solid line), recall (dashed line), and running time (dotted line) of
GLADE vary with the number of seed inputs |Ein| (between 0 and 50). The y-axis for precision and recall is on the left-hand side, whereas
the y-axis for the running time (in seconds) is on the right-hand side.

Limitations. The greedy search strategy is necessary for
GLADE to efficiently search the space of languages. How-
ever, the cost of greediness is that suboptimal grammars may
be synthesized (i.e., only generating a subset of the target
language), even if all selected candidates are precise. For
example, consider extending the XML grammar shown in
Figure 1 with the production

AXML → <a/>.

Given the seed input

αin = <a><a/></a>,

phase one of GLADE synthesizes the regular expression

(<a(><a/)∗></a>)∗,

which is a valid subset of LXML. However, in phase two of
GLADE, the two repetition nodes

(><a/)∗ and (<a(><a/)∗></a>)∗

cannot be merged, since the check ><a/ is invalid. Ideally,
GLADE would instead synthesize the regular expression

(<a>(<a/>)∗</a>)∗,

in phase one, in which case the two repetition nodes

(<a/>)∗ and (<a>(<a/>)∗</a>)∗

are successfully merged in phase two. GLADE fails to do
so because of the greedy nature of phase one. If GLADE is
instead provided with the seed inputs

{<a/>, <a>hi</a>},

then it would successfully recover the target language.
Intuitively, the greedy strategy employed by GLADE

works best when the target language has fewer nondeter-
ministic constructs (as is the case with many program input
languages in practice, e.g., to ensure efficient parsing). Such
grammars are less likely to have multiple incompatible can-
didates at each generalization step, ensuring that GLADE
rarely makes suboptimal choices.

8. Evaluation
We implement our grammar synthesis algorithm in a tool
called GLADE, which synthesizes a context-free grammar Ĉ
given an oracle O and seed inputs Ein ⊆ L∗. In our first
experiment, we compare GLADE to widely studied language
inference algorithms, and in our second experiment, we eval-
uate the ability of GLADE to learn useful approximations of
real program input grammars for a fuzzing client. We note
that the only grammar used to guide the design our algo-
rithm is the XML grammar, and no other grammar was used
for this purpose. GLADE is implemented in Java, and all ex-
periments are run on a 2.5 GHz Intel Core i7 CPU.

8.1 Sampling Context-Free Grammars
We describe how we randomly sample a string α from a
context-free grammar C. The ability to sample implicitly
defines a probability distribution PL(C) over L(C), which
we use to measure precision and recall as in Definition 2.1.
We also use random samples in our grammar-based fuzzer
in Section 8.3. To describe our approach, we more generally
describe how to sample α ∼ PL(C,A) (which is the language
of strings that can be derived from nonterminal A using
productions in C). To do so, we convert the context-free
grammar C = (V,Σ, P, S) to a probabilistic context-free
grammar. For each nonterminal A ∈ V , we construct a
discrete distribution DA of size |PA| (where PA ⊆ P is the
set of productions in C for A). Then, we randomly sample
α ∼ PL(C,A) as follows:

• Randomly sample production (A→ A1...Ak) ∼ DA.
• IfAi is a nonterminal, recursively sampleαi ∼ PL(C,Ai);

otherwise, if Ai is a terminal, let αi = Ai.
• Return α = α1...αk.

For simplicity, we choose DA to be uniform.

8.2 Comparison to Language Inference
In our first experiment, we show that GLADE can synthe-
size simple input grammars with much better precision and
recall compared to two widely studied language inference



Grammar Target Language L∗ Synthesized Grammar L̂

URL A→ http(ε+ s)://(ε+ www.)[...]∗.[...]∗

A→ http://B∗.C∗ + https://B∗.C∗

+http://www.B∗.C∗ + https://www.B∗.C∗

B → [...]∗

C → [...]∗

Grep A→ ([...] + \(A\))∗ A→ ([...]∗ + ((\((A∗)∗\)∗))∗)∗

Lisp A→ ([...][...]∗( ∗([...][...]∗ +A))∗) A→ (([...]∗[...](( ∗ A)∗ ∗ )∗)∗[...]∗[...])

XML A→ <a( ∗[...][...]∗="[...]∗")∗>(A+ [...])∗</a>
A → <a( ∗ [...]∗[...]="[...]∗")∗B∗>[...]∗</a>
B → >[...]∗<a( ∗ [...]∗[...]="[...]∗")∗B∗>[...]∗</a

+>[...]∗<a>[...]∗</a

Figure 5. Examples of context-free grammars that are synthesized by GLADE for the given target languages. The symbol denotes a space.
For clarity, character ranges with large numbers of characters are denoted by [...].

algorithms, L-Star [3] and RPNI [44], both implemented us-
ing libalf [5]. We also compare to a variant of GLADE
with phase two omitted, which restricts GLADE to learning
regular languages, which shows that the benefit of GLADE is
not just its ability to synthesize non-regular properties.

Grammars. We manually wrote four grammars encoding
valid inputs for various programs:

• A regular expression for matching URLs [55].
• A grammar for the regular expression accepted as input

by GNU Grep [21]
• A grammar for a simple Lisp parser [43], including sup-

port for quoted strings and comments.
• A grammar for XML parsers [64], including all XML

constructs (attributes, comments, CDATA sections, etc.),
except that only a fixed number of tags are included (to
ensure that the grammar is context-free).

Methods. For each grammarC, we sampled 50 seed inputs
Ein ⊆ L∗ = L(C) using the technique in Section 8.1,
and implemented an oracle O for L∗. Then, we use each
algorithm to learn L∗ from Ein and O. Since the algorithms
sometimes cannot scale to all 50 inputs, we incrementally
give the seed inputs to the algorithms until they time out
(after 300 seconds), and use the last language successfully
learned without timing out.

L-Star. Angluin’s L-Star algorithm learns a regular lan-
guage R̂ approximating the target language L∗. It takes as
input a membership oracle and an equivalence oracle OE ;
given a candidate regular language R̂, OE accepts R̂ if
L(R̂) = L∗, and returns a counterexample otherwise. In our
experiments, there is no way to check equivalence with the
target language (i.e., the program input language). Instead,
we use the variant in [3] where the equivalence oracle OE
is implemented by randomly sampling strings to search for
counter-examples; we accept R̂ if none are found after 50
samples.

RPNI. RPNI learns a regular language R̂ given both pos-
itive examples Ein and negative examples E−in . As negative
examples, we sample 50 random strings not in L∗.

Results. We estimate the precision of Ĉ by |Eprec∩L∗|
|Eprec| ,

where Eprec consists of 1000 random samples from L(Ĉ),
and estimate the recall of Ĉ by |Erec∩L(Ĉ)|

|Erec| , where Erec con-
sists of 1000 random samples from L∗, and report the F1-
score 2·precision·recall

precision+recall . The F1 score is a standard metric com-
bining precision and recall—achieving high F1 score re-
quires both high precision and high recall. We also report
the running time of each algorithm, which is timed out at
300 seconds. We average all results over five runs. Figure 4
shows (a) the F1-score and (b) the running time of each al-
gorithm; (c) shows how the precision, recall, and running
time of GLADE vary with the number of samples in Ein.

Performance of GLADE. With just the 50 given training
examples, GLADE was able to learn each grammar with
an F1-score of nearly 1.0, meaning that both precision and
recall were nearly 100%. These results strongly suggest that
GLADE learns most of the true structure of L∗. Finally, as
can be seen from Figure 4 (c), GLADE performs well even
with few samples, and its running time likewise scales well
with the number of samples. The performance of GLADE
with phase two omitted (i.e., P1 in Figure 4) continues to
substantially outperform L-Star and RPNI.

Phases of GLADE. As can be seen in Figure 4 (a), GLADE
consistently performs 5-10% better than P1—i.e., the major-
ity of the improvement of GLADE over existing algorithms
is due to the active learning strategy, and the remainder is
due to the ability to induce context-free grammars.

Furthermore, a consequence of our optimization when
using multiple inputs (see Section 6.1), GLADE is actually
faster than P1—because GLADE generalizes better than P1,
it uses fewer samples in Ein, thereby reducing the running
time. We performed the same experiment using GLADE with
the character generalization phase removed (but including
both phases one and two). This variant of GLADE consis-
tently performed similar but slightly worse than P1 both in
terms of F1-score and running time, so we omit results.

Comparison to L-Star and RPNI. L-Star performs well
for the Grep grammar, but essentially fails to learn the other
grammars, achieving either very small precision or very



small recall. RPNI performs even worse, failing to learn
any of the languages. L-Star guarantees exact learning only
when a true equivalence oracle is available. Similarly, RPNI
has an “in the limit” learning guarantee, i.e., for any enumer-
ation of all strings α1, α2, ... ∈ Σ∗, it eventually learns the
correct language. Both of these learning guarantees require
following examples:

• Positive: Exercise all transitions in the minimal DFA.
• Negative: Reject all incorrect generalizations.

These examples are assumed to be provided either by the
equivalence oracle (for L-Star) or in the given examples Ein
and E−in (for RPNI).

However, in our setting, the equivalence oracle is unavail-
able to the L-Star algorithm and must be approximated us-
ing random sampling, so its theoretical guarantees may not
hold. Indeed, random sampling rarely provides the needed
examples—for example, in most runs of L-Star, at most two
calls to the equivalence oracle found counterexamples. Simi-
larly, for RPNI, the given examples are typically incomplete,
so its theoretical guarantees likewise may not hold.

Furthermore, because these algorithms are designed to
learn when the guarantees hold, they do not provide any
mechanisms for recovering from failure of the assumptions,
and instead fail dramatically. For example, if a terminal ap-
pears inL∗ but not in any seed input inEin, then the language
learned by RPNI does not contain any strings with this ter-
minal. In contrast, GLADE incorporates generalization steps
that enable it to generalize beyond behaviors in the given ex-
amples, and its carefully selected checks often provide the
counterexamples needed to avoid overgeneralizing.

Additionally, while polynomial, the running times of L-
Star and RPNI are very long. The long running time of L-
Star is not because L∗ is non-regular, instead, we observe
that L-Star algorithm issues a large number of membership
queries on each of its iterations. In our setting, L-Star often
could not even learn a four state automaton.

Examples. Figure 5 shows examples of grammars synthe-
sized by GLADE for the target language shown and a small
set of representative seed inputs. The target languages are
substantially simplified fragments of the grammars used in
this experiment (to ensure clarity); the synthesized gram-
mars are correspondingly simplified.

The structure of a synthesized grammar sometimes dif-
fers from the structure of the grammar defining the target
language, even if they generate the same language. Such
discrepancies occur because GLADE obtains no information
about the internal representation of the target language. For
example, consider the synthesized XML grammar. In a more
natural grammar, the character > at the front of the produc-
tion for B would instead appear in the production for A,
and the corresponding > in the production for A would in-
stead appear at the end of the production for B; however,
this modification does not affect the generated language.

Program Lines of Code Lines in Ein Time (min.)
sed 2K 3 0.25
flex 6K 15 1.83
grep 12K 4 0.17
bison 13K 14 4.91
xml 123K 7 2.30
ruby 120K 80 229.00

python 128K 267 269.00
javascript 156K 118 113.00

Figure 6. For each program, we show lines of program code, the
lines of seed inputs Ein, and running time of GLADE.

8.3 Comparison to Fuzzers
For fuzzing applications such as differential testing [67], it is
useful to obtain a large number of grammatically valid sam-
ples that exercise different functionalities of the given pro-
gram. GLADE is perfectly suited to automatically generat-
ing such inputs. Given blackbox accessO to a program with
input language L∗ and seed inputs Ein ⊆ L∗, GLADE auto-
matically synthesizes a context-free grammar Ĉ approximat-
ing L∗. Then, GLADE uses a standard grammar-based fuzzer
that takes as input the synthesized grammar Ĉ and the seed
inputs Ein, and randomly generates new inputs α ∈ L(Ĉ)
that can be used to test the program; we give details below.

In our application to fuzzing, it is acceptable for Ĉ to
be an approximation—high precision suffices to ensure that
most generated inputs are valid, and high recall ensures that
most program behaviors have a chance of being executed.

We compare GLADE to two baseline fuzzers (described
below) on the task of generating valid test inputs, and show
that GLADE consistently performs significantly better.

Grammar-based fuzzer. GLADE first synthesizes a context-
free grammar Ĉ approximating the target language L∗ of
valid program inputs. Our grammar-based fuzzer, based
on standard techniques [28], takes as input the synthesized
context-free grammar Ĉ and the seed inputsEin. To generate
a single random input, our grammar-based fuzzer first uni-
formly selects a seed input α ∈ Ein and constructs the parse
tree for α according to Ĉ. Second, it performs a series of n
modifications to α, where n is chosen uniformly between 0
and 50. A single modification is performed as follows:

• Randomly choose a node N of the parse tree of α.
• Decompose α = α1α2α3 where α2 is represented by the

subtree with root N .
• Letting A be the nonterminal labeling N , randomly sam-

ple α′ ∼ PL(C,A), and return α1α
′α3.

Afl-fuzz. Our first baseline fuzzer is a production fuzzer
developed at Google [68], and is widely used due to its
minimal setup requirements and state-of-the-art quality. It
systematically modifies the input example (e.g., bit flips,
copies, deletions, etc.). Unlike GLADE, afl-fuzz requires that
the program be instrumented to obtain branch coverage for
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Figure 7. In (a) we show the normalized incremental coverage restricted to valid samples for the naı̈ve fuzzer (black dotted line), afl-fuzz
(white), and GLADE (black). In (b), we show the same metric for the naı̈ve fuzzer (black dotted line) and GLADE (black); grey represents
either a handwritten fuzzer (for Grep and the XML parser) or a large test suite (for Python, Ruby, and Javascript). In (c), we compare the valid
normalized incremental coverage of GLADE (solid) to the naı̈ve fuzzer (dashed) and afl-fuzz (dotted) as the number of seed inputs varies (all
values are normalized by the final coverage of the naı̈ve fuzzer).

each execution—it uses this information to identify when an
input α causes the program to execute new paths. It adds
such inputs α to a worklist, and iteratively applies its fuzzing
strategy to each input in the worklist. This monitoring allows
it to incrementally discover deeper code paths. To run afl-
fuzz on multiple inputs Ein, we fuzz each input α ∈ Ein in a
round-robin fashion.

Naı̈ve fuzzer. We implement a second baseline fuzzer,
which is not grammar aware. It randomly selects a seed
input α ∈ Ein and performs n random modifications to α,
where n is chosen randomly between 0 and 50. A single
modification of α consists of randomly choosing an index i
in α = σ1...σk, and either deleting the terminal σi or insert-
ing a randomly chosen terminal σ ∈ Σ before σi.

Programs. We set up each fuzzer on eight programs that
include front-ends of language interpreters (Python, Ruby,
and Mozilla’s Javascript engine SpiderMonkey), Unix utili-
ties that take structured inputs (Grep, Sed, Flex, and Bison),
and an XML parser. We were unable to setup afl-fuzz for
Javascript, showing that even production fuzzers can have
setup difficulties when they require code instrumentation.
For interpreters (e.g., the Python interpreter), we focus on
fuzzing just the parser (e.g., the Python parser) since the
input grammar of the interpreter contains elements such as
variable and function names, use-before-define errors, etc.,
that are out of scope for our grammar synthesis algorithm.
To fuzz the parser, we “wrap” the input inside a conditional
statement, which ensures that the input is never executed.
For example, we convert the Python input (print ‘hi’)
to the input (if False: print ‘hi’). Then, syntactically
incorrect inputs are rejected, but inputs that are syntactically
correct but possibly have runtime errors are accepted.

Seed inputs. To fuzz a program, we use a small number
of seed inputs Ein ⊆ L∗ that capture interesting semantics
of the target language L∗. These seed inputs were obtained
either from documentation and tutorials or from small test
suites that came with the program.

Methods. Coverage is difficult to interpret because a large
amount of code in each program is unreachable due to con-
figuration, test code that cannot be executed, and other un-
used functionality. Therefore, we use a relative measure of
coverage to evaluate performance. As before, all results are
averaged over five runs.

For each program and fuzzer, we generate 50,000 samples
E ⊆ Σ∗ by running the fuzzer on the program. First, we
restrict E to valid inputs, i.e., E∩L∗. In particular, the valid
coverage of E, computed using gcov, is

#(lines covered by E ∩ L∗)
#(lines coverable)

.

Next, the valid incremental coverage of E is the percentage
of code covered by valid inputs in E, ignoring those already
covered by the seed inputsEin (thereby measuring the ability
to discover inputs that execute new code paths):

#(lines covered by E ∩ L∗ but not covered by Ein)

#(lines coverable but not covered by Ein)
.

Finally, to enable comparison across programs, the valid
normalized incremental coverage normalizes the incremen-
tal coverage by a baseline Ebase:

valid incremental coverage of E
valid incremental coverage of Ebase

.

In particular, we use samples from the naı̈ve fuzzer as Ebase.

Results. In Figure 6, we show various statistics for the
eight programs we use and for the corresponding seed in-
puts Ein. We also show the time GLADE needed to synthe-
size an approximation of the program input grammar. In Fig-
ure 7 (a), we show the valid normalized incremental cov-
erages of the various fuzzers. In (b), for five of our pro-
grams, we show a proxy for the “upper bound” in cover-
age that is achievable—for Grep and the XML parser, we
show the valid normalized incremental coverage achieved
by our handwritten grammars, and for Python, Ruby, and
Javascript, we show the valid normalized incremental cov-
erage of a large test suite (each more than 100,000 lines of
code). In (c), we show how coverage varies with the number
of samples for Python.



Comparison to baselines. As can be seen from Figure 7
(a), GLADE (black) is effective at generating valid inputs
that exercise new code paths, significantly outperforming
both the naı̈ve fuzzer (black dotted line) and afl-fuzz (white)
except on Grep (where it only performs slightly better) and
Sed (where it actually performs slightly worse). Since these
programs have a relatively simple input format, using a
grammar-based fuzzer is understandably less effective. For
the remaining six programs, our grammar-based fuzzer per-
forms between 1.3 and 7 times better than the naı̈ve fuzzer.

Comparison to proxy for the upper bound. Figure 7 (b)
compares GLADE (black bars) to a proxy for the upper
bound of coverage, i.e., handwritten grammars or large test
suites (grey bars). For Grep, both GLADE and the naı̈ve
fuzzer achieve coverage close to the handwritten grammar.
For the XML parser, GLADE significantly outperforms the
naı̈ve fuzzer, achieving coverage close to the handwritten
grammar. For Python and Javascript, GLADE is able to re-
cover a significantly larger fraction of the upper bound com-
pared to the naı̈ve fuzzer. However, a sizable gap remains,
which is expected since the test suites are very large (each
having at least 100,000 lines of code) and are specifically
designed to test the respective programs. We provided fewer
seed inputs for Ruby, which explains why GLADE outper-
formed the naı̈ve fuzzer by a smaller amount (about 30%).

Coverage over time. Figure 7 (c) shows how the valid
normalized incremental coverage varies with the number of
samples. GLADE (solid) quickly finds a number of high-
coverage inputs that the other fuzzers cannot, and continues
to find more inputs that execute new lines of code.

Examples. The synthesized grammars are too large to
show. Instead, as an example, a fragment of the synthesized
XML grammar is

A→ <a ∗ [...]∗[...]="[...]∗"B∗>[...]∗</a>

B → >[...]∗<a ∗ [...]∗[...]="[...]∗"B∗>[...]∗</a

+ >[...]∗<a>[...]∗</a.

This grammar is identical to the synthesized XML gram-
mar shown in Figure 5, except that attributes cannot be re-
peated. In particular, GLADE learns that attributes cannot
be repeated since XML semantics requires that different at-
tributes have different names—for example, the input string
<a a="" a=""></a> is invalid. Therefore, repeating the at-
tribute would lead to overgeneralization, so this construct
is rejected by GLADE. Indeed, this constraint on attribute
names is not a context-free property, so as expected, GLADE
learns a subset of the XML input language.

Figure 8 shows an example of a valid sample from the
grammar synthesized by GLADE for the XML parser. As
can be seen, the sample contains many XML constructs,
including nested tags, attributes, comments, and processing
instructions.

<a>

\%

<a QE="{>_">

C

<a _="#">

">q(+_[s:?>^0+

<a _eD="{@">

:"<a>. q</a>1+%

</a>

y<!-- y-->y

</a>

_<a>x</a>y

</a>

xy<?q xy?>xy<?xV <?By_![?>x

</a>

Figure 8. An example of a valid sample from the grammar syn-
thesized by GLADE for the XML parser. For clarity, the string has
been formatted with additional whitespace.

9. Related Work
Mining input formats. The work most closely related to
our own is [29], which uses dynamic taint analysis to trace
the flow of each input character, and uses this information to
reconstruct the input grammar. More broadly, there has been
work on reverse engineering network protocol message for-
mats [8, 35, 36, 66], though these papers focus on learning
and understanding the structure of given inputs rather than
learning a grammar; for example, [8] looks for variables rep-
resenting the internal parser state to determine the protocol,
and [35] constructs syntax trees for given inputs. All of these
techniques rely on static and dynamic analysis methods in-
tended to reverse engineer parsers of specific designs.

In contrast, our approach is fully blackbox and depends
only on the language accepted by the program, not the spe-
cific design of the program’s parser. In addition, our ap-
proach can be used when the program cannot be instru-
mented, for instance, to learn the input format for a remote
program. Finally, the programs we consider have more com-
plex input formats than most previously examined programs.

Learning theory. There has been a line of work in learning
theory (often referred to as grammar induction or grammar
inference) aiming to learn a grammar from either examples
or oracles (or both); see [14] for a survey. The most well
known algorithms are L-Star [3] and RPNI [44]. These al-
gorithms have a number of applications including model
checking [19], model-assisted fuzzing [12, 13], verifica-
tion [62], and specification inference [6]. To the best of our
knowledge, our work is the first to focus on the application
of learning common program input languages from positive
examples and membership oracles.

Additionally, [33] discusses approaches to learning context-
free grammars, including from positive examples and a
membership oracle. As they discuss, these algorithms are
often either slow [54] or do not generalize well [32].



Bayesian language learning. A related line of work aims
to learn probabilistic grammars from examples alone [56,
57]. These algorithms study a different setting than ours, in
particular, they are given access to positive (and sometimes
negative) examples, but do not assume access to a member-
ship oracle. These algorithms typically identify frequently
occurring patterns that are likely to correspond to nonter-
minals in the grammar. More precisely, these algorithms
are typically Bayesian learning algorithms that operate by
putting a prior over the space of grammars, and then com-
puting the most likely grammar conditioned on the given
examples. To achieve statistically significant results, these
algorithms require a large number of input examples.

In contrast, our algorithm leverages access to the mem-
bership oracle, enabling it to use actively generated exam-
ples to determine which patterns are actually in the grammar.
Therefore, our algorithm works well even when only a few
seed inputs are available. While it may be possible to mod-
ify existing Bayesian language learning algorithms to fit this
setting, to the best of our knowledge, no such active learning
variants of these algorithms have been proposed.

Additionally, whereas this literature aims to learn a prob-
abilistic grammar, our grammar synthesis algorithm learns
a deterministic grammar. The difference is how we measure
approximation quality—in particular, even though our defi-
nitions of precision and recall require distributions over L∗
and L̂, they still measure the approximation quality of L̂ de-
terministically, i.e., the predicates α ∈ L∗ and α ∈ L̂ are
binary rather than probabilistic.

Blackbox fuzzing. Numerous approaches to automated
test generation have been proposed; we refer to [2] for a
survey. Approaches to fuzzing (i.e., random test case gen-
eration) broadly fall into two categories: whitebox (i.e.,
statically inspect the program to guide test generation) and
blackbox (i.e., rely only on concrete program executions).
Blackbox fuzzing has been used to test software for several
decades; for example, [51] randomly tests COBOL com-
pilers and [48] generated random inputs to test parsers. An
early application of blackbox fuzzing to find bugs in real-
world programs was [39], who executed Unix utilities on
random byte sequences to discover crashing inputs. Subse-
quently, there have been many approaches using blackbox
fuzzing with dynamic analysis to find bugs and security
vulnerabilities [17, 40, 59]; see [60] for a survey. Finally,
afl-fuzz [68] is almost blackbox, requiring only simple in-
strumentation to guide the search.

Whitebox fuzzing. Approaches to whitebox fuzzing [4,
24] typically build on dynamic symbolic execution [9–
11, 22, 52]; given a concrete input example, these ap-
proaches use a combination of symbolic execution and dy-
namic execution to construct a constraint system whose so-
lutions are inputs that execute new program branches com-
pared to the given input. It can be challenging to scale these
approaches to large programs [18]. Therefore, approaches

relying on more imprecise input have been studied; for ex-
ample, taint analysis [18], or extracting specific information
such as a checksum computation [65].

Grammar-based fuzzing. Many fuzzing approaches lever-
age a user-defined grammar to generate valid inputs, which
can greatly increase coverage. For example, blackbox fuzzing
has been combined with manually written grammars to test
compilers [37, 67]; see [7] for a survey. Such techniques
have also been used to fuzz interpreters; for example, [28]
develops a framework for grammar-based testing and applies
it to find bugs in both Javascript and PHP interpreters.

Grammar-based approaches have also been used in con-
junction with whitebox techniques. For example, [23] fuzzes
a just-in-time compiler for Javascript using a handwritten
Javascript grammar in conjunction with a technique for solv-
ing constraints over grammars, and [38] combines exhaus-
tive enumeration of valid inputs with symbolic execution
techniques to improve coverage. In [60], Chapter 21 gives a
case study developing a grammar for the Adobe Flash file
format. Our approach can complement existing grammar-
based fuzzers by automatically generating a grammar.

Finally, there has been some work on inferring gram-
mars for fuzzing [63], but focusing on simple languages such
as compression formats. To the best of our knowledge, our
work is the first targeted at learning complex program input
languages that contain recursive structure, e.g., XML, regu-
lar expression formats, and programming language syntax.

Synthesis. Finally, our approach uses machinery related to
some of the recent work on programming by example—in
particular, a systematic search guided by a meta-grammar.
This approach has been used to synthesize string [26], num-
ber [53], and table [27] transformations (and combinations
thereof [46, 47]), as well as recursive programs [1, 16] and
parsers [34]. Unlike these approaches, our approach exploits
an oracle to reject invalid candidates.

10. Conclusion
We have presented GLADE, the first practical algorithm for
inferring program input grammars, and demonstrated its
value in an application to fuzz testing. We believe GLADE
may be valuable beyond fuzzing, e.g., to generate whitelists
of inputs or to reverse engineer input formats.
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A. Properties of Phase One
We prove the desired properties discussed in Section 3 for
the generalization steps proposed in Section 4. First, we
prove Proposition 4.1, which says that the candidates in
phase one are monotone. Next, we prove Proposition 4.4,
which says that the contexts constructed by phase one satisfy
(1); as discussed in Section 4.3, this result implies that the
corresponding checks α constructed in phase one are valid
(i.e., α ∈ L̃ \ L̂i).

A.1 Proof of Proposition 4.1
There are two cases:

• Repetitions: Every candidate has form (omitting brack-
eted substrings) R′ = Pα1α

∗
2α3Q, where the current

language is R = PαQ and α = α1α2α3. Since α ∈
L(α1α

∗
2α3), it is clear that

L(R) = L(PαQ) ⊆ L(Pα1α
∗
2α3Q) = L(R′).

• Alternations: Every candidate has form (omitting brack-
eted substrings) R′ = P (α1 + α2)Q, where the current
language is R = PαQ and α = α1α2. Note that an
bracketed expression [α]alt always occurs within a repeti-
tion, so the candidate has form

R′ = ...(...+ (α1 + α2) + ...)∗...

= ...(...+ (α1 + α2)∗ + ...)∗...,

so since α ∈ (α1 + α2)∗, we have

L(R) = L(PαQ) ⊆ L(P (α1 + α2)∗Q) = L(R′).

The result follows. �

A.2 Proof of Proposition 4.4
We prove by induction. The initial context (ε, ε) for [αin]rep
clearly satisfies (1). Next, assume that the context (γ, δ) for
the current language satisfies (1). There are two cases:

• Repetitions: Suppose that the current language is R =
P [α]repQ and the candidate is R′ = Pα1([α2]alt)

∗[α3]alt.
Then, the context constructed for [α2]alt is (γ′, δ′) =
(γα1, α3δ). Also, let P ′ = “Pα1(” and Q′ = “)∗α3Q”,
so R′ = P ′α2Q

′. Then, for any α′ ∈ Σ∗, we have

γ′α′δ′ = γα1α
′α3δ ∈ L(Pα1α

′α3Q)

⊆ L(Pα1(α′)∗α3Q)

= L(P ′α′Q′),

where the first inclusion follows by applying (1) to the
context (γ, δ) with α1α

′α3 ∈ Σ∗. Therefore, the context
(γ′, δ′) satisfies (1). Similarly, the context constructed for
[α3]rep is (γ′, δ′) = (γα1α2, δ). Also, let P ′ = Pα1α

∗
2

and Q′ = Q, so R′ = P ′α3Q
′. Then, for any α′ ∈ Σ∗,

we have

γ′α′δ′ = γα1α2α
′ ∈ L(Pα1α2α

′Q)

⊆ L(Pα1α
∗
2α
′Q)

= L(P ′α′Q′),

where the first inclusion follows by applying (1) to the
context (γ, δ) with α1α2α

′ ∈ Σ∗. Therefore, the context
(γ′, δ′) satisfies (1).
• Alterations: Suppose that the current language is R =
P [α]altQ and the candidate is R′ = P ([α1rep + [α2]alt)Q.
Then, the context constructed for [α1]rep is (γ′, δ′) =
(γ, α2δ). Also, let P ′ = “P (” and Q′ = “+α2)Q”, so
R′ = P ′α2Q

′. Then, for any α′ ∈ Σ∗, we have

γ′α′δ′ = γα′α2δ ∈ L(Pα′α2Q)

= L(P (α′ + α2)∗Q)

= L(P (α′ + α2)Q)

= L(P ′α′Q′),

where the inclusion follows by applying (1) to the con-
text (γ, δ) with α′α2 ∈ Σ∗, and the equality on the third
line follows as in the proof of Proposition 4.1 (in Sec-
tion A.1).

The claim follows. �

B. Expressiveness of Phase One
In this section, we prove the expressiveness results discussed
in Section 4.1.

B.1 Correspondence to Derivations in Cregex

In this section, we prove Proposition 4.2, which says
that derivations in Cregex can be transformed to series of
generalization steps in phase one of our algorithm. In
particular, consider the derivation of a regular expression
R ∈ L(Cregex):

Trep = η1 ⇒ ...⇒ ηn = R.

We prove that for each i, there is a series of generalization
steps

Ri ⇒ Ri+1 ⇒ ...⇒ Rn = R

such that each Rj (for i ≤ j ≤ n) maps to ηj in the way
defined in Section 4.1 (i.e., by replacing [α]τ with Tτ ); we
express this mapping as ηj = Rj . The result follows since
for i = 1, we get [α]rep = R1 ⇒ ... ⇒ Rn = R, so we can
take αin = α.

We prove by (backward) induction on the derivation. The
base case i = n is trivial, since ηn ∈ L(Cregex), so we can
take Rn = ηn since Rn = Rn = ηn. Now, suppose that we
have a series of generalization steps Ri+1 ⇒ ...⇒ Rn = R
that satisfies the claimed property. It suffices to show that we
can construct Ri such that Ri ⇒ Ri+1 is a generalization
step and Ri = ηi. Consider the following cases for the step
ηi ⇒ ηi+1 in the derivation:



• Step µTrepν ⇒ µβT ∗altTrepν: Then, we must have

Ri+1 = Pα1[α2]alt[α3]repQ,

where P = µ, Q = ν, and α1 = β. Also, since Ri+1 is
valid, we have α1, α2, α3 6= ε. Therefore, we can take

Ri = P [α]repQ,

where α = α1α2α3 6= ε. The remaining productions for
Trep are similar. In particular, the assumption that β 6= ε
in these derivations is needed to ensure that α 6= ε.
• Step µTaltν ⇒ µ(Trep + Talt)ν: Then, we must have

Ri+1 = P ([α1]rep + [α2]alt)Q,

where P = µ and Q = ν. Also, since Ri+1 is valid, we
have α1, α2 6= ε. Therefore, we can take

Ri = P [α]altQ,

where α = α1α2 6= ε. The remaining production for Talt
is similar.

The result follows. �

B.2 Expressiveness of Cregex

In this section, we prove Proposition 4.3, which says that
any regular language can be expressed as L(R1 + ...+Rm),
where R1, ..., Rm ∈ L(Cregex) are regular expressions that
can be synthesized by phase one of our algorithm.

We slightly modify Cregex, by introducing a new nonter-
minal Tregex, taking Tregex to be the start symbol, and adding
productions

Tregex ::= ε̄ | Talt | ε̄+ Talt,

where ε̄ ∈ Σregex is a newly introduced terminal denoting the
regular expression for the empty language. This modification
has two effects:

• Now, regular expressions R ∈ L(Cregex) can have top-
level alternations.
• Furthermore, the top-level alternation can explicitly in-

clude the empty string ε̄ (e.g., R = ε̄+ a).

As described in Section 4.1, the first modification can be
addressed by using multiple inputs (see Section 6.1), which
allows our algorithm to learn top-level alternations. The
second modification can be addressed by including a seed
input ε̄ ∈ Ein, in which case phase one of our algorithm
synthesizes ε̄ (since there is nothing for it to generalize).

Now, let the context-free grammar C̃regex be a standard
grammar for regular expressions:

T ::= β | TT | T + T | T ∗. (2)

It suffices to show that for any R ∈ L(Cregex), there exists
R′ ∈ L(C̃regex) such that L(R) = L(R′) (which we express
as R ≡ R′).

First, we prove the result for Cεregex, which is identical
to Cregex except that we allow β = ε. Let R ∈ L(C̃regex).
Suppose that either R = S1 +S2, R = S1S2, or R = β. We
claim that we can express R as

R ≡ X1 + ...+Xn (3)

Xi = Yi,1...Yi,ki (1 ≤ i ≤ n)

where either Yi,j = β or Yi,j = W ∗i,j for each i and j.
Consider two possibilities:

• Suppose R can be expressed in the form (3), but Yi,j =
Z1 + Z2. Then

Xi = Yi,1...Yi,j ...Yi,ki

= Yi,1...(Z1 + Z2)...Yi,ki

≡ Yi,1...Z1...Yi,ki + Yi,1...Z2...Yi,ki

which is again in the form (3).
• Suppose R has the form (3), but Yi,j = Z1Z2. Then

Xi = Yi,1...Yi,j ...Yi,ki = Yi,1...Z1Z2...Yi,ki

which is again in the form (3).

Note that either R = S1 + S2 or R = S1S2, so R starts in
the form (3). Therefore, we can repeatedly apply the above
two transformations until Yi,j = β or Yi,j = W ∗i,j for every
i and j. This process must terminate because the parse tree
for R is finite, so the claim follows.

Now, we construct R′ ∈ L(Cεregex, Talt) such that
R ≡ R′ by structural induction. First, suppose that either
R = S1 + S2, R = S1S2, or R = β. Then we can express
R in the form (3). By induction, Wi,j ≡ W ′i,j for some
W ′i,j ∈ L(Cεregex, Talt) for every i and j. By the definition
of Trep, we have Xi ∈ L(Cεregex, Trep), so by the definition
of Talt, we have R ∈ L(Cεregex, Talt), so the inductive step
follows.

Alternatively, suppose R = S∗. If S = S∗1 , then
R ≡ S∗1 , so without loss of generality assume S = S1 + S2,
S = S1S2, or S = β, so by the previous argument, we have
S ∈ L(Cεregex, Talt). Since Talt ::= Trep and Trep ::= T ∗alt, we
have R ∈ L(Cεregex, Talt), so again the inductive step follows.
Finally, since T ::= Talt, we have R ∈ L(Cεregex).

Now, we modify the above proof to show that as long
as ε 6∈ L(R), we have R ∈ L(Cregex, Talt). As before,
we proceed by structural induction. Suppose that either
R = S1 + S2, R = S1S2, or R = β, so we can express
R in the form (3). First, consider the case Yi,j = β; if
β = ε, we can remove Yi,j from Xi unless ki = 1.
However, if Yi,j = β = ε and ki = 1, whence Xi = ε
so ε ∈ L(R), a contradiction; hence, we can always drop
Yi,j such that Yi,j = ε. For the remaining Yi,j = β, we have
Yi,j ∈ L(Cregex, Trep) by the definition of Cregex.



Second, consider the case Yi,j = Z∗i,j . Let Z ′i,j be a
regular expression such that L(Z ′i,j) = L(Zi,j) − {ε}, and
note that

Yi,j = Z∗i,j ≡ (Z ′i,j)
∗.

By induction, we know that Zi,j ∈ L(Cregex, Talt), so
Y ′i,j = (Z ′i,j)

∗ ∈ L(Cregex, Trep) by the definition of Cregex.
For each Xi, we remove every Yi,j = β = ε and replace

every Yi,j = Z∗i,j with Y ′i,j = (Z ′i,j)
∗ to produce X ′i ≡ Xi.

By definition of Cregex, we have Xi ∈ L(Cregex, Trep), so
R ∈ L(Cregex, Talt) as claimed; now, the case R = S∗

follows by the same argument as before.
For any R such that ε ∈ L(R), we can write R = ε + S

where ε 6∈ L(S) and apply the above argument to S. Since
T ::= ε + Talt is a production in Cregex, we have shown that
R ∈ L(Cregex) for any regular expression R. �

C. Properties of Phase Two
We prove the desired properties discussed in Section 3 for
the generalization steps proposed in Section 5. As discussed
in Section 5.2, the candidates constructed in phase two are
clearly monotone (since equating nonterminals in a context-
free grammar can only enlarge the generated language). We
prove Proposition 5.1, which formalizes our intuition about
how candidates constructed in phase two merge repetition
subexpressions; as discussed in Section 5.3, this result
implies that the checks constructed in phase two are valid.

C.1 Proof of Proposition 5.1
In this section, we sketch a proof of Proposition 5.1. In
particular, we show that if we merge two nonterminals
(A′i, A

′
j) ∈M by equating them in the context-free grammar

Ĉ (translated from R̂) to obtain C̃, then the repetition
subexpressions R in R̂ = PRQ (corresponding to A′i)
and R′ in R̂ = P ′R′Q′ (corresponding to A′j) are merged;
i.e., L(PR′Q) ⊆ L(C̃) and L(P ′RQ′) ⊆ L(C̃). While
we prove the result for the translation Ĉ of R̂, note that (i)
subsequent merges can only enlarge the generated language,
and (ii) the order in which merges are performed does not
affect the final context-free grammar, so the result holds for
any step of phase two of our algorithm.

Note that equating two nonterminals (A′i, A
′
j) ∈ M

in Ĉ is equivalent to adding productions A′i → A′j and
A′j → A′i to Ĉ. Therefore, Proposition 5.1 shows that both
L(PR′Q) ⊆ L(C̃) and L(P ′RQ′) ⊆ L(C̃). It suffices to
show that adding A′i → A′j to Ĉ results in the context-free
grammar C̃ satisfying L(PR′Q) ⊆ L(C̃) (intuitively, this
is a one-sided merge that only merges R̂′ into R̂, not vice
versa).

We use the fact that our algorithm for translating a regular
expression to a context-free grammars works more generally
for any regular expression R ∈ L(Cregex) derived from Trep
in according to the meta-grammar Cregex. In particular, if we

consider the series of generalization steps

αin = R1 ⇒ ...⇒ Rn = R̂,

we get a corresponding derivation

T (1)
rep = η1 ⇒ ...⇒ ηn = R̂

in Cregex as described in Section 4.1. Similarly to the labels
on bracketed strings in the series of generalization steps,
we label each nonterminal in the derivation with the index
at which it is expanded. For example, for the derivation
corresponding to the the series of generalization steps in
Figure 3 is

T (1)
rep

⇒ (T
(2)
alt )∗

⇒ (T (3)
rep )∗

⇒ (<a>(T
(5)
alt )∗T (4)

rep )∗

⇒ (<a>(T
(5)
alt )∗</a>)∗

⇒ (<a>(T (8)
rep + T

(6)
alt )∗</a>)∗

⇒ (<a>(T (8)
rep + T (7)

rep )∗</a>)∗

⇒ (<a>(T (8)
rep + i)∗</a>)∗

⇒ (<a>(h + i)∗</a>)∗

Now, each nonterminal Ai is associated to step i in the
derivation, and we add productions for Ai depending on
step i in the derivation (and auxiliary nonterminals A′i if
step i in the derivation expands nonterminal Trep in the
meta-grammar):

• Step µT
(i)
rep ν ⇒ µβ(T

(j)
alt )∗T

(k)
rep ν: We add productions

Ai → βA′iAk and A′i → ε | A′iAj .
• Step µT

(i)
alt ν ⇒ µ(T

(j)
rep + T

(k)
alt )ν: We add production

Ai → Aj | Ak.

Now, consider step i in the derivation, where productions for
Ai and A′i were added to Ĉ. Then, step i of the derivation
has form

µT (i)
rep ν ⇒ µβ(T

(j)
alt )∗T (k)

rep ν.

We can assume without loss of generality that we expand
T

(i)
rep last; i.e., µ = µ = P and ν = ν = Q do not contain

any nonterminals. Therefore, the derivation has form

(η1 = T (1)
rep )⇒ ...

⇒ (ηi = PT (i)
repQ)

⇒ (ηi+1 = Pβ(T
(j)
alt )∗T (k)

rep Q)

⇒ ...

⇒ (ηn = PRQ).



Now, note that the following derivation is also in Cregex:

(η1 = T (1)
rep )⇒ ...

⇒ (ηi = PT (i)
repQ)

⇒ (η′i+1 = Pβ′(T
(j′)
alt )∗T (k′)

rep Q)

⇒ ...

⇒ η′n′ = PR′Q

since R′ can be derived from Trep. Note that R̂′ =
PR′Q is exactly the regular expression produced by
this derivation. Then, let Ĉ ′ be the context-free grammar
obtained by applying our translation algorithm to R̂′ using
this derivation.

Note that Ĉ ′ has the same productions as Ĉ, except
the productions for Ai in Ĉ (i.e., all productions added on
step i of the derivation and after) have been replaced with
productions Ai in Ĉ ′ such that L(Ĉ ′, Ai) = L(R′). Since
L(R′) ⊆ L(C̃, Ai), and the nonterminals involved in the
productions for Ai do not occur in C̃, it is clear that adding
the productions for Ai in Ĉ ′ to C̃ does not modify L(C̃). By
construction, the other productions in Ĉ ′ are in Ĉ, so they
are also in C̃. Therefore, L(Ĉ ′) ⊆ L(C̃). The result follows,
since L(Ĉ ′) = L(R̂′) = L(PR′Q). �

D. Expressiveness of Phase Two
In this section, we give a proof sketch of the expressiveness
result stated in Proposition 5.3 of Section 5.4. Let C be a
generalized matching parentheses grammar. Suppose that
nonterminal Si (1 ≤ i ≤ n) corresponds to production

Si → Ri(Si1 + ...+ Siki
)∗R′i.

First, we need to identify a context such that Si can occur
in a derivation in C; in particular, we want to construct a
derivation of the form

S0 = Si,1 ⇒ Ri,1Si,2R
′
i,1

⇒ Ri,1Ri,2Si,3R
′
i,2R

′
i,1

⇒ ...

⇒ Ri,1...Ri,hi
SiR

′
i,hi

...R′i,1.

To do so, we construct a directed graph G with vertices
{S1, ..., Sn} and edges Si → Sj whenever the production

for Si has form

Si → Ri(...+ Sj + ...)∗R′i.

In other words, an edge indicates that Sj is contained in
a derivation of Si. Then, we can constructed the desired
derivation using a spanning tree rooted at S1, in particular,
by examining the path

S1 = Si,1 → ...→ Shi → Si

from S1 to Si in this spanning tree. Note that if no path
exists, then Si cannot occur in any derivation of S1.

Now, for each pair of regular expressions Ri and R′i
(1 ≤ i ≤ n), let αi ∈ L(RiR

′
i) ⊆ L(C, Si). Then, let

Xi = Ri,1...Ri,hiYiR
′
i,hi

...R′i,1

Yi = (Ri(α
∗
i1 + ...+ α∗iki

)R′i)
∗.

Intuitively, Xi is constructed according to the derivation of
S1 containing Si, and Yi is constructed using the production
for Si. In paricular, by construction, L(Xi) ⊆ L(C).

Consider the following regular expression:

X = X1 + ...+Xn

M = {(Yi, α∗jk) | i = jk}.

We claim that translating X and M into a context-free
grammar yields a grammar C ′ such that L(C) = L(C ′).
First, we show that each production in C is also in C ′,
which implies that L(C) ⊆ L(C ′). In particular, note that
the translation algorithm introduces exactly one nonterminal
for each Yi, since two repetition nodes Yi and Yj are never
merged together, and every other repetition node in X is
merged with a Yi node. Let S′i be the nonterminal introduced
for Yi; since each αij is merged with Yij , the production
added to C ′ is

S′i → (Ri(S
′
i1 + ...+ S′iki

)∗R′i)
∗,

which is equivalent to the production for Si in C.
Next, we show that L(X) ⊆ L(C). First, note that by

construction, L(Xi) ⊆ L(C) for each 1 ≤ i ≤ n, so
L(X) ⊆ L(C). Second, applying each merge in M does not
affect this invariant, since Yi and α∗jk can both be replaced
with Si = Sjk . Therefore, L(C) = L(C ′). �


