
Active Learning of Points-To Specifications
Osbert Bastani
Stanford University

USA
obastani@cs.stanford.edu

Rahul Sharma
Microsoft Research

India
rahsha@microsoft.com

Alex Aiken
Stanford University

USA
aiken@cs.stanford.edu

Percy Liang
Stanford University

USA
pliang@cs.stanford.edu

Abstract
When analyzing programs, large libraries pose significant
challenges to static points-to analysis. A popular solution
is to have a human analyst provide points-to specifications
that summarize relevant behaviors of library code, which
can substantially improve precision and handle missing code
such as native code. We propose Atlas, a tool that automat-
ically infers points-to specifications. Atlas synthesizes unit
tests that exercise the library code, and then infers points-to
specifications based on observations from these executions.
Atlas automatically infers specifications for the Java stan-
dard library, and produces better results for a client static
information flow analysis on a benchmark of 46 Android
apps compared to using existing handwritten specifications.

CCSConcepts •Theory of computation→ Program anal-
ysis;

Keywords specification inference, static points-to analysis

ACM Reference Format:
Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2018.
Active Learning of Points-To Specifications. In Proceedings of 39th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’18). ACM, New York, NY, USA, 25 pages.
https://doi.org/10.1145/3192366.3192383

1 Introduction
When analyzing programs, dependencies on large libraries
can significantly reduce the effectiveness of static analysis,
since libraries frequently contain (i) native code that cannot
be analyzed, (ii) use of challenging language features such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PLDI’18, June 18–22, 2018, Philadelphia, PA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5698-5/18/06. . . $15.00
https://doi.org/10.1145/3192366.3192383

as reflection, and (iii) deep call hierarchies that reduce preci-
sion. For example, the implementation of the Vector class
in OpenJDK 1.7 uses multiple levels of call indirection and
calls the native function System.arrayCopy.

A standardworkaround is to use specifications that summa-
rize the relevant behaviors of library functions [14, 48]. For a
one-time cost of writing library specifications, the precision
and soundness of the static analysis can improve dramat-
ically when analyzing any client code. However, writing
specifications for the entire library can be expensive [9, 48]—
many libraries contain a large number of functions, manually
written specifications are often error prone [18], and specifi-
cations must be updated whenever the library is updated.
To address these issues, approaches have been proposed

for automatically inferring specifications for library code,
both based on dynamic analysis [3, 8, 30, 35, 36] and on
static analysis [4, 12, 24, 26, 32, 39]. In particular, tools have
been designed to infer properties of missing code, includ-
ing taint flow properties [13], function models [18, 19], and
callback control flow [20].While these approaches are incom-
plete, and may not infer sound specifications, current static
analyses used in production already rely on user-provided
specifications [14], and as we will show, tools that automati-
cally infer specifications can outperform human analysts.

We propose an algorithm based on dynamic analysis that
infers library specifications summarizing points-to effects rel-
evant to a flow-insensitive points-to analysis. Our algorithm
works by iteratively guessing candidate specifications and
then checking whether each one is “correct”. Intuitively, a
specification is correct if it must be included in any sound set
of specifications, i.e., it is precise. This property ensures that
the specification does not cause any false positives. There are
two constraints that make our problem substantially more
challenging than previously studied settings:

• Points-to effects cannot be summarized for a library
function in isolation, e.g., in Figure 1, set, get, and
clone all refer to the same field f. Thus, a guessed
candidate must simultaneously summarize the points-
to effects of set, get, and clone. Furthermore, the
inference algorithm may not know the library field f
exists, and must invent a ghost field to represent it.

https://doi.org/10.1145/3192366.3192383
https://doi.org/10.1145/3192366.3192383

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang

• It is often difficult to instrument library code (e.g.,
native code); we assume only blackbox access.

To address these challenges, we introduce path specifi-
cations to describe points-to effects of library code. Each
path specification summarizes a single points-to effect of a
combination of functions. An example is:

For two calls box.set(x) and box.get(), the
return value of get may alias x.

Path specifications have two desirable properties: (i) we can
check if a candidate path specification is correct using input-
output examples, and (ii) correctness of path specifications
is independent, i.e., a set of path specifications is correct if
each specification in the set is correct. These two properties
imply that we can infer path specifications incrementally.
In particular, we propose an active learning algorithm that
infers specifications by actively identifying promising can-
didate specifications, and then automatically checking the
correctness of each candidate independently.
We implement our algorithm in a tool called Atlas,1

which infers path specifications for functions in Java libraries.
In particular, we evaluate Atlas by using it to infer specifica-
tions for the Java standard library, including the Collections
API, which contains many functions that exhibit complex
points-to effects. We evaluate Atlas using a standard static
explicit information flow client [7, 8, 16, 17] on a benchmark
of 46 Android apps. Our client uses handwritten points-to
specifications for the Java standard library [9, 48]. Over the
course of two years, we have handwritten a number of points-
to specifications tailored to finding information flows in apps
we analyzed, including those in our benchmark. However,
these specifications remain incomplete.
We use Atlas to infer specifications for classes in six

commonly used packages in the Java standard library. At-
las inferred more than 5× as many specifications as the
existing, handwritten ones. We show that using the specifi-
cations inferred by Atlas instead of the handwritten ones
improves the recall of our information flow client by 52%.
Moreover, we manually wrote ground truth specifications
for the most frequently used subset of classes in the Collec-
tions API, totalling 1,731 lines of code, and show that Atlas
inferred the correct specifications (i.e., identical to handwrit-
ten ground truth specifications) for 97% of these functions.
Finally, we show that on average, using specifications more
than halves the number of false positive points-to edges
compared to directly analyzing the library implementation—
in particular, the library implementation contains deep call
hierarchies, which our points-to analysis is insufficiently
context-sensitive to handle. Our contributions are:
• We propose path specifications and prove they are
sufficiently expressive to precisely model library func-
tions for a standard flow-insensitive points-to analysis.

1Atlas stands for AcTive Learning of Alias Specifications, and is available
at https://github.com/obastani/atlas.

• We formulate the problem of inferring path specifica-
tions as a language inference problem and design a
novel specification inference algorithm.
• We implement our approach in Atlas, and use it to
infer a large number of specifications for the Java stan-
dard library. We use these inferred specifications to
automatically replicate and even improve the results
of an existing static information flow client.

2 Overview
Consider the program test shown in Figure 1. We assume
that the static analysis resolves aliasing using Andersen’s
analysis [5], a context- and flow-insensitive points-to analy-
sis; our approach also applies to cloning-based context- and
object-sensitive extensions [44]. To determine that variables
in and out may be aliased, the points-to analysis has to rea-
son about the heap effects of the set and get methods in
the Box class. The analyst can write specifications for library
functions that summarize their heap effects with respect to
the semantics of the points-to analysis. For example, con-
sider the Stack class in the Java library: its implementation
extends Vector, which is challenging to analyze due to deep
call hierarchies and native code. The following are the speci-
fications for the Stack class, implemented as code fragments
that overapproximate the heap effects of the methods:
class Stack { // specification

Object f; // ghost field
void push(Object ob) { f = ob; }
Object pop() { return f; } }

In contrast to the implementation, the specifications for
Stack are simple and easy to analyze. In fact, when used
with our static points-to analysis, these specifications are
not only sound but also precise, since our points-to analysis
is flow-insensitive and collapses arrays into a single field.

A typical approach is to write specifications lazily [9, 48]—
the analyst examines the program being analyzed, identifies
the library functions most relevant to the static analysis, and
writes specifications for them. The effort invested in writing
specifications helps reduce the labor required to discharge
false positives.2 The analyst can trade off between manual
effort and soundness by expending more effort as needed to
increase the completeness of the library specifications.
Atlas helps bootstrap the specification writing process

by automatically inferring points-to specifications. In accor-
dance with the goal of minimizing false positives, Atlas
employs a two-phase approach that prioritizes the precision
of the specifications it infers (where precision is defined with
respect to our points-to analysis). In the first phase, Atlas
infers specifications guaranteed to be precise. In particular,
each inferred specification s comes with a witness, which
intuitively is a unit test that proves the precision of s by ex-
hibiting the heap effects specified by s . In the second phase,

2In contrast to the recurring cost of debugging false positives, the cost of
implementing specifications is amortized over many programs.

https://github.com/obastani/atlas

Active Learning of Points-To Specifications PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

class Box { // library
Object f;
void set(Object ob) { f = ob; }
Object get() { return f; }
Box clone() {

Box b = new Box(); // o_clone
b.f = f;
return b; } }

boolean test() { // program
Object in = new Object(); // o_in
Box box = new Box(); // o_box
box.set(in);
Object out = box.get();
return in == out; }

Figure 1. Implementation of the library methods set, get, and clone in the Box class (left), and an example of a program
using these functions (right).

Atlas inductively generalizes the specifications inferred in
the first phase, using a large number of checks to minimize
the possibility of imprecision.

Specification search space. The main challenge in infer-
ring points-to specifications is to formulate the search space
of candidate specifications. Naïvely searching over the space
of code fragments is ineffective because specifications are
highly interdependent, i.e., the specification of a library func-
tion is dependent on the specifications of other functions.
For example, the specifications for each of the methods in the
Box class all refer to the shared field f. Thus, to infer precise
specifications, the naïve algorithm would have to guess a
code fragment for every function in the library (or at least
in a class) before it can check for precision; the likelihood
that it could make a correct guess is tiny.
Our key insight is that while specifications cannot be

broken at function boundaries, we can decompose them in a
different way. In particular, we propose path specifications,
which are independent units of points-to effects. Intuitively,
a path specification is a dataflow path an object might take
through library code. An example of a path specification is

sbox = ob d thisset → thisget d rget. (1)

This path specification roughly has the following semantics:
• Suppose that an object o enters the library code as the
parameter ob of set; then, it is associated with the
receiver thisset of the set method (the edge ob d
thisset).
• Suppose that in the client program, thisset is aliased
with thisget (the edge thisset → thisget); then, o
enters the get method.
• Then, o exits the library as the return value rget of get.

In particular, the dashed edges ob d thisset and thisget d
rget represent the effects of library code, and the solid edge
thisset → thisget represents an assumption about the ef-
fects of client code. Then, the path specification says that, if
the points-to analysis determines that thisget and thisset
are aliased, then ob is transfered to rget, which intuitively
means that ob is indirectly assigned to rget. More precisely,
the semantics of sbox is the following logical formula:

(thisset
Alias
−−−−→ thisget) ⇒ (ob

Transfer
−−−−−−→ rget). (2)

Here, an edge x
A
−→ y says that program variables x and y

satisfy a binary relation A. We describe path specifications
in detail in Section 4.

Testing specifications. Path specifications satisfy two key
requirements. The first requirement is that we can check
the precision of a single path specification. For example, for
the specification sbox, consider the program test shown in
Figure 1. This unit test satisfies three properties:
• It satisfies the antecedent of sbox, since thisset and
thisget are aliased.
• It does not induce any other relations between the vari-
ables at the interface of the Box class (i.e., ob, thisset,
i, thisget, and rget).
• It returns the consequent of sbox, i.e., whether ob and
rget point to the same object.

Upon executing test, it returns that the consequent of sbox is
true; therefore, any sound set of specifications must include
sbox, so sbox is precise (we formalize soundness and precision
of path specifications in Section 4).We refer to such a unit test
as a witness for the path specification. In summary, as long
as we can find a witness for a candidate path specification s ,
then we can guarantee that s is precise. One caveat is that
even if test returns false, sbox may still be precise.
Therefore, to check if a candidate path specification s is

precise, our algorithm can synthesize a unit test P similar
to test and execute it. If P returns true, then our algorithm
concludes that s is precise; otherwise, it (conservatively) con-
cludes that s is imprecise. Note that s may be precise even if
P returns false; this possibility is unavoidable since execu-
tions are underapproximations, i.e., P may not exercise all
paths of the relevant library functions. We use heuristics to
ensure that our algorithm rarely concludes that precise spec-
ifications are imprecise. We describe our unit test synthesis
algorithm in detail in Section 5.4.

The second requirement of path specifications is that they
are independent, i.e., given a set of path specifications for
which each specification has a witness, then the set as a
whole is precise in the sense that it is a subset of any sound set
of path specifications. In other words, we can use a potential
witness to check the precision of a path specification in
isolation. Thus, our specification inference algorithm can
focus on inferring individual path specifications.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang

(assign)
y ← x

x
Assign
−−−−−→ y

(allocation)
o = (x ← X ())

o
New
−−−−→ o

(store)
y .f ← x

x
Store[f]
−−−−−−→ y

(load)
y ← x .f

x
Load[f]
−−−−−−→ y

(backwards)
x

σ
−−→ y

y
σ
−−→ x

(call parameter)
y ←m (x)

x
Assign
−−−−−→ pm

(call return)
y ←m (x)

rm
Assign
−−−−−→ y

Figure 2. Rules for constructing a graph G encoding the
relevant semantics of program statements.

Specification inference. Our specification inference algo-
rithm uses two inputs:
• Library interface: The type signature of each func-
tion in the library.
• Blackbox access: The ability to execute sequences
of library functions on chosen inputs and obtain the
corresponding outputs.

In the first phase (described in Section 5.2), Atlas randomly
guesses a candidate path specification s , synthesizes a poten-
tial witness for s , and retains s if this unit test returns true.
This process is repeated a large number of times to obtain a
large but finite set of precise path specifications.
To soundly model the library, an infinite number of path

specifications may be required, e.g., the path specifications
required to soundly model set, get, and clone are

ob d thisset (→ thisclone d rclone)
∗ (3)

→ thisget d rget.

These specifications say that if we call set, then call clone
n times in sequence, and finally call get (all with the speci-
fied aliasing between receivers and return values), then the
parameter ob of set is transfered to the return value of get.
Thus, in the second phase (described in Section 5.3), we

inductively generalize the set S of path specifications in the
first phase to a possibly infinite set. We leverage the idea
that a path specification can be represented as a sequence
of variables s ∈ V∗path, whereVpath are the variables in the
library interface—for example, sbox corresponds to

ob thisset thisget rget ∈ V
∗
path.

Thus, a set of path specifications is a formal language over
the alphabet Vpath. As a consequence, we can frame the
inductive generalization problem as a language inference
problem: given (i) the finite set of positive examples from
phase one, and (ii) an oracle we can query to determine
whether a given path specification s is precise (though this
oracle is noisy, i.e., it may return false even if s is precise),
the goal is to infer a (possibly infinite) language S ⊆ V∗path.

We devise an active language learning algorithm to solve
this problem. Our algorithm proposes candidate inductive
generalizations of S , and then checks the precision of these

Transfer→ ε | Transfer Assign | Transfer Store[f] Alias Load[f]

Transfer→ ε | Assign Transfer | Load[f] Alias Store[f] Transfer

Alias→ Transfer New New Transfer
FlowsTo→ New Transfer

Figure 3. Productions for the context-free grammarCpt. The
start symbol of Cpt is FlowsTo.

candidates using a large number of synthesized unit tests.
Unlike phase one, we may introduce imprecision even if
all the unit tests pass; we show empirically that precision is
maintained. Finally, our algorithm infers a regular set of path
specifications. In theory, no regular set may suffice to model
the library code and more expressive language inference
techniques might be required [11]. In practice, we find that
regular sets are sufficient.

In our example, suppose that phase one infers

ob d thisset → thisclone d rclone

→ thisclone d rclone → thisget d rget.

Then, phase twowould inductively generalize it to (3). Finally,
our tool automatically converts these path specifications
to the equivalent code fragment specifications shown in
Figure 1. These code fragment specifications can be used in
place of the (possibly unavailable) library implementation
when analyzing client code.

3 Background on Points-To Analysis
We consider programswith assignmentsy ← x (where x ,y ∈
V are variables), allocations x ← X () (where X ∈ C is a
type), stores y. f ← x and loads y ← x . f (where f ∈ F
is a field), and calls to library functions y ← m(x) (where
m ∈ M is a library function). For simplicity, we assume that
each library function m has a single parameter pm and a
return value rm .
An abstract object o ∈ O is an allocation statement o =

(x ← X ()). A points-to edge is a pair x ↪→ o ∈ V×O. A static
points-to analysis computes points-to edges Π ⊆ V × O.
Our results are for Andersen’s analysis, a flow-insensitive
points-to analysis [5], but generalize to object- and context-
sensitive extensions based on cloning [44]. We describe the
formulation of Andersen’s analysis as a context-free lan-
guage reachability problem [22, 23, 33, 41, 42].

Graph representation. First, our static analysis constructs
a labeled graphG representing the program semantics. The
vertices of G areV ∪ O. The edge labels

Σpt = {Assign,New, Store, Load,Assign,New, Load, Store}

encode the semantics of program statements. The rules for
constructing G are in Figure 2. For example, the edges ex-
tracted for the program test in Figure 1 are the solid edges
in Figure 4.

Active Learning of Points-To Specifications PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

oin in out

ob obox rget

thisset box thisget

New

FlowsTo

Assign

Transfer

Store[f]

Transfer

New

Assign

Alias

Assign Assign
Transfer Transfer Load[f]

oin in out

ob obox rget

thisset box thisget

New

FlowsTo

Assign

Transfer

Transfer

New

Assign

Alias

Assign Assign
Transfer Transfer

(thisset
Alias
−−−−→ thisget) ⇒ (ob

Transfer
−−−−−−→ rget)

Figure 4. The left-hand side shows the graph G̃ computed by the static analysis with the library code, and the right-hand side
shows G̃ computed with path specifications (the relevant path specification is shown below the graph). The solid edges are the
graph G extracted from the program test shown in Figure 1. In addition, the dashed edges are a few of the edges in G̃ when
computing the transitive closure. We omit backward edges (i.e., with labels A) for clarity. Vertices and edges corresponding to
library code are highlighted in red.

Transitive closure. Second, our static analysis computes
the transitive closure G̃ of G according to the context-free
grammar Cpt in Figure 3. A path y

α
99K x in G is a sequence

x
σ1
−−→ v1

σ2
−−→ ...

σk
−−→ y

of edges in G such that α = σ1...σk ∈ Σ∗pt. Then, G̃ contains

(i) each edge x
σ
−→ y in the original graph G, and (ii) if there

is a path x
α
99K y in G such that A

∗
=⇒ α (where A is a

nonterminal of Cpt), the edge x
A
−→ y. Our static analysis

computes G̃ using dynamic programming; e.g., see [27].
The first production in Figure 3 constructs the transfer

relation x
Transfer
−−−−−−→ y, which says that x may be “indirectly

assigned” to y. The second production constructs the “back-
wards” transfer relation. The third production constructs
the alias relation x

Alias
−−−−→ y, which says that x may alias y.

The fourth production computes the points-to relation, i.e.,
x ↪→ o whenever o

FlowsTo
−−−−−−→ x ∈ G̃.

4 Path Specifications
At a high level, a path specification encodes when edges in
G would have been connected by (missing) edges from the
library implementation. In particular, suppose that our static
analysis could analyze the library implementation, and that
while computing the transitive closure G̃, it contains a path

z1
β1
99K w1

A1
−−→ z2

β2
99K ...

Ak−1
−−−−→ zk

βk
99K wk . (4)

Here, z1,w1, ..., zk ,wk ∈ Vpath whereVpath is the set of vari-
ables in the library interface (i.e., parameters and return
values of library functions), β1, ..., βk ∈ Σ∗pt are labels for
paths corresponding to library code, and A1, ...,Ak−1 are
nonterminals in Cpt labeling relations computed so far. If

A
∗
=⇒ β1A1...βk−1Ak−1βk ,

then our analysis adds z1
A
−→ wk to G̃ . Path specifications en-

sure that our analysis adds such edges to G̃ when the library

code is unavailable (so the paths zi
βi
99K wi are missing from

G̃); e.g., a path specification for (4) says that if

w1
A1
−−→ z2, ..., wk−1

Ak−1
−−−−→ zk ∈ G̃,

then the static analysis should add z1
A
−→ wk to G̃.

For example, while analyzing test in Figure 1 with the
library code on the right available, the analysis sees the path

ob
Store[f]
−−−−−−→ thisset

Alias
−−−−→ thisget

Load[f]
−−−−−−→ rget.

Since Transfer
∗
=⇒ Store[f] Transfer Load[f], the analysis

adds edge ob
Transfer
−−−−−−→ rget. As we describe below, the path

specification sbox shown in (1) ensures that this edge is added
to G̃ when the library code is unavailable.

Syntax. LetVprog be the variables in the program (i.e., ex-
cluding variables in the library), let Vm = {pm , rm } be the
parameter and return value of library functionm ∈ M, and
letVpath =

⋃
m∈MVm be the visible variables (i.e., variables

at the library interface). A path specification is a sequence

z1w1z2w2...zkwk ∈ V
∗
path,

where zi ,wi ∈ Vmi for library functionmi ∈ M. We require
thatwi and zi+1 are not both return values, and thatwk is a
return value. For clarity, we typically use the syntax

z1 d w1 → z2 d ... d wk−1 → zk d wk . (5)

Semantics. Given path specification (5), for each i ∈ [k],
define the nonterminal Ai in the grammar Cpt to be

Ai =




Transfer ifwi = rmi and zi+1 = pmi+1

Alias ifwi = pmi and zi+1 = pmi+1

Transfer ifwi = pmi and zi+1 = rmi+1 .

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang

Candidate Code Fragment Specification Candidate Path Specification(s) Synthesized Unit Test

class Box { // candidate specification
Object f; // ghost field
void set(Object ob) { f = ob; }
Object get() { return f; } }

ob d thisset → thisget d rget

boolean test() {
Object in = new Object(); // o_in
Box box = new Box(); // o_box
box.set(in);
Object out = box.get();
return in == out; }

✓

class Box { // candidate specification
Object f; // ghost field
void set(Object ob) { f = ob; }
Object clone() { return f; } }

ob d thisset → thisclone d rclone

boolean test() {
Object in = new Object(); // o_in
Box box = new Box(); // o_box
box.set(in);
Object out = box.clone();
return in == out; }

✗

class Box { // candidate specification
Object f; // ghost field
void set(Object ob) { f = ob; }
Object get() { return f; }
Box clone() {
Box b = new Box(); // ~o_clone
b.f = f;
return b; } }

ob d thisset (→ thisclone d rclone)∗
→ thisget d rget

boolean test0() {
Object in = new Object(); // o_in
Box box0 = new Box(); // o_box
box0.set(in);
Object out = box0.get();
return in == out; }

boolean test1() {
Object in = new Object(); // o_in
Box box0 = new Box(); // o_box
box0.set(in);
Box box1 = box0.clone();
Object out = box1.get();
return in == out; }

boolean test2() {
Object in = new Object(); // o_in
Box box0 = new Box(); // o_box
box0.set(in);
Box box1 = box0.clone();
Box box2 = box1.clone();
Object out = box2.get();
return in == out; }

...

✓

Figure 5. Examples of hypothesized library implementations (left column), an equivalent set of path specifications (middle
column), and the synthesized unit tests to check the precision of these specifications (right column), with a check mark ✓
(indicating that the unit tests pass) or a cross mark ✗ (indicating that the unit tests fail).

Also, define the nonterminal A by

A =



Transfer if z1 = pm1

Alias if z1 = rm1 .

Then, the path specification corresponds to adding a rule

*
,

k−1∧
i=1

wi
Ai
−−→ zi+1 ∈ G̃+

-
⇒ (z1

A
−→ wk ∈ G̃)

to the static points-to analysis. The rule also adds the back-

wards edgewk
A
−→ z1 to G̃ , but we omit it for clarity. We refer

to the antecedent of this rule as the premise of the path spec-
ification, and the consequent of this rule as the conclusion
of the path specification. Continuing our example, the path
specification sbox shown in (1) has semantics

(thisset
Alias
−−−−→ thisget) ⇒ (ob

Transfer
−−−−−−→ rget).

This rule says that if the static analysis computes the edge
thisset

Alias
−−−−→ thisget ∈ G̃ , then it must add ob

Transfer
−−−−−−→ rget

to G̃. For example, this rule is applied in Figure 4 (right) to
compute ob

Transfer
−−−−−−→ rget.

The middle column of Figure 5 shows examples of path
specifications, and the first column shows equivalent code
fragment specifications (the last column is described below).
The specifications on the first and last rows are precise,
whereas the specification on the second row is imprecise.

Soundness and precision. Let G̃∗ (P) denote the true set of
relations for a program P (i.e., relations that hold dynamically
for some execution of P); note that because the library code
is omitted from analysis, we only include relations between
program variables in G̃∗ (P). Then, given path specifications
S , let G̃ (P , S) denote the points-to edges computed using S
for P , let G̃+ (P , S) = G̃ (P , S) \ G̃∗ (P) be the false positives,
and let G̃− (P , S) = G̃∗ (P) \ G̃ (P , S) be the false negatives.

Specification set S is sound if G̃− (P , S) = ∅. We say S and
S ′ are equivalent (written S ≡ S ′) if for every program P ,
G̃ (P , S) = G̃ (P , S ′). Finally, S is precise if for every sound

Active Learning of Points-To Specifications PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

S ′, S ′ ∪ S ≡ S ′. In other words, using S computes no false
positive points-to edges compared to any sound set S ′. We
say a single path specification s is precise if {s} is precise.
We have the following result, which follows by induction:

Theorem 4.1. For any set S of path specifications, if each
s ∈ S is precise, then S is precise.

Witnesses. Our algorithm needs to synthesize unit tests that
check whether a candidate path specification s is precise. In
particular, a program P is a potential witness for a candidate
path specification s if P returns true only if s is precise. If
P is a potential witness for s , and upon execution, P in fact
returns true, then we say P is a witness for s . The last column
of Figure 5 shows potential witnesses for the candidate path
specification in the middle column; a green check indicates
the potential witness returns true (we say P passes), and a
red check indicates it returns false or raises an exception (we
say P fails). In particular, the synthesized unit test correctly
rejects the imprecise specification on the second row.

Note that P may return false even if s is precise. This prop-
erty is inevitable since executions are underapproximations;
we show empirically that if s is precise, then typically the
potential witness synthesized by our algorithm passes.

Soundly and precisely modeling library code. It is not
obvious that path specifications are sufficiently expressive
to precisely model library code. In this section, we show that
path specifications are in fact sufficiently expressive to do
so in the case of Andersen’s analysis (and its cloning-based
context- and object-sensitive extensions). More precisely, for
any implementation of the library, there exists a (possibly
infinite) set of path specifications such that the points-to sets
computed using path specifications are both sound and at
least as precise as analyzing the library implementation:

Theorem 4.2. Let G̃ (P) be the set of points-to edges com-
puted for program P assuming the library code is available.
Then, there exists a set S of path specifications such that for
every program P , G̃ (P , S) is sound and G̃ (P , S) ⊆ G̃ (P).

We give a proof in Appendix C. Note that the set S of path
specifications may be infinite. This infinite blowup is un-
avoidable since we want the ability to test the precision of an
individual path specification. In particular, the library imple-
mentation may exhibit effects that require infinitely many
unit tests to check precision (e.g., the path specifications
shown on the third row of Figure 5).

Regular sets of path specifications. Since the library im-
plementation may correspond to an infinite set of path spec-
ifications, we need a mechanism for describing such sets. In
particular, since a path specification is a sequence s ∈ V∗path,
we can think of a set S of path specifications as a formal
language S ⊆ V∗path over the alphabet Vpath. Then, we can
express an infinite set of path specifications using standard

Library
InterfaceM

(Input)

Unit Test
Synthesis (§5.4) for

Noisy Oracle O (§5.1)

Learned
Automaton
M̂ (§5.3)

Sampled Positive
Examples S0 (§5.2)

Generated Code
Fragments C (§A)

Figure 6. An overview of our specification inference system.
The section describing each component is in parentheses.

representations such as regular expressions or context-free
grammars.

We make the empirical observation that the library imple-
mentation is equivalent to a regular set S∗ of path specifi-
cations (i.e., S∗ is sound and precise). There is no particular
reason that this fact should be true, but it holds for all the
Java library functions we have examined so far. For example,
consider the code fragment shown in the first column of the
third row of Figure 5. This specification corresonds to the
set of path specifications shown as a regular expression in
the middle column of the same line (tokens in the regular
expression are highlighted in blue for clarity).

Static points-to analysis with path specifications. To
perform static points-to analysis with regular sets of path
specifications, we convert the path specifications into equiv-
alent code fragments and then analyze the client along with
the code fragments; see Appendix A for details.

5 Specification Inference Algorithm
We describe our algorithm for inferring path specifications.
Our system is summarized in Figure 6, which also shows the
section where each component is described in detail.

5.1 Overview
Let the target language S∗ ⊆ V∗path be the set of all path spec-
ifications that are precise. By Theorem 4.1, S∗ is precise. The
goal of our algorithm is to infer a set of path specifications
that approximates S∗ as closely as possible.

Inputs. Recall that our algorithm is given two inputs: (i)
the library interface, and (ii) blackbox access to the library
functions. We use these two inputs to construct the noisy
oracle and positive examples as describe below.

Noisy oracle. Given a path specification s , the noisy oracle
O : V∗path → {0, 1} (i) always returns 0 if s is imprecise, and
(ii) ideally returns 1 if s is precise (but may return 0). 3 This
oracle is implemented by synthesizing a potential witness
P for s and returning the result of executing P . We describe
how we synthesize a witness for s in Section 5.4.
3While our implementation of the oracle is deterministic, our specification
inference algorithm can also make use of a stochastic oracle (as long as it
satisfies these two properties).

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang

Positive examples. Phase one of our algorithm constructs
a set of positive examples: our algorithm randomly samples
candidate path specifications s ∼ V∗path, and then uses O to
determine whether each s is precise. More precisely, given a
set S = {s ∼ V∗path} of random samples, it constructs positive
examples S0 = {s ∈ S | O (s) = 1}. We describe how we
sample s ∼ V∗path in Section 5.2.

Language inference problem. Phase two of our algorithm
inductively generalizes S0 to a regular set of path specifica-
tions. We formulate this problem as follows:

Definition 5.1. The language inference problem is to, given
the noisy oracle O and the positive examples S0 ⊆ S∗, infer
a language Ŝ that approximates S∗ as closely as possible.

The approximation quality of Ŝ compared to S∗ must take
into account both the false positive rate and the false nega-
tive rate. Intuitively, we prioritize minimizing false positives
over minimizing false negatives—i.e., we aim to maximize
the size of Ŝ subject to Ŝ ⊆ S∗; however, Ŝ and S∗ may be infin-
itely large. In our evaluation, we use a heuristic to measure
approximation quality; see Section 6 for details.
In Section 5.3, we describe our algorithm for solving the

language inference problem. It outputs a regular language
Ŝ = L (M̂), where M̂ is a finite state automaton—e.g., given

S0 = {ob thisset thisclone rclone thisget rget},

our language inference algorithm returns an automaton en-
coding the regular language

ob thisset (thisclone rclone)
∗ thisget rget.

5.2 Sampling Positive Examples
We sample a path specification s ∈ V∗path by building it one
variable at a time, starting from s = ε (where ε denotes the
empty string). At each step, we ensure that s satisfies the path
specification constraints, i.e., (i) zi andwi are parameters or
return values of the same library function, (ii) wi and zi+1
are not both return values, and (iii) the last variablewk is a
return value. In particular, given current sequence s , the set
T (s) ⊆ Vpath ∪ {ϕ} of choices for the next variable (where
ϕ indicates to terminate and return s) is:
• If s = z1w1z2...zi , then the choices for wi are T (s) =
{pm , rm }, where zi ∈ {pm , rm }.
• If s = z1w1z2...ziwi , and wi is a parameter, then the
choices for zi+1 are T (s) = Vpath.
• If s = z1w1z2...ziwi , andwi is a return value, then the
choices for zi+1 are

T (s) = {z ∈ Vpath | z is a parameter} ∪ {ϕ}.

At each step, our algorithm samples x ∼ T (s), and either
constructs s ′ = sx and continues if x , ϕ or returns s if
x = ϕ. We consider two sampling strategies.

Random sampling. We choose x ∼ T (s) uniformly at ran-
dom at every step.

Monte Carlo tree search. We can exploit the fact that cer-
tain choices x ∈ T (s) are much more likely to yield a precise
path specification than others. To do so, note that our search
space is structured as a tree. Each edge in this tree is labeled
with a symbol x ∈ Vpath ∪ {ϕ}; then, we can associate each
node N in the tree with the sequence sN ∈ (Vpath ∪ {ϕ})

∗

obtained by traversing the tree from the root to N and col-
lecting the labels along the edges (if N is the root node,
then sN = ε). Given an internal node N with corresponding
sequence sN , its children are determined by T as follows:

{N
x
−→ N ′ | x ∈ T (sN)}.

Therefore, a leaf node L corresponds to a sequence of the
form sL = x1...xkϕ, which in turn corresponds to a candidate
path specification s = x1...xn . Thus, we can sample x ∼
T (s) using Monte Carlo tree search (MCTS) [21], a search
algorithm that learns over time which choices are more likely
to succeed. In particular, MCTS keeps track of a scoreQ (N ,x)
for every visited node N and every x ∈ T (sN). Then, the
choices are sampled according to the distribution

Pr[x | N] =
1
Z
eQ (N ,x) where Z =

∑
x ′∈T (sN)

eQ (N ,x ′) .

Whenever a candidate s = x1...xk is found, we increase the
score Q (x1...xi ,xi+1) (for each 0 ≤ i < k) if s is a positive
example (O (s) = 1) and decrease it otherwise (O (s) = 0):

Q (x1...xi ,xi+1) ← (1 − α)Q (x1...xi ,xi+1) + αO (s).

We choose the learning rate α to be α = 1/2.

5.3 Language Inference Algorithm
Our language inference algorithm is based on RPNI [31].
4 In particular, we modify RPNI to leverage access to the
noisy oracle—whereas RPNI takes as input a set of negative
examples, we use the oracle to generate them on-the-fly. Our
algorithm learns a regular language Ŝ = L (M̂) represented
by the (nondeterministic) finite state automaton (FSA) M̂ =
(Q,Vpath,δ ,qinit,Qfin), where Q is the set of states, δ : Q ×
Vpath → 2Q is the transition function, qinit ∈ Q is the start
state, and Qfin ⊆ Q are the accept states. If there is a single
accept state, we denote it by qfin. We denote transitions q ∈
δ (p,σ) by p

σ
−→ q.

Our algorithm initializes M̂ to be the FSA representing
the finite language S0. In particular, it initializes M̂ to be
the prefix tree acceptor [31], which is the FSA where the
underlying transition graph is the prefix tree of S0, the start
4We also considered the L∗ algorithm [6]; however, the L∗ algorithm de-
pends on an equivalence oracle that reports whether a candidate language
is correct, which is unavailable in our setting. It is possible to approxi-
mate the equivalence oracle using sampling, but in our experience, this
approximation is very poor and can introduce substantial imprecision.

Active Learning of Points-To Specifications PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

state is the root of this prefix tree, and the accept states are
the leaves of this prefix tree.
Then, our algorithm iteratively considers merging pairs

of states of M̂ . More precisely, given two states p,q ∈ Q
(without loss of generality, assume q , qinit),Merge(M̂,q,p)
is the FSA obtained by (i) replacing transitions

(r
σ
−→ q) becomes (r

σ
−→ p), (q

σ
−→ r) becomes (p

σ
−→ r),

(ii) adding p to Qfin if q ∈ Qfin, and (iii) removing q from Q .
Our algorithm iterates once over all the states Q ; we de-

scribe how a single iteration proceeds. Let q be the state
being processed in the current step, let Q0 be the states that
have been processed so far but not removed from Q , and let
M̂ be the current FSA. For each p ∈ Q0, our algorithm checks
whether merging q and p adds imprecise path specifications
to the language L (M̂); if not, it greedily performs the merge.
More precisely, for each p ∈ Q0, our algorithm constructs

Mdiff = Merge(M̂,q,p) \ M̂,

which represents the set of strings that are added to L (M̂)
if q and p are merged. Then, for each s ∈ Mdiff up to some
maximum length N (we take N = 8), our algorithm queries
O (s). If all queries pass (i.e., O (s) = 1), then our algorithm
greedily accepts the merge, i.e., M̂ ← Merge(M̂,q,p) and
continues to the next q ∈ Q . Otherwise, it considers merging
q with the next p ∈ Q0. Finally, if q is not merged with any
state p ∈ Q0, then our algorithm does not modify M̂ and adds
q to Q0. Once it has completed a pass over all states in Q ,
our algorithm returns M̂ . For example, suppose our language
learning algorithm is given a single positive example

ob thisset thisclone rclone thisget rget.

Then, our algorithm constructs the finite state automaton

qinit
ob
−−→ q1

thisset
−−−−−−→ q2

thisclone
−−−−−−−−→ q3

rclone
−−−−−→ q4

thisget
−−−−−−→ q5

rget
−−−−→ qfin.

Our algorithm fails to merge qinit, q1, q2, or q3 with any
previous states. It then tries to merge q4 with each state
{qinit,q1,q2,q3}; the first two merges fail, but merging q4
with q2 produces

qinit q1 q2 q4 qfin.

q3

ob thisset thisget

thisclone

rget

rclone

Then, the specifications of length at most N inMdiff are

ob thisset (thisclone rclone)
0 thisget rget

ob thisset (thisclone rclone)
1 thisget rget

...

ob thisset (thisclone rclone)
N thisget rget,

all of which are accepted by O. Therefore, our algorithm
greedily accepts this merge and continues. The remaining
merges fail and our algorithm returns this automaton.

input ob d thisset → thisclone → rclone
→ thisget → rget

skeleton
??.set(??);
?? = ??.clone();
?? = ??.get();

fill holes
box.set(in);
Box boxClone = box.clone();
Object out = boxClone.get();

initialization
& scheduling

Object in = new Object();
Box box = new Box()
box.set(in);
Box boxClone = box.clone();
Object out = boxClone.get();
return in == out;

Figure 7. Steps in the witness synthesis algorithm for a
candidate path specification for Box. Code added at each
step is highlighted in blue. Scheduling is shown in the same
line as initialization.

5.4 Unit Test Synthesis
We describe how we synthesize a unit test that is a potential
witness for a given specification

s = (z1 d w1 → ... → zk d wk),

relegating details to Appendix B. Figure 7 shows how the
unit test synthesis algorithm synthesizes a unit test for the
candidate specification sbox.

Recall that the semantics of s are
(∧k−1

i=1 wi
Ai
−−→ zi+1 ∈ G̃

)
⇒

(z1
A
−→ wk ∈ G̃). Then, consider a program P that satisfies

the following properties:
• The conclusion of s does not hold statically for P with
empty specifications, i.e., z1

A
−→ wk < G̃ (P ,∅).

• The premise of s holds for P , i.e.,wi
Ai
−−→ zi+1 ∈ G̃ (P , {s})

for each i ∈ [k − 1].
• For every set S of path specifications, if z1

A
−→ wk ∈

G̃ (P , S), then S ∪ {s} is equivalent to S .
Intuitively, if program P is a potential witness for path spec-
ification s with premiseψ and conclusion ϕ = (e ∈ G̃), then
s is the only path specification that can be used by the static
analysis to compute relation e for P . Thus, if P witnesses s ,
then s is guaranteed to be precise. In particular, we have the
following important guarantee for the unit test synthesis
algorithm (see Appendix E for a proof):

Theorem 5.2. The unit test P synthesized for path specifi-
cation s is a potential witness for s .

Skeleton construction. Our algorithm first constructs the
skeleton of the unit test. In particular, a witness for s must
include a call to each functionm1, ...,mk , where the variables

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang

zi ,wi ∈ Vmi are parameters or return values of mi , since
the graph G extracted from the unit test must by definition
contain edges connecting thewi to zi+1. For each function
cally ←m(x), the argument x and the left-hand side variable
y are left as holes ?? to be filled in subsequent steps.

Fill holes. Second, our algorithm fills the holes in the skele-
ton corresponding to reference variables. In particular, for
each pair of function calls ??y,i ←mi (??x,i) and ??y,i+1 ←
mi+1 (??x,i+1), it fills the holes ??y,i and ??x,i+1 depending

on the edgewi
Ai
−−→ zi+1:

• Case Ai = Transfer: In this case,wi is a return value
and zi+1 is a parameter. Thus, the algorithm fills ??y,i
and ??x,i+1 with the same fresh variable x .
• Case Ai = Transfer: This case is analogous to the
case Ai = Transfer.
• Case Ai = Alias: In this case, wi and zi+1 are both
parameters. Thus, the algorithm fills ??y,i and ??x,i+1
with the same fresh variable x , and additionally adds
to the test an allocation statement x ← X ().

As shown in the proof of Theorem 5.2, the added statements
ensure that P is a potential witness for s .

Initialization. Third, our algorithm initializes the remain-
ing reference and primitive variables in the unit test. In
particular, function calls y ← mi (x) may have additional
parameters that need to be filled. For Theorem 5.2 to hold,
the remaining reference variables must be initialized to null.
However, this approach is likely to synthesize unit tests

that fail (by raising exceptions) even when s is precise. There-
fore, we alternatively use a heuristic where we allocate a
fresh variable for each reference variable. For allocating refer-
ence variables that are passed as arguments to constructors,
we have to be careful to avoid infinite recursion; for example,
a constructor Integer(Integer i) should be avoided. Our
algorithm uses a shortest-path algorithm to generate the
smallest possible initialization statements; see Appendix B.3
for details. With this approach, we can no longer guaran-
tee that P is a witness and our oracle may be susceptible to
false positives. In our evaluation, we show that this heuristic
substantially improves recall with no reduction in precision.

Primitive variables can be initialized arbitrarily for Theo-
rem 5.2 to hold, but this choice affects whether P is a witness
when s is precise. We initialize primitive variables using de-
fault values (0 for numeric variables and true for boolean
variables) that work well in practice.

Scheduling. Fourth, our algorithm determines the ordering
of the statements in the unit test. There are many possible
choices of statement ordering, which affect whether P is a
witness when s is precise. There are hard constraints on the
ordering (in particular, a variable must be defined before it
is used) and soft constraints (in particular, statements cor-
responding to edges wi → zi+1 for smaller i should occur

0

100,000

200,000

300,000

400,000

Ji
m

pl
e L

O
C

programs

Figure 8. Jimple lines of code of the apps in our benchmark.

earlier in P). Our scheduling algorithm produces an ordering
that satisfies the hard constraints while trying to satisfy as
many soft constraints as possible. It uses a greedy strategy,
i.e., it orders the statements sequentially from first to last,
choosing at each step the statement that satisfies all the hard
constraints and the most soft constraints; see Appendix B.4.

6 Evaluation
We implemented our specification inference algorithm in a
tool called Atlas and evaluated its ability to infer points-to
specifications for the Java standard library. First, we demon-
strate the usefulness of the inferred specifications for a static
information flow analysis, comparing to the existing, hand-
written specifications, even though many of these specifica-
tions were written specifically for apps in our benchmark.
Second, we evaluate the precision and recall of the inferred
specifications by comparing to ground truth specifications;
furthermore, we demonstrate the effectiveness of using spec-
ifications by showing that using ground truth specifications
significantly decreases false positives compared to analyzing
the actual library implementation. Finally, we analyze some
of the choices we made when designing our algorithm.

Benchmark. We base our evaluation on a benchmark of
46 Android apps, including a benchmark of 26 malicious
and benign apps given to us by a major security company.
The remaining apps were obtained as part of a DARPA pro-
gram on detecting Android malware. Overall, our benchmark
contains a mix of utility apps (e.g., flashlights, note taking
apps, battery monitors, wallpaper apps, etc.) and Android
games. We show the sizes of these apps in Jimple lines of
code (Jimple is the intermediate representation used by Soot)
in Figure 8. The malware in this benchmark consist primar-
ily of apps that leak sensitive user information, including
location, contacts, phone number, and SMS messages.

Information flow client. We use Atlas to infer specifica-
tions for a client static information flow analysis for Android
apps [7, 8, 16, 17]; in particular, it is based closely on [9].
This information flow client is specifically designed to find
Android malware exhibiting malicious behaviors such as the

Active Learning of Points-To Specifications PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

0.0

1.0

2.0

3.0

4.0

5.0

6.0
at

la
s v

s.
ha

nd
w

rit
te

n
(f

lo
w

s)

programs 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

at
la

s v
s.

tru
e

(p
oi

nt
s-

to
)

programs 0.0

1.0

2.0

3.0

4.0

5.0

6.0

im
pl

em
en

ta
tio

n v
s.

tru
e (

po
in

ts
-to

)

programs

(a) (b) (c)

Figure 9. In (a), we show the ratio of nontrivial information flows discovered using Atlas versus existing specifications.
We show the ratio of nontrivial points-to edges discovered using (b) Atlas versus ground truth and (c) ground truth versus
implementation. The ratios are sorted from highest to lowest for the 46 benchmark programs with nontrivial points-to edges.
Note that some values exceeded the graph scale; in (a), the largest value is 9.3, and in (c), the largest value is 11.7.

ones in our benchmark. The client is built on Chord [29] mod-
ified to use Soot [43] as a backend. It computes an Andersen-
style, 1-object-sensitive, flow- and path-insensitive points-to
analysis. It then computes an explicit information flow anal-
ysis [34] between manually annotated sources and sinks,
using the computed points-to sets to resolve flows through
the heap. Sources include location, contacts, and device in-
formation (e.g., the return value of getLocation), and sinks
include the Internet and SMS messages (e.g., the text pa-
rameter of sendTextMessage).

Existing specifications. Our tool omits analyzing the Java
standard library (version 7), and instead analyzes client code
and user-provided code fragment specifications. Over the
course of two years, we have handwritten several hundred
code fragment specifications for our static information flow
client for 90 classes in the Java standard library, including
manywritten specifically for our benchmark of Android apps.
In particular, these specifications were written as needed for
the apps that we analyzed. The most time consuming aspect
of developing the existing specifications was not writing
them (they total a few thousand lines of code), but identifying
which functions required specifications. Thus, they cover
many fewer functions than the handwritten ground truth
specifications described in Section 6.2, but are tailored to
finding information flows for apps in our benchmark.

Evaluating inferred specifications. To measure precision
and recall of our inferred specifications, we begin by convert-
ing inferred specifications Ŝ to code fragment specifications
using the algorithm described in Appendix A. Next, recall
our observation in Section 4 that the library implementation
can be soundly and precisely represented by a regular set
of path specifications S∗; we can similarly convert S∗ to a
set of code fragment specifications. Then, we count a code
fragment specification in Ŝ as a false positive if it does not
appear in S∗, and similarly count a code fragment specifica-
tion in S∗ as a false negative if it does not appear in Ŝ . For
code fragment specifications with multiple statements, we
count each statement fractionally. For example, consider the
sound and precise specification

class Box { // ground truth specification
Object f; // ghost field
Object set(Object ob) {

f = ob;
return ob;
return f; }

for the set method in the Box class (note that the statement
return ob is redundant, but it is generated by the algorithm
described in Appendix A). Then, the specification

Object set(Object ob) { // inferred specification
return ob; }

is missing two statements, so we count it as 2/3 of a false
negative. Each edge zi d wi in a path specification roughly
corresponds to a single statement in the generated code frag-
ments, so this heuristic intuitively counts false negative and
false positive path specifications weighted by their length.

Evaluating computed relations. To compare how using
two different sets of specifications impacts the static anal-
ysis, we examine the ratio of the sizes of the computed re-
lations. We preprocess these sizes in two ways: (i) we only
consider relations between program variables, and (ii) we
ignore trivial relations that can be computed even when us-
ing empty specifications (i.e., all library functions are treated
as no-ops with respect to heap effects). For example, for
points-to edges, we use the metric Rpt (S, S

′) = |Π(S)\Π(∅) |
|Π(S ′)\Π(∅) | ,

where Π(S) ⊆ V×O are the points-to edges computed using
specifications S , and Π(∅) ⊆ V × O are the trivial edges.

6.1 Comparison to Our Existing Specifications
We compare the quality of the inferred specifications to our
existing, handwritten specifications, in particular, aiming to
improve our information flow client. We focus on inferring
specifications for the commonly used packages java.lang,
java.util, java.io, java.nio, java.net, and java.math;
all the specifications we have manually written for the Java
standard library are for classes in these packages. We note
that the handwritten specifications for these packages are

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang

high-quality—we manually examined all of these handwrit-
ten specifications, and found that they were precise (i.e.,
there were no false positives compared to S∗).

Inferred specifications. We used a total of 12 million ran-
dom samples for phase one, which ran in 44.9 minutes. Phase
two of our algorithm ran in 31.0 minutes; the initial FSA had
10,969 states, and the final FSA had 6,855 states. We com-
pare our inferred specifications to the handwritten ones, i.e.,
measuring precision and recall compared to the handwritten
specifications rather than to S∗. Most strikingly, Atlas infers
5× as many specifications as the existing, handwritten ones—
Atlas infers specifications for 878 library functions, whereas
handwritten specifications cover only 159 library functions.
Furthermore, Atlas infers 89% of the handwritten specifi-
cations. We manually examined the 5 false negatives (i.e.,
handwritten specifications that Atlas fails to infer) for the
Collections API. Each one is due to a false negative in the unit
test synthesis. For example, the function subList(int,int)
in the List class requires a call of the form subList(0, 1)
to retrieve the first object in the list. Similarly, the function
set(int,Object) in the List class requires an object to
already be in the list or it raises an index out-of-bounds ex-
ception. The potential witnesses synthesized by Atlas fail
to exercise the relevant behaviors in these instances. Finally,
we manually examined more than 200 of the inferred spec-
ifications that were new; all of them were precise, which
is strong evidence that our tool has very few if any false
positives despite the heuristics we employ.

Information flows. To show how Atlas can improve upon
our existing handwritten specifications, we study the ratio
Rflow (Satlas, Shand) of information flows computed using At-
las versus using the existing, handwritten specifications. A
higher ratio (Rflow > 1) says that Atlas has higher recall,
and a lower ratio (Rflow < 1) says that handwritten specifi-
cations have higher recall. Figure 9 (a) shows R (Satlas, Shand).
Overall, Atlas finds 52% more information flows compared
to the handwritten specifications. The size of this gap is note-
worthy because we have already analyzed these apps over
the past few years—many of the existing specifications were
written specifically for this benchmark.

Finally, for the subset of apps in our benchmark given to
us by a major security company (27 of the 46) and for a sub-
set of information sources and sinks, the security company
provided us with ground truth information flows that they
considered to be malicious. In particular, they consider 86.5%
of the information flows newly identified using the inferred
specifications to be actual malicious behaviors.

6.2 Comparison to Ground Truth
Since the existing handwritten specifications are incomplete,
we additionally compare to the ground truth specifications S∗
to evaluate the precision and recall of our inferred specifica-
tions. Because of the manual effort required to write ground

truth specifications, we do so only for the 12 classes in the
Java Collections API that are most frequently used by our
benchmark (98.5% of calls to the Collections API target these
12 classes). We focus on the Java Collections API (i.e., classes
that implement the Collection or Map interfaces), because
it requires by far the most complex points-to specifications.

Inferred specifications. We examine the top 50 most fre-
quently called functions in our benchmark (in total, account-
ing for 95% of the function calls). The recall of our algorithm
is 97% (i.e., we inferred the ground truth specification for
97% of the 50 functions) and the precision is 100% (i.e., each
specification is as precise as the ground truth specification).
The false negatives occured for the same reasons as the false
negatives discussed in the previous section.

Points-to sets. To show the quality of the specifications in-
ferred by Atlas, we study the ratio Rpt (Satlas, S∗) of using
specifications inferred by Atlas to using ground truth spec-
ifications. We found that using Atlas does not compute a
single false positive points-to edge compared to using ground
truth specifications, i.e., the precision of Atlas is 100%. Thus,
1 − Rpt (Satlas, S∗) is the rate of false negative points-to edges
when using Atlas. Figure 9 (b) shows Rpt (Satlas, S∗) for each
app in our benchmark, sorted by magnitude. This ratio is
1.0 for almost half of the programs, i.e., for almost half the
programs, there are no false negatives. The median recall is
99.0%, and the average recall is 75.8%.

Benefits of using specifications. We show that using spec-
ifications can greatly improve the precision and soundness
of a static analysis. In particular, we compare the ground
truth specifications to the library implementation, i.e., the
class files comprising the actual implementation of the Col-
lections API (developed by Oracle). We compute the ratio
Rpt (Simpl, S∗) of analyzing the library implementation Simpl
to analyzing the ground truth specifications S∗. This ratio
measures the number of false positives due to analyzing the
library implementation instead of using ground truth spec-
ifications, since every points-to edge computed using the
implementation but not the ground truth specifications is a
false positive. Figure 9 (c) shows this ratio Rpt (Simpl, S∗). For
a third of programs, the false positive rate is more than 100%
(i.e., when Rpt ≥ 2), and for four programs, the false positive
rate is more than 300% (i.e., Rpt ≥ 4). The average false posi-
tive rate is 115.2%, and the median is 62.1%. Furthermore, for
two of the programs, there are false negatives (i.e., Rpt < 1)
due to unanalyzable calls to native code.

6.3 Design Choices
Finally, we compare the performance of different design
choices for our specification inference algorithm; in partic-
ular, we infer specifications for 733 library functions in the
Java Collections API using different design choices.

Active Learning of Points-To Specifications PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

class StrangeBox { // library
Object f;
void set(Object ob) {

f = ob;
f = null; }

Object get() { return f; } }

boolean test() { // program
Object in = new Object(); // o_in
Box box = new Box(); // o_box
Object out;
new Thread(() -> box.set(in)).execute();
new Thread(() -> out = box.get()).execute();
return in == out; }

Figure 10. Implementation of the library methods set, get, and clone in the StrangeBox class (left), and an example of a
concurrent program using these functions (right).

Positive examples: randomsampling vs.MCTS. We sam-
pled 2 million candidate path specifications using each al-
gorithm. Random sampling found 3,124 positive examples,
whereas MCTS found 10,153.

Object initialization: null vs. instantiation. Each of the
11,613 positive examples passed the unit test constructed
using instantiation, but only 7,721 passed when using null
initialization, i.e., instantiation finds 50% more specifications.
As discussed above, even with this heuristic, we estimate
that the false positive rate of our tool is zero.

6.4 Discussion
As we have shown, using ground truth substantially im-
proves precision and soundness compared to analyzing the
library implementation. For the one-time cost of writing
specifications, we can eliminate imprecision due to deep call
hierarchies and unsoundness due to native code, reflection,
etc. Such an approach is already used in production static
analysis systems to handle hard-to-analyze code [14]. How-
ever, manually writing specifications that are complete or
close to complete is impractical—ground truth specifications
for just 12 classes took more than a week to write and con-
tain 1,731 lines of code, but there are more than 4,000 classes
in the Java standard library. Typically, manual effort is fo-
cused on writing specifications for the most commonly used
functions, but this approach leaves a long tail of missing
specifications [9]. Moreover, handwritten specifications can
be error prone [18], and libraries grow over time—the Java 9
standard library contains more than 2,000 new classes—so
specifications must be maintained over time.

We have shown that Atlas automatically covers an order
of magnitude more of the Java Collections API compared to
the existing, handwritten specifications, and is furthermore
very close to ground truth. In addition, we have shown that
Atlas can substantially improve recall on an information
flow client compared to the handwritten specifications, de-
spite the fact that we have already written specifications
specifically for apps in this benchmark. Thus, Atlas sub-
stantially improves the practicality of using specifications
to model hard-to-analyze code in static analysis. We believe
that the remaining gap can be bridged by the human analyst,
e.g., by manually inspecting important specifications or by
using interactive specification inference [9, 48].

7 Discussion
Sources of imprecision. We briefly summarize the two po-
tential sources of imprecision in our specification inference
algorithm. First, in the second phase of our algorithm, impre-
cision can be introduced when we merge FSA states. In par-
ticular, such a merge can add infinitely many new path spec-
ifications to our set of inferred specifications; we only check
precision for specifications up to a bounded length. Thus,
newly added specifications that are longer than this bound
may be imprecise. In our evaluation, we observe that all the
added specifications are precise. Second, in both phases of
our analysis, the unit test synthesis algorithm uses a heuristic
where it initializes all parameters to non-null values. Thus,
the unit test synthesized for a given specification may pass
even if the specification is imprecise. In our evaluation, we
show that this approximation helps us find many more spec-
ifications without introducing any imprecision.

Sources of unsoundness. We briefly summarize the poten-
tial sources of unsoundness in our specification inference
algorithm, i.e., why it may miss correct specifications. At
a high level, there are three sources: (i) the restriction to
regular languages, (ii) incompleteness in the search (both
in the random samples in phase one, and in the language
inference algorithm), and (iii) shortcomings in the unit test
synthesis algorithm, i.e., the unit test synthesized for a given
specification fails even though the specification is precise.

In our evaluation, we found that unsoundness was entirely
due to reason (iii). We believe there are three reasons why a
synthesized unit test may fail to pass: (a) heuristics used for
scheduling, (b) heuristics used to initialize variables, and (c)
concurrency. First, in the scheduling step, there are multiple
possible schedules of the statements in the unit test, and our
synthesis algorithm uses heuristics to choose a good one (i.e.,
one that is likely to be a witness). Second, in the initialization
step, there are multiple possible ways to initialize variables in
the unit test; again, our algorithm uses heuristics to choose
a good one. As described in Section 6, in our evaluation, all
incorrectly rejected specifications were due to this second
reason (e.g., this reason explains our algorithm failed to infer
the specifications for subList and set).
The third possible reason is due to concurrency. So far,

we have implicitly assumed that code is executed sequen-
tially. In principle, because we are using a flow-insensitive

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang

points-to analysis, path specifications are sound with respect
to concurrency. However, it may be possible that a unit test
must include concurrent code to avoid incorrectly rejecting
a specification. For example, consider the specifications for
the class StrangeBox and the test program using this class
shown in Figure 10. Because our static analysis is flow insen-
sitive, it soundly determines that the argument of set may
be aliased with the return value of get. However, for any se-
quential client code, the statement f = ob in the setmethod
has no effects; thus, such code can never observe that ob and
rget may be aliased. In particular, the unit test synthesized
by our algorithm for the candidate path specification

sstrange = ob d thisset → thisget d rget.

would fail (thereby rejecting sstrange), even though sstrange is
precise. Still, a witness exists, i.e., the unit test shown in
Figure 10, which executes set and get concurrently.

Potential clients. We believe that the points-to summaries
inferred by our algorithm may be useful for a number of
clients beyond information flow analysis. In particular, our
approach is applicable to any static analysis where soundness
is highly desirable, but where state-of-the-art tools neverthe-
less sacrifice soundness in favor of reducing false positives.
This criterion is true for nearly all static analyses designed
to find bugs and security vulnerabilities, which frequently
depend heavily on points-to analysis, information flow anal-
ysis, and taint analysis. Even for the security-critical task
of finding malware, existing static analyses are typically un-
soundwith respect to features such as reflection, dynamically
loaded code, and native code [7, 16]. Using specifications not
only improves precision, but also reduces unsoundness due
to the use of these features in large libraries. If necessary,
the human security analyst can always add specifications to
improve the static analysis—for this use case, ATLAS sub-
stantially reduces human workload, e.g., in our evaluation,
ATLAS inferred 92% of handwritten specifications for the
Java Collections API. On the other hand, our approach is not
suitable for static analyses where soundness is crucial, such
as compiler optimizations.

8 Related Work
Inferring specifications for library code. Techniques have
been proposed for mining specifications for library code
from executions, e.g., taint specifications (i.e., whether taint
flows from the argument to the return value) [13], functional
specifications of library functions [19], specifications for
x86 instructions [18], and specifications for callback control
flow [20]. In contrast, points-to specifications that span mul-
tiple functions are more complex properties. One approach
is to infer points-to specifications using data gathered from
deployed instrumented apps [10]. In contrast, our algorithm
actively synthesizes unit tests that exercise the library code
and requires no instrumentation of deployed apps. Another

approach is to interact with a human analyst to infer specifi-
cations [1, 9, 48]. These approach guarantee soundness, but
still require substantial human effort, e.g., in [9], the analyst
may need to write more than a dozen points-to specifications
to analyze a single app. Finally, [2] uses a static approach to
infer callgraph specifications for library code.

Inferring program properties. There has been work infer-
ring program invariants from executions [30], including ap-
proaches using machine learning [35–37]. The most closely
related work is [11], which uses an active learning strategy
to infer program input grammars for blackbox code. In con-
trast, our goal is to infer points-to specifications for library
code. There has also been work on specifications encoding
desired properties of client programs (rather than encoding
behaviors of the library code), both using dynamic analy-
sis [8, 12, 24, 26, 32, 39] and using static analysis [4, 46].

Static points-to analysis. There is a large literature on
static points-to analysis [5, 15, 28, 38, 45], including formu-
lations based on set-constraints and context-free language
reachability [22, 23, 33, 42]. Recent work has focused on
improving context-sensitivity [25, 40, 41, 44, 47]. Using spec-
ifications in conjunction with these analyses can improve
precision, scalability, and even soundness. One alternative
is to use demand driven static analyses to avoid analyzing
the entire library code [42]; however, these approaches are
not designed to work with missing code, and furthermore do
not provide much benefit for demanding clients that require
analyzing a substantial fraction of the library code.

9 Conclusion
Specifications summarizing the points-to effects of library
code can be used to increase precision, recall, and scalability
of running a static points-to analysis on any client code. By
automatically inferring such specifications, Atlas fully au-
tomatically achieves all of these benefits without the typical
time-consuming and error-prone process of writing specifi-
cations by hand. We believe that Atlas is an important step
towards improving the usability of static analysis.

Acknowledgments
This material is based on research sponsored by DARPA under
agreement number FA84750-14-2-0006. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The
views and conclusions herein are those of the authors and should
not be interpreted as necessarily representing the official policies
or endorsements either expressed or implied of DARPA or the U.S.
Government. This work was also supported by NSF grant CCF-
1160904 and a Google Fellowship.

Active Learning of Points-To Specifications PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

References
[1] Aws Albarghouthi, Isil Dillig, and Arie Gurfinkel. 2016. Maximal

specification synthesis. In POPL.
[2] Karim Ali and Ondřej Lhoták. 2013. Averroes:Whole-program analysis

without the whole program. In ECOOP.
[3] Rajeev Alur, Pavol Černỳ, Parthasarathy Madhusudan, and Wonhong

Nam. 2005. Synthesis of interface specifications for Java classes. In
POPL.

[4] Glenn Ammons, Rastislav Bodík, and James R Larus. 2002. Mining
specifications. In POPL.

[5] Lars Ole Andersen. 1994. Program analysis and specialization for the
C programming language. Ph.D. Dissertation. University of Cophen-
hagen.

[6] Dana Angluin. 1987. Learning regular sets from queries and coun-
terexamples. Information and computation (1987).

[7] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. 2014. Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In PLDI.

[8] Osbert Bastani, Saswat Anand, and Alex Aiken. 2015. Interactively
verifying absence of explicit information flows in Android apps. In
OOPSLA.

[9] Osbert Bastani, Saswat Anand, and Alex Aiken. 2015. Specification
inference using context-free language reachability. In POPL.

[10] Osbert Bastani, Lazaro Clapp, Saswat Anand, Rahul Sharma, and Alex
Aiken. 2017. Eventually Sound Points-To Analysis with Missing Code.
arXiv preprint arXiv:1711.03436 (2017).

[11] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017.
Synthesizing program input grammars. In PLDI.

[12] Nels E Beckman and Aditya V Nori. 2011. Probabilistic, modular and
scalable inference of typestate specifications. In PLDI.

[13] Lazaro Clapp, Saswat Anand, and Alex Aiken. 2015. Modelgen: mining
explicit information flow specifications from concrete executions. In
ISSTA.

[14] Facebook. 2017. Adding models. (2017). http://fbinfer.com/docs/
adding-models.html

[15] Manuel Fähndrich, Jeffrey S Foster, Zhendong Su, and Alexander Aiken.
1998. Partial online cycle elimination in inclusion constraint graphs.
In PLDI.

[16] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy:
Semantics-based detection of android malware through static analysis.
In FSE.

[17] Adam P Fuchs, Avik Chaudhuri, and Jeffrey S Foster. 2009. Scandroid:
Automated security certification of android. (2009).

[18] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. 2016.
Stratified synthesis: automatically learning the x86-64 instruction set.
In PLDI.

[19] Stefan Heule, Manu Sridharan, and Satish Chandra. 2015. Mimic:
Computing models for opaque code. In FSE.

[20] Jinseong Jeon, Xiaokang Qiu, Jonathan Fetter-Degges, Jeffrey S Foster,
and Armando Solar-Lezama. 2016. Synthesizing framework models
for symbolic execution. In ICSE.

[21] Levente Kocsis and Csaba Szepesvári. 2006. Bandit based monte-carlo
planning. In ECML.

[22] John Kodumal and Alex Aiken. 2004. The set constraint/CFL reacha-
bility connection in practice. In PLDI.

[23] John Kodumal and Alexander Aiken. 2005. Banshee: A scalable
constraint-based analysis toolkit. In SAS.

[24] Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng, and Dawson
Engler. 2006. From uncertainty to belief: Inferring the specification
within. In OSDI.

[25] Percy Liang and Mayur Naik. 2011. Scaling abstraction refinement via
pruning. In PLDI.

[26] Benjamin Livshits, Aditya V Nori, Sriram K Rajamani, and Anindya
Banerjee. 2009. Merlin: specification inference for explicit information
flow problems. In PLDI.

[27] David Melski and Thomas Reps. 2000. Interconvertibility of a class of
set constraints and context-free-language reachability. TCS (2000).

[28] Ana Milanova, Atanas Rountev, and Barbara G Ryder. 2002. Parame-
terized object sensitivity for points-to and side-effect analyses for Java.
In ISSTA.

[29] Mayur Naik, Alex Aiken, and John Whaley. 2006. Effective static race
detection for Java. In PLDI.

[30] Jeremy W Nimmer and Michael D Ernst. 2002. Automatic generation
of program specifications. In ISSTA.

[31] José Oncina and Pedro García. 1992. Identifying regular languages in
polynomial time. Advances in Structural and Syntactic Pattern Recogni-
tion (1992).

[32] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan.
2007. Static specification inference using predicate mining. In PLDI.

[33] Thomas Reps. 1998. Program analysis via graph reachability. Informa-
tion and software technology (1998).

[34] Andrei Sabelfeld and Andrew C Myers. 2003. Language-based
information-flow security. IEEE Journal on selected areas in communi-
cations (2003).

[35] Rahul Sharma and Alex Aiken. 2014. From invariant checking to
invariant inference using randomized search. In CAV.

[36] Rahul Sharma, Aditya V Nori, and Alex Aiken. 2012. Interpolants as
classifiers. In CAV.

[37] Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken.
2013. Data-driven equivalence checking. In OOPSLA.

[38] Olin Shivers. 1991. Control-flow analysis of higher-order languages.
Ph.D. Dissertation. Citeseer.

[39] Sharon Shoham, Eran Yahav, Stephen Fink, and Marco Pistoia. 2007.
Static specification mining using automata-based abstractions. In IS-
STA.

[40] Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014.
Introspective analysis: context-sensitivity, across the board. In PLDI.

[41] Manu Sridharan and Rastislav Bodík. 2006. Refinement-based context-
sensitive points-to analysis for Java. In PLDI.

[42] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. 2005.
Demand-driven points-to analysis for Java. In OOPSLA.

[43] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick
Lam, and Vijay Sundaresan. 1999. Soot-a Java bytecode optimization
framework. In CASCON.

[44] John Whaley and Monica Lam. 2004. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In PLDI.

[45] Robert P Wilson and Monica S Lam. 1995. Efficient context-sensitive
pointer analysis for C programs. In PLDI.

[46] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and
Manuvir Das. 2006. Perracotta: mining temporal API rules from im-
perfect traces. In ICSE.

[47] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok
Yang. 2014. On abstraction refinement for program analyses in Datalog.
In PLDI.

[48] Haiyan Zhu, Thomas Dillig, and Isil Dillig. 2013. Automated infer-
ence of library specifications for source-sink property verification. In
APLAS.

http://fbinfer.com/docs/adding-models.html
http://fbinfer.com/docs/adding-models.html

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang

A Static Points-To Analysis with Regular
Sets of Path Specifications

In this section, we describe how to run our static points-
to analysis in conjunction with a possibly infinite regular
set S of path specifications (assumed to be represented as
an FSA, i.e., S = L (M̂)). In particular, our static analysis
converts S to a set S̃ of code fragment specifications, which
are replacements for the library code that have the same
points-to effects as encoded by S .

Given path specifications S , our static analysis constructs
equivalent code fragment specifications S̃ , i.e., G (P , S) =

G (P , S̃). In other words, S̃ has the same semantics as S with
respect to our static points-to analysis. One detail in our def-
inition of equivalence is that G (P , S̃) may contain additional
vertices corresponding to variables and abstract objects in
the code fragment specifications; we omit these extra vertices
and their relations at the end of the static analysis.

A.1 Converting a Single Path Specification
For intuition, we begin by describing how to convert a single
path specification

s = (z1 d w1 → ... → zk d wk)

into an equivalent set of code fragment specifications, where
Ai = Alias for each i and z1 is a parameter. Let the code
fragment specifications S̃ corresponding to s be:

m1 = {w1. f1 ← z1}

m2 = {t2 ← z2. f1, w2. f2 ← t2}

...

mk = {wk ← zk . fk−1},

where f1, ... fk−1 ∈ F are fresh fields and t2, ..., tk−1 are fresh
variables. Then:

Proposition A.1. We have G (P , S̃) = G (P , {s}) ∪ G
′
(P , S̃),

where G ′(P , S̃) consists of the edges in G (P , S̃) that refer to
vertices corresponding to variables and abstract objects in S̃ .

Proof. (sketch) First, we show that G (P , {s} ⊆ G (P , S̃). Sup-
pose that the premise of s holds, i.e., zi

Ai
−−→ wi+1 ∈ G for

each i . Then, the static analysis computes z1
Transfer
−−−−−−→ wk ∈

G (P , {s}); we need to show that z1
Transfer
−−−−−−→ wk ∈ G (P , S̃) as

well. Note that we have

z1
Store[f1]
−−−−−−→ w1

Alias
−−−−→ z2

Load[f1]
−−−−−−→ t2 ∈ G (P , S̃)

t2
Store[f2]
−−−−−−→ w2

Alias
−−−−→ z3

Load[f2]
−−−−−−→ t3 ∈ G (P , S̃)

...

tk−1
Store[fk−1]
−−−−−−−−→ wk−1

Alias
−−−−→ zk

Load[fk−1]
−−−−−−−−→ wk ∈ G (P , S̃).

(initial parameter)
qinit

z
−→ q

w
−−→ r ∈ M̂, z = pm , w ∈ {pm , rm }

w . fr ← z ∈m

(initial return)
qinit

z
−→ q

w
−−→ r ∈ M̂, z = rm , w ∈ {pm , rm }

t ← X (), z ← t , w . fr ← t ∈m

(final parameter)
p

z
−→ q

w
−−→ qfin ∈ M̂, z = pm , w = rm

w ← z. fp ∈m

(final return)
p

z
−→ q

w
−−→ qfin ∈ M̂, z = rm , w = rm

t ← X (), z. fp ← t , w ← t ∈m

(Ai = Alias)
p

z
−→ q

w
−−→ r ∈ M̂, z = pm , w = pm
t ← z. fp , w . fr ← t ∈m

(Ai = Transfer)
p

z
−→ q

w
−−→ r ∈ M̂, z = pm , w = rm

wX(), t ← z. fp , w . fr ← t ∈m

(Ai = Transfer)
p

z
−→ q

w
−−→ r ∈ M̂, {z,w } ⊆ {pm , rm }

z ← X (), t ← w . fr , z. fp ← t ∈m

(initial final)
qinit

z
−→ q

w
−−→ qfin ∈ M̂, {z,w } ⊆ {pm , rm }

w ← z ∈m

Figure 11. Rules for generating code fragment specifications
from path specifications defined by a finite state automaton
M̂ = (Q,Vpath,δ ,qinit,Qfin), where for simplicity we assume
M̂ has a single accept state qfin.

By induction, the static analysis computes z1
Transfer
−−−−−−→ ti ∈

G (P , S̃) for each i ∈ [k−1]. Thus, the static analysis computes
z1

Transfer
−−−−−−→ wk ∈ G (P , S̃), as claimed.
Next, we show the converse, i.e., that G (P , S̃) ⊆ G (P , S) ∪

G
′
(P , S̃). First, note that the only production with Store[f]

is

Transfer→ Transfer Store[f] Alias Load[f].

Since each fi is a fresh field, there is only one edge labeled
Store[fi] and only one edge labeled Load[fi]. Thus, this pro-
duction can only be triggered if (i) zi

Alias
−−−−→ wi ∈ G (P , S̃), and

(ii) for some vertex x , x
Transfer
−−−−−−→ ti ∈ G (P , S̃). If triggered,

the static analysis adds an edge x
Transfer
−−−−−−→ ti+1 toG (P , S̃). For

i = 1, the only vertices x satisfying the second condition are
x = z1 and x = t1. By induction, if wi

Alias
−−−−→ zi+1 ∈ G (P , S̃)

for each i , we have

z1
Transfer
−−−−−−→ ti ∈ G (P , S̃)

tj
Transfer
−−−−−−→ ti ∈ G (P , S̃)

for each j ≤ i . None of the ti are part of an Assign edge
except t1 and tk ; for the latter, the production Transfer →
Transfer Assign triggers and we get z1

Transfer
−−−−−−→ wk ∈ G (P , S̃).

This edge is the only one in G (P , S̃) that does not refer to
vertices extracted from the code fragments, so the claim
follows. □

Active Learning of Points-To Specifications PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Candidate (Regular Expression) Candidate (Finite State Automaton) Code Fragments

ob d thisset → thisget d rget qinit q1 qf q2 qfin
ob thisset thisget rget void set(Object ob) { f = ob; }

Object get() { return f; }

ob d thisset
(
→ thisclone d rclone

)∗
→ thisget d rget

qinit q1 qf q2 qfin

q3

ob thisset thisget

thisclone

rget

rclone

void set(Object ob) { f = ob; }
Object get() { return f; }
Box clone() {
Box b = new Box(); // ~o_clone
b.f = f;
return b; } }

ob d thisset → thisget d rget

+ ob d thisset → thisclone d rclone
→ thisget → rget

+ ob d thisset → thisclone d rclone
→ thisclone d rclone
→ thisget d rget

qinit q1 qf q2 qfin

q3

qg

q4

qh

ob thisset thisget

thisclone

rget

rclone
thisget

thisclone

rclone
thisget

void set(Object ob) { f = ob; }
Object get() {

return f;
return g;
return h; }

Box clone() {
Box b = new Box(); // ~o_clone
b.g = f;
b.h = g;
return b; } }

Figure 12. Examples of candidate code fragment specifications (left column), and the equivalent path specifications as a
regular expression (middle column) and as a finite state automaton (right column).

A.2 Converting a Regular Set of Path Specifications
Our construction generalizes straightforwardly to construct-
ing code fragment specifications from M̂ . For each state
q ∈ Q , we introduce a fresh field fq ∈ F . Intuitively, tran-
sitions into q correspond to stores into fq , and transitions
coming out of q correspond to loads into fq . In particular, we
include statements inm according to the rules in Figure 11.

The following guarantee follows similarly to the proof of
Proposition A.1:

Proposition A.2. We have G (P , S̃) = G (P , S) ∪ G
′
(P , S̃),

where G ′(P , S̃) is defined as before.

In Figure 12, we show examples of path specifications (first
column), the corresponding FSA (middle column), and the
generated code fragment specifications. For example, in the
second line, the transitions

qinit
ob
−−→ q1

thisset
−−−−−−→ q2

thisget
−−−−−−→ q3

rget
−−−→ qfin

generate the specifications for set (the first two transitions,
with field f = fq2) and get (the last two transitions), and the
self-loop

q2
thisclone
−−−−−−−→ q6

rclone
−−−−→ q2

generates the specification for clone.

B Unit Test Synthesis Algorithm
In this section, we describe our algorithm for synthesizing a
unit test to check correctness of a candidate path specifica-
tion. As a running example, Figure 13 shows how our unit
test synthesis algorithm synthesizes a unit test for the candi-
date path specification sbox for the Box class. In this example,
the synthesized unit test contains exactly the external edges
in the candidate’s premise:

thisset
Alias
−−−−→ thisclone, rclone

Transfer
−−−−−−→ thisset.

Upon executing this unit test, the candidate’s conclusion

in
Transfer
−−−−−−→ out

holds dynamically. Therefore, this unit test witnesses the
correctness of the given candidate.

Our algorithm first constructs a skeleton containing a call
to each function in the specification. Then, it (i) fills in holes
with variable names, (ii) initializes variables, and (iii) orders
(or schedules) statements. The last step also adds a statement
returning whether the candidate’s conclusion holds.
There are certain constraints on the choices that ensure

that the synthesized unit test is a valid witness. Even with
these constraints, a number of additional choices remain.
Each choice produces a valid unit test, but some of these unit

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang

tests may not pass even if the candidate specification is cor-
rect. We describe the choices made by our algorithm, which
empirically finds almost all correct candidate specifications.

B.1 Skeleton Construction
To witness correctness of the candidate path specification,
the synthesized unit test must exhibit exactly the external
edges in its premise. In particular, the unit test must include
a call to each function in the candidate. Our algorithm con-
structs a skeleton consisting of these calls, for example, the
skeleton on the second step of Figure 13. A symbol ??, called
a hole, is included for each parameter and return value of
each function call, and must be filled in with a variable name.

B.2 Filling Holes
The external edges in the candidate specification impose
constraints on the arguments that should be used in each
function call. In particular, the synthesized unit test must
exhibit every behavior encoded by the external edges in the
candidate specification:

• Alias: For an aliasing edge pmi

Alias
−−−−→ pmi+1 , the algo-

rithm has to ensure that the arguments pmi (passed to
mi) and pmi+1 (passed tomi+1) are aliased.

• Transfer: For a transfer edge rmi

Transfer
−−−−−−→ pmi+1 , the

algorithm has to use the return value of mi as the
argument passed tomi+1 (and similarly for backwards

transfer edges pmi

Transfer
−−−−−−→ rmi+1).

For example, the holes in the skeleton in Figure 13 are filled
so that the following premises are satisfied:

thisset
Alias
−−−−→ thisclone, rclone

Transfer
−−−−−−→ thisget.

One issue is that internal edges may be self-loops, in which
case more than two parameters may need to be aliased. For
example, consider the following candidate:

ob d thisset → thisclone d thisid

→ thisget d rget. (6)

For the unit test for this candidate, the three calls to set,
clone, and set must all share the same receiver:
box.set(in);
Box boxClone = box.clone();
Object out = box.get();

Our algorithm partitions the holes into subsets that must
be aliased—since aliasing is a transitive relation, every hole in
a subset has to be aliased with every other hole in that subset.
To do so, the algorithm constructs an undirected graphwhere
the vertices are the holes, and an edge (h,h′) ∈ E connects
two holes h and h′ in the following cases:
• There is an external edgewmi → zmi+1 in the candidate
specification, whereh is the hole corresponding towmi

and h′ is the hole corresponding to zmi+1 .

ob d thisset → thisclone d rclone
→ thisget d rget

skeleton
??.set(??);
?? = ??.clone();
?? = ??.get(??);

fill holes
box.set(in);
Box boxClone = box.clone();
Object out = boxClone.get();

initialization
& scheduling

Object in = new Object();
Box box = new Box()
box.set(in);
Box boxClone = box.clone();
Object out = boxClone.get();
return in == out;

Figure 13. Steps in the unit test synthesis algorithm (right)
for a candidate path specification for Box (left). Code added
at each step is highlighted in blue. Scheduling is shown in
the same line as initialization—it chooses the final order of
the statements. This figure is a duplicate of Figure 7, and is
included here for clarity.

• There is an internal edge pmi d pmi in the candidate
specification, where h is the hole corresponding to the
pmi on the left-hand side and h′ is the hole correspond-
ing to the pmi on the right-hand side.

Then, our algorithm computes the connected components
in this graph. For each connected component, the algorithm
chooses a fresh variable name, and each hole in that con-
nected component is filled with this variable name.

For example, for the candidate in Figure 13, our algorithm
computes the following partitions:

{ob}, {thisset, thisclone}, {rclone, thisget}, {rget},

and fills the corresponding holes with the variables names

in, box, boxClone, out,

respectively. Similarly, for (6), we compute partitions

{ob}, {thisset, thisclone, thisget}, {rclone}, {rget}.

The variable names are the same as those chosen in Figure 13.

B.3 Variable Initialization
We describe primitive variables and reference variables sep-
arately. For the case of initializing reference variables, we
describe two different strategies:
• Null:Whenever possible, initialize to null.
• Instantiation: Whenever possible, use constructor
calls.

The first strategy ensures that the unit test does not exhibit
additional transfer and alias edges beyond those in the can-
didate specification. The second strategy may produce a unit
test that does not witness correctness, since it may include

Active Learning of Points-To Specifications PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

spurious edges not in the premise of the candidate. However,
certain functions require that some of their arguments are
not null; for example, the put function in the Hashtable
class. We show empirically that the second variant identifies
a number of candidates missed by the first, and that these
additional specifications are in fact correct.

Primitive initialization. We initialize all primitive vari-
ables with 0 (except characters, which are initialized as ’a’).
For example, consider the specifications for the List class
class List { // specifications

void add(Object ob) { ... }
Object get(int index) { ... } }

and consider the candidate path specification

slist = ob d thisadd → thisget d rget,

which says that if we add an object ob to a list, and then
retrieve an object from the same list, then the retrieved object
may equal ob. By initializing primitive values to 0, the unit
test we obtain to check slist is
boolean test() { // program

Object in = new Object(); // o_in
List list = new List(); // o_list
list.add(in);
Object out = list.get(0);
return in == out; }

which correctly returns true. In our experience, the only
important choice of primitive value is the index parameter
passed to functions used to retrieve data from collections,
e.g., the get method in the List class. Choosing the index
= 0 retrieves the single object the unit test previously added
to the collection. Testing more primitive values is possible
but has largely been unnecessary.

Reference initialization using null. Reference variables
for which aliasing relations hold must be instantiated (unless
they have already been initialized as the return value of a
function call). Any other reference variable is initialized to
null. For example, in Figure 13, the variables box and out
must be instantiated, but boxClone has already been initial-
ized as the return value of clone. In general, the unit test
we synthesize calls the constructor with the fewest number
of arguments; primitive arguments are initialized as before,
and reference arguments are initialized using null.

Reference initialization using instantiation. In this ap-
proach, we have to synthesize constructor calls when empty
constructors are unavailable. For example, if the only con-
structor for the Box class was Box(Object val), then we
would have to initialize an object of type Object as well:
Box box = new Box(new Object());

We encode the problem of synthesizing a valid constructor
call as a directed hypergraph reachability problem. A directed
hypergraph is a pair G = (V ,E), where V is a set of vertices,
and edges e ∈ E have the form e = (h,B), where h ∈ V is the

head of the edge, and B ⊆ V is its body. For our purposes,
B is a list rather than a set, and may contain a single vertex
multiple times.
We construct a hypergraph G = (V ,E) where vertices

correspond to classes, and edges to constructors:
• Vertices: A vertex v ∈ V is a library class.
• Edges: An edge e = (h,B) ∈ E is a constructor, where
h is the class of the constructed object and B is the list
of classes of the constructor parameters.

For convenience, we also include primitive types as vertices
in G, along with an edge representing the “empty construc-
tor”, which returns the initialization value described above.

Now, a pathT in the hypergraphG = (V ,E) is a finite tree
with root vT ∈ V (called the root of the path), such that for
each vertexv ∈ T ,v and its (ordered) children [v1, ...,vk] are
an edge eT ,v = (v, [v1, ...,vk]) ∈ E. Note that for each leaf v
of T , there must necessarily be an edge (v, []) ∈ E, since v
has no children. Also, we say a vertex v ∈ V is reachable is
there exists a path with root v .

In our setting, a path in our hypergraphG corresponds to
a call to a constructor—for each vertex X ∈ T with children
X1, ..., Xk, we recursively define the constructor

CT (X) = new X(CT (X1), ..., CT (Xk)).

Therefore, devising a constructor call to instantiate an object
of type X amounts to computing a path inG with root X. Paths
to every reachable vertex can be efficiently computed using a
standard dynamic programming algorithm. Furthermore, we
can add a weightwe to each edge in e ∈ E. Then, the shortest
path (i.e., the path minimizing the total weight

∑
v ∈T eT ,v)

can similarly be efficiently computed. We choose all weights
we = 1 for each e ∈ E.

For example, suppose that the Box class has a single con-
structor Box(Object val). Then, our algorithm constructs
a hypergraph with two vertices and two edges:

V = {Object, Box}

E = {(Object, []), (Box, [Object])}.

Then, the path corresponding to Box is the tree T = Box
Object ,

which corresponds to the constructor call
new Box(new Object())

used to instantiate variables of type Box.
As with initializing primitive variables, multiple choices

of constructor calls could be used, but selecting a single
constructor suffices has been sufficient so far.

B.4 Statement Scheduling
Note that the unit test now contains both function call state-
ments as well as variable initialization statements added in
the previous step. All the added variable initialization state-
ments can be executed first, so it suffices to schedule the
function call statements.

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang

There are two kinds of constraints on scheduling function
calls. First, consider edges of the form

rmi

Transfer
−−−−−−→ pmi+1

in the premise of the candidate path specification; they im-
pose hard constraints on the schedule, since mi must be
called beforemi+1 so its return value can be transfered to

pmi+1 (edges of the form pmi

Transfer
−−−−−−→ rmi+1 impose hard

constraints as well). For example, in Figure 13, the edge
rclone

Transfer
−−−−−−→ thisget imposes the hard constraint that the

call to clone must be scheduled before the call to get. Then,
any of the following orderings is permitted:

[set, clone, get], [clone, set, get], [clone, get, set].

We use soft constraints to choose among schedules sat-
isfying the hard constraints. Empirically, we observe that
the order of the functions in the specification is typically
the same as the order in which they must be called for the
conclusion to be exhibited dynamically. More precisely, func-
tionmi should be called before functionmj whenever i < j.
In our example, the soft constraint says that set should be
scheduled before both clone and get.

Our algorithm iteratively constructs a schedule [i1, ..., ik]
of the function calls F = {m1, ...,mk }. At iteration t , it selects
the tth function call mit from the remaining calls Ft ⊆ F .
It does so greedily, by identifying the choices Gt ⊆ Ft that
satisfy the hard constraints, and then selectingmit ∈ Gt to be
optimal according to the soft constraints. These conditions
uniquely specifymit , since our soft constraints are a total
ordering.

Our algorithm keeps track of the remaining statements Ft
as a directed acyclic graph (DAG), which includes an edge
mi →mj for each hard constraint thatmi should be sched-
uled beforemj . Then,Gt is the set of roots of Ft . Furthermore,
our algorithm maintains Gt as a priority queue, where the
priority ofmi is i (the highest priority element in Gt is the
element with the smallest index i).
We initialize F1 = F ; then, G1 is the subset of vertices in

F1 without a parent. Updates are computed as follows:

1. The highest priority function callmit inGt is removed
from both Gt and from Ft .

2. For each childmi ofmit in Ft , we determine ifmi is
now a root of Ft (i.e., none of its parents are in Ft).

3. For every childmi that is now a root of Ft , we addmi
to Gt with priority i .

In Figure 13, F1 has three vertices set (priority 1), clone
(priority 2), and get (priority 3), and a single edge clone→
get, andG1 includes set and clone. Therefore, the selected
schedule is [set, clone, get].

C Proof of Equivalence Theorem
We prove Theorem 4.2, relegating the proof of technical
lemmas to Appendix D. To simplify the proof, we assume
the following:

Assumption C.1. Let Flib be fields accessed by the library
and Fprog be fields accessed by the program, and let the
shared fields be Fshare = Flib ∩ Fprog. We assume Fshare = ∅.

We can remove this assumption by having the static anal-
ysis treat accesses to library fields in the program as calls to
getter and setter library functions.

C.1 Converting the Library Implementation to Path
Specifications

First, we describe how to convert the library implementation
into a set S of transfer and proxy object specifications. A
specification of the form

z1 d w1 → ... → zk d wk .

is included in S if there exist paths

z1
β1
99K w1, ..., zk

βk
99K wk

such that A
∗
=⇒ β1α̃1...α̃k−1βk in Cpt, where

A =



Transfer if z1 = pm1

Alias if z1 = rm1

and

α̃i =




Assign ifwi = pmi and zi+1 = rmi+1

Assign ifwi = rmi and zi+1 = pmi+1

New New ifwi = pmi and zi+1 = pmi+1 .

Then, we prove that the conclusion of Theorem 4.2 holds for
S constructed with this algorithm.

C.2 Proof Overview
Let G denote the points-to sets computed by running the
static analysis with the library implementation available,
andG (S) denote the points-to sets computed by running the
static analysis with the path specifications S . We have to
prove that G = G (S); the direction G (S) ⊆ G follows easily,
since a path specification s is included in S exactly when
the library implementation would imply the same logical
formula as the semantics of s .
The challenging direction is to show that S is sound, i.e.,

G ⊆ G (S).

For simplicity, we focus on points-to edges o
FlowsTo
−−−−−−→ x ; the

alias and transfer relations follow similarly. Suppose that
o

FlowsTo
−−−−−−→ y ∈ G (S); then, there must exist a path o

New
−−−→

Active Learning of Points-To Specifications PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

x
α
99K y, where Transfer

∗
=⇒ α . This path passes into and out

of library functions, leading to a decomposition

x
α0
99K z1

β1
99K w1

α1
99K ...

βk
99K wk

αk
999K y, (7)

where α = α0β1α1...βkαk . This decomposition suggests that
the following path specification may be applied to derive
x

Transfer
−−−−−−→ y:

z1 d w1 → ... → zk d wk . (8)

At a high level, our proof has two parts. First, we prove the
case where the segments of α in the program do not contain
field accesses, i.e., α ∈ (Σfree ∪ Σlib)

∗, where

Σfree = {Assign,Assign,New,New}

Σprog = {Store[f], Load[f], Store[f], Load[f] | f ∈ Fprog}

Σlib = {Store[f], Load[f], Store[f], Load[f] | f ∈ Flib}.

Second, we show how “nesting” of fields allows us to reduce
the general case to the case α ∈ (Σfree ∪ Σlib ∪ Σprog)

∗. In
particular, by Assumption C.1, the library field accesses and
program field accesses do not match one another. As previ-
ously discussed, this assumption can be enforced by a purely
syntactic program transformation where accesses to library
fields in the program are converted into calls to getter and
setter functions.
Consider a path of the form (7) such that α ∈ (Σfree ∪

Σlib)
∗. We need to show that in this case, we derive the edge

x
Transfer
−−−−−−→ y ∈ G (S), where S is constructed as in Section C.1.

Our proof of this claim relies on two results. The first result
says that for such a path, the conclusion of (8) holds when
eachwi is connected to zi+1 by αi :

Proposition C.2. For any path of the form (7) such that
α ∈ (Σfree∪Σlib)

∗ we have (i) the casewi = ri and zi+1 = ri+1
cannot happen, and (ii) Transfer

∗
=⇒ β1α1β2...αk−1βk .

As a consequence of this result, we know that the path
specification (8) is contained in S . The second result says
that the premise of (8) holds for our case:

Proposition C.3. For any path of the form (8) such that
α ∈ (Σfree ∪ Σlib)

∗, we have

Ai
∗
=⇒ αi (∀i ∈ [k − 1])

Ai
∗
=⇒ αi (∀i ∈ {0,k }).

Therefore, we can conclude that when running the static
analysis using path specifications, we derive the conclusion
of the path specification (8), i.e., z1

Transfer
−−−−−−→ wk ∈ G (S). In

summary, we have the following result:

TheoremC.4. Theorem 4.2 holds for any α ∈ (Σfree∪Σlib)
∗.

Proof. Consider an edge x
Transfer
−−−−−−→ y ∈ G derived by the

static analysis using the library implementation. We claim

that this edge is derived by the static analysis when using
path specifications, i.e., x

Transfer
−−−−−−→ y ∈ G (S). By Proposi-

tion C.2, we conclude that (8) is in S . Furthermore, by Propo-
sition C.3, the premise of (8) holds, so the static analysis
derives its conclusion, i.e., z1

Transfer
−−−−−−→ wk ∈ G (S). Therefore,

we have

x
Transfer
−−−−−−→ z1

Transfer
−−−−−−→ wk

Transfer
−−−−−−→ y ∈ G (S),

so the static analysis derives x
Transfer
−−−−−−→ y ∈ G (S), as claimed.

Now, we know that any points-to edge o
FlowsTo
−−−−−−→ y ∈ G

has the form o
New
−−−→ x

Transfer
−−−−−−→ y. Since we have shown

that x
Transfer
−−−−−−→ y ∈ G (S), the static analysis also derives

o
FlowsTo
−−−−−−→ y ∈ G (S), so the result follows. □

In the remainder of the section, we introduce the technical
machinery that enables us to reason about “equivalence” of
the semantics of different sequences of statements. Then, we
describe how we prove Propositions C.2 & C.3. Finally, we
reduce Theorem 4.2 to Theorem C.4.

C.3 Equivalent Semantics
Proving Propositions C.2 & C.3 requires reasoning about the
equivalence of the semantics of sequences of statements in P .
For example, to prove Proposition C.2, we show that each αi
is “equivalent” to α̃i . Intuitively, for α̃i = Assign, we show
that the sequence of statements represented by αi exhibits
the same semantics as a single assignment. For example,
y ← x , z ← y has the same points-to effects as z ← x
(assuming y is temporary). We leverage the correspondence
established by formulating points-to analysis as context-free
language reachability:

sequence of statements = sequence α ∈ Σ∗.

For example, the first sequence of statements above corre-
sponds to (Assign Assign), and the second to Assign.

Using this correspondence, we can reduce reasoning about
sequences of statements with equivalent semantics to study-
ing equivalence classes of strings α ∈ Σ∗:

equivalent sequences
of statements =

equivalence classes
[α] ⊆ Σ∗

.

In particular, α , β ∈ Σ∗ are equivalent if

γαδ ∈ L (Cpt) ⇔ γ βδ ∈ L (Cpt) (∀γ ,δ ∈ Σ∗). (9)

In other words, α can be used interchangeably with β in
any string without affecting whether the string is contained
in L (Cpt). We use [α] = {β ∈ Σ∗ | α ∼ β } to denote the
equivalence class of α ∈ Σ∗. Then, [α] = [β] if for any two
paths

o
γ
99K v

α
99K w

δ
99K x , o

γ
99K v

β
99K w

δ
99K x ,

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang

the first results in x ↪→ o if and only if the second does. For
example, [Assign Assign] = [Assign].
Then, equivalence is compatible with sequencing:

Lemma C.5. If [α] = [α ′] and [β] = [β ′], then [αβ] =
[α ′β ′].

Proof. By definition, γαβδ ⇔ γα ′βδ ⇔ γα ′β ′δ . □

In particular, Lemma C.5 shows that sequencing is well-
defined for equivalence classes:

[α] [β] = [αβ], (10)

since different choices α ′ ∈ [α] and β ′ ∈ [β] yield the same
equivalence class, i.e., [αβ] = [α ′β ′]. Abstractly, Σ∗ is a semi-
group, with sequencing as the semigroup operation; then,
Lemma C.5 shows the equivalence relation is compatible
with the semigroup operation, so the quotient Σ/ ∼ is a
semigroup with semigroup operation (10).

For convenience, we let ϕ denote an element of the equiv-
alence class of strings such that

for all γ ,δ ∈ Σ∗, γϕδ < L (Cpt). (11)

In other words, [ϕ] describes sequences of statements that
can never be completed to a valid flows-to path.

C.4 Proofs of Propositions C.2 & C.3
Now, we describe how to prove that under the conditions
of Proposition C.2, [αi] = [α̃i], which suffices to prove the
proposition. We focus on the case α̃i = Assign; the other
cases are similar. We need the following technical lemma
(we give a proof in Appendix D.1):

Lemma C.6. For any α ∈ Σ∗free, we have

[Assign] [α] [Assign] ∈ {[Assign], [ϕ]}.

With this lemma, since α̃i = Assign, wmi = rmi and
zmi+1 = pmi , so the pathwmi

αi
99K zmi+1 has form

wmi = rmi

Assign
−−−−−→ yi

α ′i
99K xi+1

Assign
−−−−−→ pmi+1 = zmi+1 ,

where αi = Assign α ′i Assign. By Lemma C.6,

[αi] = [Assign] [α ′i] [Assign] ∈ {[Assign], [ϕ]}.

Since (New α) ∈ L (Cpt), we cannot have [αi] = [ϕ], so

[αi] = [Assign] = [α̃i],

as claimed. We have also proven the claim in Proposition C.3
that Ai

∗
=⇒ αi (with Ai = Transfer) also follows. The other

claims in Propositions C.2 & C.3 follow similarly. □

C.5 Reduction of Theorem 4.2 to Theorem C.4
To handle field accesses, we use the fact that pairs of termi-
nals (Store[f], Load[f]) and (Load[f], Store[f]) in strings
α ∈ L (Cpt) are matching. Therefore, can identify an inner-
most nested pair (σ ,τ) such that the string β between σ
and τ contains no field accesses, i.e., β ∈ Σfree. Furthermore,
by Assumption C.1, library field accesses and program field
accesses do not match one another. In particular, the set of
matching program field accesses is

∆prog =
⋃

f ∈Fprog

{(Store[f], Load[f]), (Load[f], Store[f])}.

Lemma C.7. For any α ∈ L (Cpt), either α ∈ (Σfree ∪ Σlib)
∗,

or there exists a pair of terminals (σ ,τ) ∈ ∆prog such that
α = γσβτδ , where γ ,δ ∈ Σ∗ and β ∈ (Σfree ∪ Σlib)

∗.

The next step is to characterize [σβτ]:

Lemma C.8. For any (σ ,τ) ∈ ∆prog and β ∈ (Σfree ∪ Σlib)
∗,

[σ] [β] [τ] ∈ {[Assign], [ϕ]}.

Finally, β must be an aliasing relation:

Lemma C.9. For any β ∈ Σ∗,

[Store[f]] [β] [Load[f]] = [Assign]⇒ [β] = [New New]

[Load[f]] [β] [Store[f]] = [Assign]⇒ [β] = [New New].

Now, if α ∈ Σ∗free, we are done. Otherwise, putting the
three lemmas together, we perform the following procedure:

1. By LemmaC.7, we canwriteα = γσβτδ , where (σ ,τ) ∈
∆prog and β ∈ (Σfree ∪ Σlib)

∗, such that

y
γ
99K v

σ
−→ w

β
99K t

τ
−→ u

δ
99K x .

2. By Lemma C.8, [σ] [β] [τ] = [Assign].
3. By Lemma C.9, [β] = [New New].
4. By Theorem 4.2, we havew

Alias
−−−−→ t ∈ G (S̃); therefore,

v
Transfer
999999K u ∈ G (S̃) as well.

5. Recursively apply the procedure to α ′ = γ Assign δ .

This procedure must terminate, since α has finitely many
pairs of store and load statements. Theorem 4.2 follows. □

D Proof of Technical Lemmas
We prove the technical lemmas used in Appendix C.

D.1 Proof of Lemma C.6
We first show the following lemma, which completely char-
acterizes the subgroupoid of elements Σ∗free ⊆ Σ∗:

Active Learning of Points-To Specifications PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Lemma D.1. We have

[Assign] [Assign] = [Assign]

[Assign] [Assign] = [ϕ]

[Assign] [Assign] = [ϕ]

[Assign] [Assign] = [Assign]

[Assign] [New New] = [ϕ]

[New New] [Assign] = [New New]

[Assign] [New New] = [Assign]

[New New] [Assign] = [ϕ]

[New New] [New New] = [ϕ].

Proof. We show the first relation; the others follow sim-
ilarly. First, we show that if γ Assign δ ∈ L (Cpt), then
γ Assign Assignδ ∈ L (Cpt). There must exist a derivation

FlowsTo⇒ ... ⇒ Transfer uδ
⇒ Transfer Assign uδ
⇒ ...

⇒ γ Assign δ

since the only production in Cpt containing the terminal
symbol Assign is Transfer → Transfer Assign. Therefore,
the following derivation also exists:

FlowsTo⇒ ... ⇒ Transfer δ
⇒ Transfer Assign uδ
⇒ Transfer Assign Assign uδ
⇒ ...

⇒ γ Assign Assign δ ,

i.e., γ Assign Assign δ ∈ L (Cpt). By a similar argument, it
follows that ifγ AssignAssign δ ∈ L (Cpt), thenγ Assign δ ∈
L (Cpt), so [Assign] [Assign] = [Assign]. □

It follows directly that if α ∈ Σ∗free, then

[α] ∈ {[ϕ], [ϵ], [Assign], [Assign], [New New]}.

In particular, for α ′ ∈ Σ∗free, [Assign] [α
′] ∈ {[Assign], [ϕ]},

so the lemma follows by taking α ′ = α Assign. □

D.2 Proof of Lemma C.7
If we replace the terminal symbols σ ∈ Σfree with ϵ in
Cpt, then Cpt is a parentheses matching grammar where
each “open parentheses” Store[f] (resp., Load[f]) must be
matched with a corresponding “closed parentheses” Load[f]
(resp., Store[f]). Also, by Assumption C.1, Σlib ∩ Σprog = ∅.

Now, we prove by induction on the length of α . The base
case α = ϵ is clear. If α ∈ Σ∗ does not contain a pair of
matched parentheses (Store[f], Load[f]) ∈ Σ2

prog, then α ∈
(Σfree ∪ Σlib)

∗, so we are done. Otherwise, for any such pair
of matched parentheses, we can express α = γσα ′τδ . By

induction, the lemma holds for α ′, so we can write α =
γ ′σ ′β ′τ ′δ ′ as in the lemma. Therefore, we have

α = (γσγ ′)σ ′β ′(τ ′δ ′τδ),

so the claim follows. □

D.3 Proof of Lemma C.8
We show the case (σ ,τ) = (Store[f], Load[f]), where f ∈

Fprog; the case (σ ,τ) = (Load[f], Store[f]) is similar. First,
suppose that γσβτδ ∈ L (Cpt). Then, there must exist a
derivation of form

FlowsTo⇒ ... ⇒ uγ Transfer uδ
⇒ uγ Transfer σ Alias τ uδ
⇒ ...

⇒ γσβτδ ,

so the following derivation exists:

FlowsTo⇒ ... ⇒ uγ Transfer uδ
⇒ uγ Transfer Assign uδ
⇒ ...

⇒ γ Assign δ .

The converse follows similarly, so the claim follows. □

D.4 Proof of Lemma C.9
We show two preliminary lemmas.

Lemma D.2. We have

[Store[f]] [New New] [Load[f]] = [Assign]

[Load[f]] [New New] [Store[f]] = [Assign].

Proof. Suppose thatγ Store[f] NewNewLoad[f]δ ∈ L (Cpt).
Then, we must have derivation

FlowsTo⇒ ... ⇒ uγ Transfer uδ
⇒ uγ Store[f] Alias Load[f] uδ
⇒ ...

⇒ γ Store[f] α Load[f] δ ,

so we also have derivation

FlowsTo⇒ ... ⇒ uγ Transfer uδ
⇒ uγ Assign uδ
⇒ ...

⇒ γ Assign Load[f] δ .

Thus, γ Assign δ ∈ L (Cpt). The converse follows similarly,
as does the second claim. □

Lemma D.3. For any β ∈ Σ∗ \ {ϵ }, we have

[β] = [Assign]⇔ β ∈ L (Cpt,Transfer)

[β] = [Assign]⇔ β ∈ L (Cpt,Transfer)

[β] = [New New]⇔ β ∈ L (Cpt,Alias).

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang

Proof. Wefirst show the forward implication. If [β] = [Assign],
then New Assign ∈ L (Cpt), so New β ∈ L (Cpt). Therefore,
there must exist a derivation

FlowsTo⇒ New Transfer ⇒ ... ⇒ New β ,

so β ∈ L (Cpt,Transfer). The other two cases follow sim-
ilarly. Now, we show the backward implication. Suppose
that β ∈ L (Cpt,Transfer). We prove by structural induction
on the derivation of β from Transfer. Since β , ϵ , β can-
not have been produced by Transfer ⇒ ϵ . If β is produced
by Transfer → Transfer Assign, then β = β ′Assign, where
β ′ ∈ L (Cpt,Transfer). By induction, [β ′] = [Assign], so

[β] = [β ′] [Assign] = [Assign] [Assign] = [Assign],

where the last step follows from Lemma D.1. Next, if β is
produced using the production

Transfer→ Transfer Store[f] Alias Load[f],

then β = β ′ Store[f] β ′′ Load[f], where β ′ ∈ L (Cpt,Transfer)
and β ′′ ∈ L (Cpt,Alias). By induction, [β ′] = [Assign] and
[β ′′] = [New New], so

β = [β ′] [Store[f]] [β ′′] [Load[f]]

= [Assign] [Store[f]] [New New] [Load[f]]
= [Assign],

where the last step follows from Lemma D.2 and Lemma D.1.
The remaining cases follow similarly. □

Now, suppose that [Store[f]] [β] [Load[f]] = [Assign].
Since

New Store[f] New New Load[f] ∈ L (Cpt),

we have

New Store[f] β Load[f] ∈ L (Cpt),

so the following derivation must exist:

FlowsTo⇒ New Store[f] Alias Load[f]
⇒ ...

⇒ New Store[f] β Load[f],

i.e., β ∈ L (Cpt,Alias). Finally, by Lemma D.3, we have [β] =
[New New]. The second case follows similarly. □

E Proof of Correctness of Unit Test
Synthesis

In this section, we sketch a proof of Theorem 5.2, which says
that the unit tests synthesized by our algorithm are potential
witnesses.

E.1 General Condition
First, we establish a general condition for P to be a potential
witness:

Proposition E.1. Let s be a path specification with premise
(e1 ∈ G) ∧ ... ∧ (ek ∈ G). A program P is a potential witness
of s if the set of edges {e1, ..., ek } in the premise of s exactly
equals{

w
A
−→ z ∈ G (P ,∅) ���

w, z ∈ Vlib and
A ∈ {Transfer,Transfer,Alias}

}
.

Proof. Let P be a potential witness for s , and suppose that the
conclusion of s is (e ∈ G). Let S be a set of path specifications
that computes e for P , i.e., e ∈ G (P , S). We need to show that
for any such S , S ∪ {s} is equivalent to S . Clearly, S ∪ {s} has
higher or equal recall than S , so it suffices to show that it
also has higher or equal precision than S . Consider an arbi-
trary program P ′. Then, if s is used during the computation
G (P , S ∪ {s}), then at that point, the premise of s holds for
G, i.e., e1, ..., ek ∈ G. Since the graph for P is contained in
the graph for P ′, and our static analysis is monotone, we
have e ∈ G (P , S) ⊆ G (P ′, S), i.e., e is computed without s .
Thus, G (P ′, S ∪ {s}) = G (P ′, S), so S ∪ {s} equivalent to S as
claimed. □

E.2 Proof Sketch of Theorem 5.2
Let s = z1 → w1 d ... → zk d wk . Since the function calls
are treated as no-ops by the static analysis (according to the
definition of a potential witness), they do not add any edges
to the extracted graphG except for assignments to and from
parameters and return values. The only other edges in the
graph G extracted from P are those corresponding to the
allocation statements added to P in the initialization step.
First, we show that the edges in the premise of s are

contained in G (P ,∅). For an edge wi → zi+1, there are
three possibilities—either Ai = Transfer, Ai = Transfer, or
Ai = Alias:

• Case Ai = Transfer: Then, wi is a return value and
zi+1 is a parameter. Then, the unit test synthesis algo-
rithm assigns the return value ofmi to the argument
ofmi+1, i.e., the edges

wi
Assign
−−−−−→ x

Assign
−−−−−→ zi+1 ∈ G,

where G is the graph extracted from P . Therefore, we
have (wi

Transfer
−−−−−−→ zi+1) ∈ G (P ,∅).

• Case Ai = Transfer: This case is analogous to the
case A = Transfer.
• Case Ai = Alias: Then,wi and zi+1 are both parame-
ters. Then,wi and zi+1 are both parameters. Then, the
unit test synthesis algorithm allocates a new object
and passes it as a parameter to eachmi andmi+1, i.e.,

Active Learning of Points-To Specifications PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

the edges

o
New
−−−→ x

Assign
−−−−−→ wi ∈ G and o

New
−−−→ x

Assign
−−−−−→ zi+1 ∈ G .

Therefore, we have (wi
Alias
−−−−→ zi+1) ∈ G (P ,∅).

Second, consider all edgesw
Ai
−−→ z, wherew, z ∈ Vlib and

Ai ∈ {Transfer,Transfer,Alias}, that are contained in the
premise of s . By inspection, of the edges in G as described
above, the only additional edges in G (P ,∅) of this form are:

• The self-loops zi
Transfer
−−−−−−→ zi andwi

Transfer
−−−−−−→ wi (since

there is a production Transfer → ϵ in the points-to
grammar Cpt).

• The backward edges zi+1
Ai
−−→ wi , where we have Ai ∈

{Transfer,Transfer}).
If these edges were added to the premise of s for P , then
by Proposition E.1, we could conclude that P is a potential
witness of s . However, these edges are in G (P , S) for any
program P and any specifications S , so we can add them to
the premise of s without affecting its semantics. It follows
that if P is a witness for s ′, and s ′ is equivalent to s , then P
is a witness for s as well. Therefore, P is a witness for s as
claimed. □

	Abstract
	1 Introduction
	2 Overview
	3 Background on Points-To Analysis
	4 Path Specifications
	5 Specification Inference Algorithm
	5.1 Overview
	5.2 Sampling Positive Examples
	5.3 Language Inference Algorithm
	5.4 Unit Test Synthesis

	6 Evaluation
	6.1 Comparison to Our Existing Specifications
	6.2 Comparison to Ground Truth
	6.3 Design Choices
	6.4 Discussion

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Static Points-To Analysis with Regular Sets of Path Specifications
	A.1 Converting a Single Path Specification
	A.2 Converting a Regular Set of Path Specifications

	B Unit Test Synthesis Algorithm
	B.1 Skeleton Construction
	B.2 Filling Holes
	B.3 Variable Initialization
	B.4 Statement Scheduling

	C Proof of Equivalence Theorem
	C.1 Converting the Library Implementation to Path Specifications
	C.2 Proof Overview
	C.3 Equivalent Semantics
	C.4 Proofs of Propositions C.2 & C.3
	C.5 Reduction of Theorem 4.2 to Theorem C.4

	D Proof of Technical Lemmas
	D.1 Proof of Lemma C.6
	D.2 Proof of Lemma C.7
	D.3 Proof of Lemma C.8
	D.4 Proof of Lemma C.9

	E Proof of Correctness of Unit Test Synthesis
	E.1 General Condition
	E.2 Proof Sketch of Theorem 5.2

