
Background on Imitation Learning

Problem Formulation

• Motivation
• Deep	reinforcement	learning	(RL)	has	been	successfully	

applied	to	solve	a	number	of	challenging	control	tasks
• However,	it’s	real-world	applicability	remains	limited	due	to	

safety	concerns	in	using	learned,	blackbox controllers

• Our	approach
• Decision	tree	controllers	are	easy	to	verify	but	hard	to	train
• Use	imitation	learning	to	train	a	decision	tree	controller

Overview

• Input
• Markov	decision	process	(MDP)	𝑀 = 𝑆, 𝐴, 𝑇, 𝑅
• Neural	network	(NN)	controller	𝜋)): 𝑆 → 𝐴
• 𝑄 function,	where	𝑄 𝑠, 𝑎 measures	how	good	action	𝑎 is	in	

state	𝑠 (obtained	from	deep	RL	algorithms)

• Output
• Decision	tree	(DT)	controller	𝜋/0: 𝑆 → 𝐴

Evaluation

• Naïve	algorithm
• Step	1:	Use	NN	to	generate	states
• Step	2:	Use	NN	to	label	action	for	each	state
• Step	3:	Use	supervised	learning	to	train	DT

• DAgger Algorithm	(Ross	2011)
• Problem:	DT	makes	mistakes	and	sees	new	states
• Solution:	Use	NN	to	label	states

• Comparison	to	reinforcement	learning	for	DTs	(below,	left)
• Fitted	Q	iteration	(RL	algorithm	for	learning	decision	trees)
• Cart-pole	control	problem

• Comparison	to	Dagger	(below,	right)
• Atari	Pong	(symbolic	state	space)

References
Ross,	Gordon,	&	Bagnell.	A	Reduction	of	Imitation	Learning	and	Structured	Prediction	to	No-Regret	Online	
Learning.	AISTATS	2011.

VIPER Algorithm

• Insight:	Want	to	prioritize	accuracy	on	“critical	states”	where	the	
gap	between	the	optimal	action	and	the	remaining	actions	is	large

• Idea:	Weight	state-action	pairs	in	the	loss	using	the	𝑄 function

control	problem neural	network	
controller	𝝅𝐍𝐍

control	actions

state	vector
system	dynamics

• Easy	to	train
• Hard	to	verify

RL

𝑥4566, 𝑦4566, …𝑥45669 , 𝑦45669 , …

neural	network	
controller	𝝅𝐍𝐍

decision	tree	
controller	𝝅𝐃𝐓

control	problem

RL

Certificate	of	
Correctnessverification

• Easy	to	verify
• Hard	to	train

RL

supervised
learning

.

.		, .	.

.		, .	
Step	1:	Use	NN	to	generate	states Step	2:	Use	NN	to	obtain	actions

⋮ ⋮

Step	3:	Use	supervised	
learning	to	train	a	decision	tree

⋮

start goal

not	in	training	set

start goal

actions	are	similar
(non-critical	state)

must	move	right!
(critical	state)

𝑄 𝑠, 𝜋)) 𝑠 ≈ min
C∈E

𝑄(𝑠, 𝑎)

optimal	𝑄 value worst-case	𝑄 value

𝑄 𝑠, 𝜋)) 𝑠 ≫ min
C∈E

𝑄(𝑠, 𝑎)

optimal	𝑄 value worst-case	𝑄 value

Case Study: Verifying Toy Pong

0

4000

8000

0 10 20

N

od
es

Reward

DAgger Viper

• Toy	pong
• Problem:	𝑆 = ℝJ,	𝐴 = left, right, stay
• NN:	Trained	using	policy	gradients,	600	neurons
• DT:	Extracted	using	VIPER,	31	nodes
• Correctness:	Never	lets	the	ball	leave	the	arena

• Verification
• Inductive	invariant:	𝑠 0 ∈ blue ⇒ 𝑠 𝑇 ∈ blue (below,	left)
• Algorithm:	Dynamics	and	DT	controller	are	piecewise	linear,	so	

we	can	encode	correctness	as	an	SMT	formula

• Results
• Solved	by	Z3	in	< 5	seconds
• Finds	an	error	when	ball	starts	on	the	right	(below,	right)
• Fixed	when	paddle	is	slightly	longer!

0

100

200

0 2000 4000 6000 8000

Re
w

ar
d

Rollouts

Fitted Q Viper

training	neural	network	
controller	𝜋))

Verifiable	Reinforcement	Learning	via	Policy	Extraction
Osbert	Bastani1,2,	Yewen Pu1,	Armando	Solar-Lezama1

1Massachusetts	Institute	of	Technology
2University	of	Pennsylvania

