

Verifiable Reinforcement Learning via Policy Extraction

neural network

controller π_{NN}

Problem Formulation

Easy to verify

Hard to train

decision tree

controller $\pi_{\rm DT}$

- Input
 - Markov decision process (MDP) M = (S, A, T, R)
 - Neural network (NN) controller $\pi_{NN}: S \rightarrow A$
 - Q function, where Q(s, a) measures how good action a is in state *s* (obtained from deep RL algorithms)
- Output
 - Decision tree (DT) controller $\pi_{DT}: S \rightarrow A$

Osbert Bastani^{1,2}, Yewen Pu¹, Armando Solar-Lezama¹

¹Massachusetts Institute of Technology

²University of Pennsylvania

VIPER Algorithm

Insight: Want to prioritize accuracy on "critical states" where the gap between the optimal action and the remaining actions is large

Idea: Weight state-action pairs in the loss using the Q function

actions are similar (non-critical state) $Q(s, \pi_{NN}(s)) \approx \min Q(s, a)$

optimal *O* value

worst-case Q value

must move right! (critical state) $Q(s,\pi_{NN}(s)) \gg \min Q(s,a)$

Comparison to Dagger (below, right)

- Toy pong
- Verification
- Results

Learning. AISTATS 2011.

optimal Q value

worst-case Q value

Evaluation

Comparison to reinforcement learning for DTs (below, left) • Fitted Q iteration (RL algorithm for learning decision trees) • Cart-pole control problem

Case Study: Verifying Toy Pong

• **Problem:** $S = \mathbb{R}^5$, $A = \{\text{left, right, stay}\}$ **NN:** Trained using policy gradients, 600 neurons • **DT:** Extracted using VIPER, 31 nodes • **Correctness:** Never lets the ball leave the arena

• Inductive invariant: $s(0) \in \text{blue} \Rightarrow s(T) \in \text{blue}$ (below, left) Algorithm: Dynamics and DT controller are piecewise linear, so we can encode correctness as an SMT formula

• Solved by Z3 in < 5 seconds • Finds an error when ball starts on the right (below, right) • Fixed when paddle is slightly longer!

References

Ross, Gordon, & Bagnell. A Reduction of Imitation Learning and Structured Prediction to No-Regret Online