
Robotics: Science and Systems 2021
Held Virtually, July 12–16, 2021

1

Safe Reinforcement Learning
via Statistical Model Predictive Shielding

Osbert Bastani
University of Pennsylvania
obastani@seas.upenn.edu

Shuo Li
University of Pennsylvania

lishuo1@seas.upenn.edu

Anton Xu
University of Pennsylvania
antonxue@seas.upenn.edu

Abstract—Reinforcement learning is a promising approach to
solving hard robotics tasks. An important challenge is ensuring
safety—e.g., that a walking robot does not fall over or an
autonomous car does not crash into an obstacle. We build on
an approach that composes the learned policy with a backup
policy—it uses the learned policy on the interior of the region
where the backup policy is guaranteed to be safe, and switches to
the backup policy on the boundary of this region. The key chal-
lenge is checking when the backup policy is guaranteed to be safe.
Our algorithm, statistical model predictive shielding (SMPS),
uses sampling-based verification and linear systems analysis to
perform this check. We prove that SMPS ensures safety with high
probability, and empirically evaluate its performance on several
benchmarks.

I. INTRODUCTION

Reinforcement learning (RL) has recently had a number
of successes, including superhuman performance at Atari
games [32] and Go [43]. A promising practical application
of DRL is to automatically synthesize deep neural network
(DNN) policies for robotics control. In these settings, we
typically have a nominal dynamics model—i.e., a model of the
dynamics that is a good approximation of the true dynamics.
For instance, we have nominal dynamics models for cars,
quadcopters, walking robots, and grasping robots [46]. Thus,
we can use DRL in a simulator based on the nominal dynamics
to learn a DNN policy, which can then be deployed on the
real robot. For instance, this approach has been applied to (i)
solving challenging planning problems, such as object manip-
ulation [5, 22], multi-agent planning [24, 23, 47], and planning
from partial observations (e.g., LIDAR or images) [33, 20], (ii)
compressing a slow, model-predictive controller (MPC) into a
much faster DNN policy [26, 16], and (iii) planning when the
dynamics are stochastic or uncertain [14, 15, 25, 53, 34]. In
these approaches, DRL is used to learn a deep neural network
(DNN) policy in a simulator, which can then be deployed on
the real robot.

A key challenge is how to ensure safety when using
the DNN policy on the real robot—e.g., ensuring that an
autonomous car does not drive into obstacles, a walking robot
does not fall, or a quadcopter does not crash [17, 4]. In general,
it is impossible to ensure safety when no information about
the robot dynamics is known initially. However, since we have
a nominal dynamics model, we can model the true dynamics
as the nominal dynamics plus a stochastic disturbance, and
then ensure safety with respect to this model. In this setting,

our goal is to provide probabilistic safety guarantees—i.e.,
ensure the robot is safe with high probability with respect
to the randomness in the dynamics.

A number of approaches have been proposed for ensuring
safety in this setting. A majority of these approaches focus
on proving safety ahead-of-time—i.e., before the DNN policy
is deployed on the real robot [48, 8, 20]. However, these
approaches have a number of shortcomings. For instance, these
approaches typically do not provide a way to fix a policy
if they fail to prove it is safe. Furthermore, they often scale
exponentially with the dimension of the state space, making
them computationally intractable for high-dimensional state
spaces. One scalable variant of this approach is to “over-
approximate” the nominal dynamics (i.e., devise upper and
lower bounds on the nominal dynamics for which verification
is computationally tractable), but these techniques often fail
to prove safety even when the policy is safe since the gap
between the upper and lower bounds tends to be large.

An alternative approach is to compose the learned policy
π̂ with a backup policy πbackup in a way that guarantees
safety [30, 41, 37, 18, 2, 10, 13, 3, 49, 50, 38, 56]. The idea
is to maintain the invariant that πbackup can always be used to
ensure safety. In particular, they use π̂ on the interior of the
region where πbackup is guaranteed to be safe, and switch to
πbackup near the boundary of this region. The benefit is that we
only need to verify safety for πbackup, which can be a simpler
policy since it only needs to ensure safety and does not need to
perform well. Nevertheless, most existing approaches applica-
ble to general nonlinear dynamics face the same computational
challenges even for verifying πbackup [18, 2, 10, 38].

A promising approach to ensuring safety is model predictive
shielding (MPS) [51, 7, 27]. Rather than compute ahead-of-
time the region where πbackup can ensure safety, this approach
performs this check on-the-fly. In particular, it decomposes
πbackup into (i) an LQR policy πLQR used to ensure safety near
safe equilibrium points, and (ii) a recovery policy πrec that tries
to transition the system to a safe equilibrium point. Intuitively,
safe equilibrium points are states where πLQR can keep the
robot safely at rest. Such points exist for most robots of
interest—e.g., an autonomous car that is at rest, a quadcopter
that has landed, or a walking robot that is standing still.
Importantly, the time complexity of MPS is independent of the
state and action dimensions (except through π̂ and πbackup).

Existing MPS algorithms have several shortcomings: [51]

 ���

𝒳!"#
𝒳$%&

𝒳'()% 𝒳

𝑥*

𝑥+

𝜋$
𝜋,(&-./

𝜋,(&-./ 𝑥0

𝑥1

𝑥+

𝜋$

recoverable irrecoverable

Fig. 1. Left: An overview of SMPS. At state xt, SMPS simulates the learned policy π̂ for one step, and then simulates the backup policy πbackup for N
steps to see if it can drive the robot from Xrec to Xinv while staying in Xsafe. If so (green trajectory to xa), it uses π̂; otherwise (red trajectory to xb), it uses
πbackup. Right: Example of recoverable and irrecoverable states for an autonomous car, where the goal is to avoid the black obstacle. We show the simulated
trajectory used to check recoverability; the simulation of π̂ is blue, and the simulation of πbackup is purple.

only applies when the nominal dynamics are linear, and [7]
only applies when the dynamics are deterministic. The ap-
proach proposed by [27], called robust MPS (RMPS), applies
more generally to stochatic nonlinear dynamics, but has two
shortcomings: (i) it relies on heuristics to compute invariant
sets for the LQR policy, and (ii) their strategy for checking
πbackup is very slow, so they use heuristics to speed up
computation that invalidate their safety guarantee.

a) Contributions: We propose a novel algorithm (de-
picted in Figure 1), statistical MPS (SMPS), that addresses
the shortcomings of RMPS as follows: (i) we use techniques
from robust control [11] to analyze the safety of πLQR, using
Taylor’s theorem to bound the approximation error due to
linearization, and (ii) we use statistical verification [54, 40, 9],
which leverages sampling in conjunction with concentation
inequalities, to check whether πbackup can ensure safety. We
prove that our approach is guaranteed to be safe as long as the
nominal dynamics and its derivatives are Lipschitz continuous,
and the stochastic disturbances are bounded. Our experiments
show that at the same safety confidence level, our approach
can be more than 100× faster than RMPS.

b) Example: Consider the cart-pole, where the goal is
to move the cart as fast as possible without letting the pole
fall over. Here, π̂ performs well but may be unsafe. Safe
equilibrium points x ∈ Xeq are states where the pole is upright
and the cart is at rest. Then, πbackup is composed of (i) πLQR,
wich maintains safety in an invariant set Xinv around Xeq, and
(ii) πrec is trained to bring the moving cart-pole to Xinv. SMPS
uses π̂ to move the cart as long as the invariant that πrec can
safely bring the cart-pole to Xinv holds; otherwise, it switches
to πbackup to ensure safety.

II. BACKGROUND & RELATED WORK

There are three kinds of safe RL problems: (i) learn a policy
while heuristically satisfying safety [1, 52, 35]; however, these
approaches do not guarantee safety, (ii) prove that a policy
learned in simulation is safe before deploying it on a real
robot (our focus), and (iii) guarantee safety during learning. A
standard approach to (iii) is to reduce it to (ii) by modeling the
true dynamics as the known nominal dynamics plus a Gaussian
process (GP) encoding the unknown portion [18, 2, 10]. Then,

we can update the GP based on observed state transitions.
Finally, we ensure safety with high probability with respect to
the GP uncertainty, which is an instance of (ii). Our algorithm
can solve (iii) using this approach; see Section IV.

For (ii), given dynamics f : X ×U → X , where X ⊆ RnX
is the state space and U ⊆ RnU is the action space, and DNN
policy π̂ : X → U , the goal is to prove the robot is safe starting
from any initial state x0 ∈ X0 ⊆ X—i.e., the trajectory
x0, x1, ... defined by xt+1 = f(xt, π̂(xt)) satisfies xt ∈ Xsafe
for all t ∈ N, where Xsafe ⊆ X is a given safe set. For
now, we assume f is deterministic, and discuss the stochastic
case below. Safety over a finite horizon T can typically be
formulated as a constraint satisfaction problem [21]—e.g.,
if the dynamics are piecewise affine, it can be encoded as
an integer program [8]. For an infinite horizon, a standard
approach is to prove the existence of an invariant set—i.e.,
Xinv ⊆ X such that (i) f(x) ∈ Xinv for all x ∈ Xinv, and (ii)
X0 ⊆ Xinv ⊆ Xsafe; then, the robot is safe by induction on t.

Invariant sets can be constructed from a Lyapunov function
or a control barrier function [46], which can be computed
by solving the Lyapunov equation for linear dynamics [11],
a sum-of-squares program for polynomial dynamics [46], or
the Hamilton-Jacobi equation for nonlinear dynamics with
bounded Lipschitz constant [31, 18, 10]. However, the last
approach scales exponentially with the dimension of X .

In some cases, even if it is computationally intractable to
compute Xinv for π̂, we can do so for a simpler backup policy
πbackup. Then, we can safely use π̂ inside Xinv and use πbackup
near its boundary—i.e.,

πshield(x) =

{
π̂(x) if f(x, π̂(x)) ∈ Xinv

πbackup otherwise.

If Xinv is invariant for πbackup, it is also invariant for πshield.
This approach is called the simplex architecture [41, 42] or
shielding [3, 56]; it has been used for safe RL [37, 2, 13, 38].
However, computing Xinv for πbackup often remains intractable.

Rather than compute Xinv ahead-of-time, MPS checks
whether x ∈ Xinv on-the-fly. Consider a safe equilibrium
point—i.e., (x̄, ū) ∈ Zeq ⊆ X × U such that (i) f(x̄, ū) = x̄,
and (ii) x̄ ∈ Xsafe. At x̄, we can use ū to keep the robot safe

 ���

for an infinite horizon. We assume that πbackup that satisfies
πbackup(x̄) = ū for all (x̄, ū) ∈ Zeq. Then, Xeq = {x̄ |
∃ū . (x̄, ū) ∈ Zeq} is an invariant set for πbackup. Thus, in
principle, we could use traditional shielding with πbackup and
Xinv = X0.

The shortcoming of this approach is that πbackup may have
a much larger invariant set; thus, it may unnecessarily switch
to πbackup even when it is safe to use π̂. Instead, at x ∈ X ,
MPS simulates πbackup and checks if πbackup safely transitions
the robot to a state x̄ ∈ Xeq. Since πbackup can ensure safety
from x̄, it can ensure safety from x as well. More precisely:

Definition II.1. A state x ∈ X is recoverable (denoted x ∈
Xrec) if for the trajectory x0, x1, ..., xN generated using πbackup
from x, there exists t ∈ {0, 1, ..., N} such that (i) xt ∈ Xeq,
and (ii) x0, x1, ..., xt ∈ Xsafe.

Then, we have the following [7]:

Theorem II.2. The set Xrec is invariant for πshield.

When π̂ is an MPC, this idea is called dual MPC [30, 29];
for safe RL with linear dynamics, it is called model predictive
safety certification (MPSC) [49, 50, 51].

Stochastic disturbances in f complicates this picture, since
ū may no longer keep the robot exactly at x̄. Instead, we
can typically use an LQR πzLQR to keep the robot near x̄,
since the dynamics are typically well-behaved near equilibrium
points. Now, suppose that we (i) establish the existence of
local invariant sets X zinv for πzLQR for each z ∈ Zeq, and (ii)
check that πbackup safely transitions the robot to some X zinv with
high probability. Then, we can obtain high probability safety
guarantees similar to the deterministic case.

For linear dynamics, (i) and (ii) can be addressed using
standard techniques [11]. For nonlinear dynamics, [27] uses
sampling in conjunction with learning theory bounds to solve
(ii); however, their approach is very sample inefficient. They
also use sampling to solve (i), but their technique is a heuristic
and does not guarantee safety. In contrast, our SMPS algorithm
uses a much more sample-efficient strategy to solve (ii), and
solves (i) using tools from linear control theory.

Finally, there has been work extending MPS to multi-agent
settings [55] and to human-robot interactive settings [19], but
both assume the robot dynamics are deterministic.

III. PROBLEM FORMULATION

Consider a dynamical system f : X × U × W → X
with states X , actions U , and disturbances W , which we
asssume to be i.i.d. samples w ∼ PW . Given a policy
π : X → U , the trajectory ζ(x0, π, ~w) = (x0, x1, ...) ∈ X∞
generated using π from x0 ∈ X for disturbances ~w ∼ P∞W
is xt+1 = f(xt, π(xt), wt). For now, we assume given a set
of invariant states Xinv from which πbackup can ensure safety;
both πbackup and Xinv are described in Section V. Our goal
is to ensure safety with high probability from initial states
X0 ⊆ Xinv.

Definition III.1. Given safe states Xsafe ⊆ X , initial states

X0 ⊆ Xinv, and ε ∈ (0, 1], a policy π is ε-safe if

P~w∼P∞
W

(ζ(x0, π, ~w) ⊆ Xsafe) ≥ 1− ε (∀x0 ∈ X0).

Given a learned policy π̂, our goal is to construct a shield
policy πshield that is ε-safe. Because our algorithm relies on
taking random samples to check safety, safety may fail to hold
due to the randomness in these samples—i.e., given δ ∈ (0, 1],
our algorithm ensures

P~α∼P∞
A

(πshield is ε-safe) ≥ 1− δ.

where α ∼ PtA is the randomness on step t of our algorithm.
We make the following assumption:

Assumption III.2. We assume that X ⊆ RnX , U ⊆ RnU , and
W ⊆ RnW ; that w ∼ PW is bounded ‖w‖2 ≤ wmax; and that
f , ∇xf , and ∇uf are L-Lipschitz continuous for ‖ · ‖2 on
Xsafe.

Remark III.3. Our approach extends to time-varying f , PW ,
and π̂, and to π̂ with latent state. Our approach also extends
to reinforcement learning where the dynamics have uncertain
parameters with a prior over these parameters such as a
Gaussian process [18, 2, 10]; see Appendix C. Our approach
similarly extends to partially observed states with a prior over
the initial state. Finally, our approach extends to disturbances
that are correlated within a trajectory, as long as the sequence
of disturbances ~w as a whole is i.i.d. across trajectories.

IV. STATISTICAL MPS

Our SMPS algorithm for computing πshield(x, t), shown in
Algorithm 1, combines π̂ with a backup policy πbackup that is
guaranteed to ensure safety starting from x0 ∈ Xinv for some
Xinv ⊆ Xsafe. For now, we assume that such πbackup and Xinv are
available; we describe how we construct them in Section V.

Assumption IV.1. Xinv is an invariant set for πbackup.

Then, SMPS checks whether πbackup can transition the
system to Xinv with high probability. To this end, given
~w ∼ PN+1

W (where N ∈ N is a hyperparameter), it simulates
a single step using π̂ followed by N steps using πbackup. If the
system reaches Xinv, then the invariant holds for this sample.
It uses K i.i.d. samples to check whether the invariant holds
with high probability. If so, it uses π̂; otherwise, it uses πbackup.

Definition IV.2. Given ~w ∈ WN+1, a state x ∈ Xsafe is ~w-
recoverable (denoted x ∈ X ~w

rec) if for the trajectory

x1 = f(x, π̂(x), w0)

xt+1 = f(xt, πbackup(xt), wt) (∀t ∈ {1, ..., N}),

there exists τ ∈ {1, ..., N} such that (i) x1, ..., xτ ∈ Xsafe, and
(ii) xτ ∈ Xinv.

In other words, x is ~w-recoverable if after taking one step
using π̂ and at most N subsequent steps using πbackup, the robot
reaches Xinv. In Algorithm 1, IsRecSingle returns whether x
is ~w-recoverable.

 ���

Algorithm 1 Statistical model predictive shielding (SMPS).
Hyperparameters are N ∈ N and ε, δ ∈ (0, 1]; K(ε, δ, t) is
computed according to (1).

procedure SMPS(x, t)
if IsRec(x, t) then

return π̂(x)
else

return πbackup(x)
end if

end procedure
procedure ISREC(x, t)

for i ∈ {1, ...,K(ε, δ, t)} do
~w ∼ PN+1

W
if ¬IsRecSingle(x, ~w) then

return false
end if

end for
return true

end procedure
procedure ISRECSINGLE(x, ~w)

if x 6∈ Xsafe then
return false

end if
x← f(x, π̂(x), w0)
for τ ∈ {1, ..., N} do

if x ∈ Xinv then
return true

else if x 6∈ Xsafe then
return false

end if
x← f(x, πrec(x), wτ)

end for
return false

end procedure

Definition IV.3. Given ε ∈ (0, 1], a state x ∈ Xsafe is ε-
recoverable (denoted x ∈ X εrec) if

P~w∼PN+1
W

(x ∈ X ~w
rec) ≥ 1− ε.

In other words, x is ε-recoverable if it is ~w-recoverable
with probability at least 1 − ε with respect to ~w ∼ PN+1

W .
In Algorithm 1, IsRec checks whether x is εt-recoverable. Its
result is not guaranteed to be correct, but its result is correct
with probability at least 1− δt.

Finally, πshield uses π̂ if it determines that x is εt-
recoverable, and uses πbackup otherwise.

It remains to describe how many samples K(ε, δ, t) are used
to check recoverability. Due to the stochastic disturbances, we
must increase the recovery probability over time to ensure
safety. Let εt = 6ε/((t + 1)2π2) and δt = 6δ/((t + 1)2π2);
the identity

∑∞
t=1(1/t2) = π2/6 ensures

∑∞
t=0 εt = ε and∑∞

t=0 δt = δ. Thus, by a union bound, we can ensure πshield
is ε-safe with probability at least 1− δ. To achieve the desired

safety level at step t, we choose

K(ε, δ, t) = arg min
K∈N

K subj. to (1− εt)K ≤ δt

=

⌈
log(1/δt)

log (1/(1− εt))

⌉
, (1)

where the second line follows by solving for K. Intu-
itively, each check IsRecSingle is a Bernoulli random variable
Bernoulli(µ), and IsRec returns that x is εt-recoverable if none
of the K random draws b ∼ Bernoulli(µ) are b = false. Then,
the left-hand side of the constraint in (1) bounds the probability
that the algorithm makes a mistake—i.e., x is recoverable for
all K samples but x is not ε-recoverable. Thus, the constraint
in (1) bounds the probability of a mistake by δ. We have the
following safety guarantee, which we prove in Appendix A:

Theorem IV.4. P~α∼P∞
A

(πshield is ε-safe) ≥ 1− δ.

Remark IV.5. We expect that pratical implementations will
use constant values εt = ε and δt = δ. This approach does not
ensure safety for an infinite horizon, but provides a per-step
safety guarantee in line with previous work [51, 27]. Some
prior work ensures safety for an infinite horizon [18, 2, 10],
but they rely on an assumption that the true dynamics are
deterministic.

Remark IV.6. The running time of our algorithm on step t
is O(N ·K(ε, δ, t)) due to the call to IsRec (assuming π̂ and
πbackup run in constant time); furthermore, it is easy to see that
K(ε, δ, t) = O(log(1/δt)/εt). If necessary, we can add a time
out and have IsRec return false if it runs out of time.

V. BACKUP POLICY

Our backup policy relies on safe equilibrium points of
f where the robot remains safely at rest—i.e., points z =
(x̄, ū) ∈ Zeq ⊆ X × U such that (i) x̄ = f(x̄, ū, 0), and (ii)
x̄ ∈ Xsafe. Then, πbackup consists of (i) a recovery policy πrec
that attempts to transition the robot to a safe equilibrium point
z, and (ii) a family of LQR policies πzLQR for each z ∈ Zeq
that, if the robot is already near z, keeps it near z.

Recovery policy We begin by describing πrec, which is
designed to attempt to transition the robot to a safe equilibrium
point. We note that our algorithm ensures safety regardless of
πrec; instead, a better choice of πrec improves the performance
of πshield. We use RL to πrec. First, we use initial state
distribution drec—to sample x ∼ drec, we (i) sample an
initial state x0 ∼ d0, where d0 is a distribution over X0,
(ii) sample a time horizon t ∼ Uniform({0, ..., T − 1}),
where T ∈ N is a hyperparameter, (iii) compute the trajectory
x0, x1, ..., xt obtained using π̂ from x0, and (iv) reject if
xt 6∈ Xsafe and take x = xt otherwise. Second, we use reward
rrec(x, u) = −‖x− x̄‖2, where (x̄, ū) ∈ Zeq is such that x̄ is
closest to x. Then, we use RL to learn

πrec = arg max
π

Ex0∼drec, ~w∼P∞
W

(∞∑
t=0

γt · rrec(xt, ut)

)
,

where ut = πrec(xt) and xt+1 = f(xt, ut, wt).

 ���

a) LQR policy: Next, we describe πzLQR. Intuitively, near
z = (x̄, ū) ∈ Zeq, f is closely approximated by its lineariza-
tion, so we can use a linear-quadratic regulator (LQR) to keep
the robot near z [11]. In particular, consider the approximation

f(x, u, w) ≈ f(x̄, ū, 0) +A(x− x̄) +B(u− ū)

= x̄+A(x− x̄) +B(u− ū) (2)

of f , where A = ∇xf(x̄, ū, 0) and B = ∇uf(x̄, ū, 0); note
that we have both linearized f and ignored the disturbance w.
Then, we compute the LQR K for the linear dynamics A,B
(we choose the costs Q and R to be the identity). As long as
the error in (2) is small, then we can keep the robot near z
using the policy

πzLQR(x) = ū+K(x− x̄),

in which case (2) becomes

f(x, πzLQR(x), w) ≈ x̄+ (A+BK)(x− x̄). (3)

Next, recall that we want to use πzLQR to keep the robot safely
near z. To determine when we can use πLQR, we additionally
need to compute the region where πLQR can be used to ensure
safety. In particular, we compute an invariant set X zinv for
πzLQR—i.e., (i) πzLQR(x) ∈ X zinv for all x ∈ X zinv, and (ii)
X zinv ⊆ Xsafe.

We consider X zinv of the form X zinv = B2(x̄, rz)—i.e., the
L2 ball around x̄ of some radius rz ∈ R>0 to be determined.
Then, (i) is equivalent to

‖(A+BK)(x− x̄) + ∆x,w‖2 ≤ rz (4)

for all x ∈ B2(x̄, rz), where

∆x,w = f(x, πzLQR(x), w)− x̄− (A+BK)(x− x̄)

is the approximation error in (3). Now, note that if (i) ‖A +
BK‖2 ≤ α for some α ∈ [0, 1), and (ii) rz ≥ ‖∆x,w‖2/(1−
α), then (4) holds—in particular,

‖(A+BK)(x− x̄) + ∆x,w‖2 ≤ αrz + ‖∆x,w‖2 ≤ rz

for all x ∈ B2(x̄, rz). Thus, it suffices to choose the largest
rz such that (i) rz ≥ ‖∆x,w‖2/(1− α) for all x ∈ B2(x̄, rz)
and w ∈ W , and (ii) B2(x̄, rz) ⊆ Xsafe.

To compute such an rz , we need to bound ∆x,w.

Lemma V.1. For any r ∈ R>0, we have

‖∆x,w‖2 ≤ ∆max(r) = Lwmax +
L(1 + ‖K‖2)n

3/2
X r2

2

for all x ∈ B2(x̄, r) and w ∈ W .

This result is follows from Taylor’s theorem and Assump-
tion III.2; see Appendix B for a proof. Note that the bound
on ∆x,w depends on a parameter r ∈ R>0—in particular, it
holds for all x ∈ B2(x̄, r) (larger r is better), but its magnitude
depends r (smaller r is better). Based on this result, it suffices
to choose

rz = max
r∈R>0

∆max(r)/(1− α) subj. to B2(x̄, r) ⊆ Xsafe.

Then, we take X zinv = B2(x̄, rz); if no solution exists, we take
X zinv = ∅. Based on our discussion, we have:

Lemma V.2. X z is an invariant set for πzLQR.

We briefly comment on the condition ‖Ã‖2 ≤ α, where
Ã = A+BK. Note that this condition is basis dependent; if we
change basis to the eigenbasis of Ã (assuming it exists), then
‖Ã‖2 equals the maximum eigenvalue ρ(Ã) of Ã. In this case,
the condition is equivalent to ρ(Ã) ≤ α for some α ∈ [0, 1).
This condition is equivalent to stability of the discrete-time
linear dynamical system x̃t+1 = Ãx̃t [11]. Intuitively, z ∈ Zeq
satisfies this condition as long as control actions can be taken
to keep the system at x̄. Practical examples include holding the
brakes in an autonomous car or keeping a landed quadcopter at
rest. In addition, for the inverted pendulum and the cart-pole,
keeping the pole in the upright position satisfies this condition;
similarly, a typical walking robot in the upright position also
satisfies this condition.

b) Backup policy: Finally, our backup policy is

πbackup(x) =

{
πzLQR if x ∈ X zinv

πrec otherwise.

If multiple z ∈ Zeq satisfy x ∈ X zinv, it chooses z = (x̄, ū)
such that x̄ is closest to x. Finally, define

Xinv =
⋃
z∈Zeq

X zinv.

Then, Lemma V.2 implies the following result, which says that
πbackup and Xinv satisfy Assumption IV.1:

Theorem V.3. Xinv is an invariant set for πbackup.

VI. EXPERIMENTS

We evaluate SMPS on several tasks, showing it ensures
safety in a scalable way. All experiments are run on a 2.9
GHz Intel Core i9 CPU with 32GB memory.

a) Tasks: First, we consider the cart-pole [6] with contin-
uous actions. Our goal is for the cart to have a target velocity
of v0 = 0.1 (i.e., move to the right). The safety constraint is
that the pole angle does not exceed θmax = 0.15 rad from up-
right. The initial state distribution is Uniform([−0.05, 0.05]4).
Second, we consider a bicycle [45, 36], which has 4D states
(x, y, v, θ), where (x, y) is the front of the car, v is the velocity,
and θ is the heading, and a 2D actions (a, ψ), where a is
the acceleration and ψ is the steering angle. We assume that
|a| ≤ amax = 0.25. The goal is to get from the initial state
(0, 0, 0, 0) to the target x = 1. The bicycle must avoid two
obstacles, which have x positions 0.4 and 0.7, y positions
sampled i.i.d. from Uniform([−0.05, 0.05]), and radius 0.05.

b) Reinforcement learning: We use backpropagation-
through-time (BPTT)—i.e., backpropagate through both the
policy and the dynamics—to learn π̂ and πrec. Each policy
is a single-layer neural network with 200 hidden units and
ReLU activations. For the bicycle, we include the y positions
of the obstacles as inputs. For each task, we train using a time

 ���

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.1

0.2

0.3

0.4

0.5

No Shield No Recovery Ours

Pr[Safe]Re
w

ar
d

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.5

1.0

1.5

2.0

2.5

No Shield No Recovery Ours

Pr[Safe]Re
w

ar
d

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

Pr
[P

ol
ic

y]

Time Steps t

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

No Shield No Recovery Ours

Pr[Safe]Re
w

ar
d

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

No Shield No Recovery Ours

Pr[Safe]Re
w

ar
d

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

Pr
[P

ol
ic

y]

Time Steps t

Fig. 2. For cart-pole (top) and bicycle (bottom): Reward (gray) and safety probability (red) for original (left) and modified (middle) environments, and
probability of using of π̂ (green), πrec (blue), and πLQR (red) as a function of t on the original cart-pole and bicycle environments (right). For modified
cart-pole, we threshold reward at 2.0; “No Shield” achieves larger reward using unsafe behavior. We show means (all) and standard errors (left, middle) over
100 random rollouts.

horizon T = 200 steps and a discount factor γ = 0.99. We
use ADAM with a learning rate tuned using cross validation.

c) Shielding: For the cart-pole, the equilibrium points
are ((x, 0, 0, 0), 0)—i.e., keep the cart still and the pole up-
right. For the bicycle, they are ((x, y, 0, θ), (0, 0)). We choose
recovery horizon N = 100. We choose ε = δ = 0.95, so we
need K = 59 samples per step.

d) Modified problems: Changes in the planning
problem—e.g., different configurations of obstacles, longer
time horizon, or increased noise—can cause π̂ to become
unsafe to use, since it is tailored to perform well in the
original problem. To demonstrate how MPS can ensure safety
in the face of such changes, we consider modifications to the
cart-pole and bicycle. First, for the cart-pole, we perform two
changes: (i) we increase the time horizon—though π̂ and πrec
are trained with a time horizon of T = 200, we use them to
control the robot for a time horizon of T = 1000, and (ii)
we add i.i.d. Gaussian random noise to the state at each step.
Second, for the bicycle, we also perform two changes: (i) we
enlarge the obstacles to have radius 0.2, compared to 0.05
originally, and (ii) we add i.i.d. Gaussian random noise to the
action at each step.

e) Results: In Figure 2 (left, middle), we show both the
reward achieved for cart-pole, bicycle, and their modifications.
We show results for (i) π̂ (“No Shield”), (ii) πshield without
πrec—i.e., using N = 0 (“No Recovery”), and (iii) πshield
(“Ours”). The reward shown is the actual performance—z for
cart-pole (i.e., distance traveled by the cart), and x for the
bicycle (i.e., distance traveled towards the target)—rather than
the shaped reward used to learn π̂. The rewards are the ones
obtained either at the end of a rollout, or just before an unsafe
state is reached. While our shielded policy (with N = 100)
sometimes achieves reduced reward compared to π̂, it always

achieves perfect safety. We note that π̂ can achieve higher
reward than πshield in cases where the reward function does
not measure safety in any way.

We also show the safety probability—i.e., the probability
that a random rollout is safe for the entire rollout. All of
our shielded policies (i.e., both N = 0 and N = 100)
achieve perfect safety. The learned policy π̂ achieves good
safety probability on the original cart-pole. Surpringly, it does
not perform well for the original bicycle environment; we
observed that it is safe for the majority of each rollout, but
invariably has an accident at some point. As expected, it
performs very poorly on both modified environments, since
training did not account for these modifications.

f) Policy usage: In Figure 2 (right), for πshield with
N = 100, we show the probability of using π̂, πrec, and
πLQR as a function of time t, on the original cart-pole and
bicycle environments. For cart-pole, πshield initially uses πLQR
to upright the pole, and then proceeds to use a combination of
π̂ and πrec. For the modified environment (plot omitted), πshield
inevitably switches to using πLQR only—π̂ acts pathologically
(and unsafely) for states with large z, since it was not trained
on these states. For the bicycle, in about half the rollouts, πshield
switches to πLQR and does not make further progress, likely
because the obstacle was blocking the way. For the remaining
rollouts, πshield uses π̂ for most of the rollout. For the modified
environment (plot omitted), πshield almost always uses πLQR.

g) Running time: We study the running time of πshield—
i.e., how long it takes to compute a single action u = πshield(x).
In Figure 3 (middle), we show the average running time varies
as a function of the number of samples K, on cart-pole. As
expected, the running time scales linearly with K.

In Figure 3 (right), we show how the average running time
varies as a function of the recovery steps N , on cart-pole.

 ���

0

50

100

150

1 5 10 15 20

R
un

ni
ng

 T
im

e
/ A

ct
io

n
(m

s)

Number of Samples K

0

500

1000

1500

1 30 60 90

Ru
nn

in
g

Ti
m

e /
 A

ct
io

n
(m

s)

Number of Samples K
0.01

1

100

10000

0 5 10 15 20 25R
un

ni
ng

 T
im

e
(s

)

Time Horizon T

Fig. 3. Left: Time per action on modified cart-pole for πshield as a function of K ∈ {1, 5, 10, 15, 20}. Middle: Time per action (black) and reward (green)
on modified cart-pole for πshield as a function of N ∈ {0, 25, 50, 75, 100}. Right: Time to verify the cart-pole policy from [8] as a function of T . We show
means and standard errors over 10 random rollouts (left, middle) or 4 runs (right).

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

No Shield No Recovery Ours
Pr[Safe]Re

w
ar

d

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

No Shield No Recovery Ours

Pr[Safe]Re
w

ar
d

Fig. 4. Reward (gray) and safety probability (red) for the half-cheetah (top left), the original ant (top middle), the modified ant (top right), the original bicycle
with LIDAR observations (bottom left), the fast bicycle with LIDAR observations (bottom middle). We also show a visualization of the LIDAR bicycle; the
bicycle is the black circle, the black lines are walls, and the blue lines are LIDAR rays.

As expected, for N = 100, the running time is about 100×
the running time of π̂ (36.0ms vs. 0.2ms), since it simulates
the dynamics for 100 steps. We believe this overhead is an
acceptable cost for guaranteeing safety. The worst case running
time is linear in N , but can be sublinear if πrec reaches an
invariant state in fewer than N steps.

h) Need for a recovery policy: Our results demonstrate
the importance of using πrec—when N = 0, πshield only
uses πLQR, and makes no progress. In Figure 3 (right), we
additionally show how reward varies as a function of the
recovery steps N for modified cart-pole. There is a large
improvement even for N = 25; performance then levels off,
with N = 75 and N = 100 achieving similar reward.

i) Comparison to RMPS: We compare our approach to
RMPS [27], which uses robust optimization to compute πrec
at each step, focusing on the cart-pole. They provide similar
guarantees to our per-step guarantees—i.e., given ε, δ ∈ R>0,
it guarantees that the system is safe on the next step with
probability at least 1− ε with respect to the stochastic distur-
bances and at least 1−δ with respect to the randomness of the
algorithm. For ε = δ = 0.1, we estimate that their algorithm

takes 11.88 seconds per step on average, whereas ours takes
0.15 seconds per step on average. For ε = δ = 0.05, theirs
takes 56.92 seconds per step whereas ours takes 0.39 seconds
per step. For ε = δ = 0.01, theirs takes 1958.37 seconds per
step whereas ours takes 3.03 seconds per step.

Our technique outperforms theirs because we use samples
directly to check safety. In contrast, they use samples to esti-
mate reachable sets, and use bounds from statistical learning
theory to obtain guarantees; then, they use these reachable sets
to check safety. Formally, they require Õ(nX/ε

2) samples per
step, whereas we only require Õ(1/ε) samples per step.

j) Comparison to ahead-of-time verification: We com-
pare our approach to ahead-of-time verification. One challenge
is that these techniques typically only perform verification for
a bounded state space or for a bounded time horizon T . In
Figure 3, we show how the running time of a state-of-the art
verification algorithm scales as a function of T for verifying a
cart-pole policy [8]. The y-axis is log-scale—thus, verification
is exponential in T . Even for T = 25, it takes about 24 minutes
to perform verification. Though this computation is offline, it
quickly becomes intractable for large T . As a rough estimate,

 ���

the running time grows 102× from T = 10 to T = 20;
extrapolating this trend, the running time for T = 200 would
be over 1030 years. In contrast, our approach not only ensures
safety for an unbounded horizon, but is also substantially more
computationally feasible.

k) LIDAR bicycle: We consider a variant of the bicycle
based on [20], with LIDAR observations and driving in a
hallway (visualized in Figure 4). The fact that the environment
is partially observed complicates shielding. We use a strategy
where we always ensure that the bicycle can come to a stop in
the region visible based on the LIDAR readings. We consider
both the original bicycle environment used for training, as well
as an environment where the maximum speed of the bicycle
is increased. We show results in Figure 4 (top); the trends are
the same as for the cart-pole and bicycle.

l) MuJoCo: We consider the MuJoCo half-cheetah and
ant environments [12]. For the half-cheetah, the safety property
is that the head of the cheetah should not fall below a certain
height, and the reward is to move as far as possible from
the starting point. For the ant, the safety property is that the
ant should not collide with an obstacle. We do not have the
closed-form dynamics, so we cannot analytically bound the
Lipschitz constant; instead, we use a sampling-based heuristic
to estimate Xinv for the LQR around the origin [28, 27]. For
the half-cheetah, the learned policy π̂ was not always safe
even for the original environment, so we did not consider a
modified environment. For the ant, we consider a modified
environment where the obstacle position has been changed.
We show results in Figure 4.

VII. CONCLUSION

We have proposed a novel algorithm for safe reinforcement
learning in the general setting of stochastic nonlinear dynam-
ics. Our approach uses sampling to verify safety, enabling it
to scale orders of magnitude better than prior approaches. We
leave much room for future work—e.g., further improving the
scalability of our approach, and demonstrating its ability to
ensure safety on real robotics systems.

REFERENCES

[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter
Abbeel. Constrained policy optimization. In ICML, 2017.

[2] Anayo K Akametalu, Shahab Kaynama, Jaime F Fisac,
Melanie Nicole Zeilinger, Jeremy H Gillula, and Claire J
Tomlin. Reachability-based safe learning with gaussian
processes. In CDC, pages 1424–1431. Citeseer, 2014.

[3] Mohammed Alshiekh, Roderick Bloem, Rudiger Ehlers,
Bettina Konighofer, Scott Niekum, and Ufuk Topcu. Safe
reinforcement learning via shielding. In AAAI, 2018.

[4] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Chris-
tiano, John Schulman, and Dan Mané. Concrete problems
in ai safety. arXiv preprint arXiv:1606.06565, 2016.

[5] Marcin Andrychowicz, Bowen Baker, Maciek Chociej,
Rafal Jozefowicz, Bob McGrew, Jakub Pachocki, Arthur
Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al.

Learning dexterous in-hand manipulation. arXiv preprint
arXiv:1808.00177, 2018.

[6] Andrew G Barto, Richard S Sutton, and Charles W
Anderson. Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE transactions on
systems, man, and cybernetics, (5):834–846, 1983.

[7] Osbert Bastani. Safe planning via model predictive
shielding. arXiv preprint arXiv:1905.10691, 2019.

[8] Osbert Bastani, Pu Yewen, and Armando Solar-Lezama.
Verifiable reinforcement learning via policy extraction.
In Advances in neural information processing systems,
2018.

[9] Osbert Bastani, Xin Zhang, and Armando Solar-Lezama.
Probabilistic verification of fairness properties via con-
centration. Proceedings of the ACM on Programming
Languages, 3(OOPSLA):1–27, 2019.

[10] Felix Berkenkamp, Matteo Turchetta, Angela Schoellig,
and Andreas Krause. Safe model-based reinforcement
learning with stability guarantees. In Advances in Neural
Information Processing Systems, pages 908–918, 2017.

[11] Francesco Borrelli, Alberto Bemporad, and Manfred
Morari. Predictive control for linear and hybrid systems.
Cambridge University Press, 2017.

[12] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym. arXiv preprint arXiv:1606.01540,
2016.

[13] Yinlam Chow, Ofir Nachum, and Edgar Duenez-Guzman.
A lyapunov-based approach to safe reinforcement learn-
ing. In NeurIPS, 2018.

[14] Steve Collins, Andy Ruina, Russ Tedrake, and Martijn
Wisse. Efficient bipedal robots based on passive-dynamic
walkers. Science, 307(5712):1082–1085, 2005.

[15] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-
based and data-efficient approach to policy search. In
Proceedings of the 28th International Conference on
machine learning (ICML-11), pages 465–472, 2011.

[16] Robin Deits, Twan Koolen, and Russ Tedrake. Lvis:
Learning from value function intervals for contact-aware
robot controllers. In 2019 International Conference
on Robotics and Automation (ICRA), pages 7762–7768.
IEEE, 2019.

[17] Javier Garcıa and Fernando Fernández. A comprehensive
survey on safe reinforcement learning. JMLR, 2015.

[18] Jeremy H. Gillula and Claire J. Tomlin. Guaranteed safe
online learning via reachability: tracking a ground target
using a quadrotor. In ICRA, 2012.

[19] Jeevana Priya Inala, Jason Ma, Osbert Bastani, Xin
Zhang, and Armando Solar-Lezama. Safe human-
interactive control modulo fault. 2021. URL https:
//jinala.github.io/assets/papers/safehumancontrol.pdf.

[20] Radoslav Ivanov, James Weimer, Rajeev Alur, George J.
Pappas, and Insup Lee. Verisig: verifying safety proper-
ties of hybrid systems with neural network controllers.
In HSCC, 2019.

[21] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and

 ���

https://jinala.github.io/assets/papers/safehumancontrol.pdf
https://jinala.github.io/assets/papers/safehumancontrol.pdf

Mykel J Kochenderfer. Reluplex: An efficient smt solver
for verifying deep neural networks. In CAV, 2017.

[22] Monroe Kennedy, Karl Schmeckpeper, Dinesh Thakur,
Chenfanfu Jiang, Vijay Kumar, and Kostas Daniilidis.
Autonomous precision pouring from unknown contain-
ers. IEEE Robotics and Automation Letters, 4(3):2317–
2324, 2019.

[23] Arbaaz Khan, Ekaterina Tolstaya, Alejandro Ribeiro, and
Vijay Kumar. Graph policy gradients for large scale robot
control. In CoRL, 2019.

[24] Arbaaz Khan, Chi Zhang, Shuo Li, Jiayue Wu, Brent
Schlotfeldt, Sarah Y Tang, Alejandro Ribeiro, Osbert
Bastani, and Vijay Kumar. Learning safe unlabeled multi-
robot planning with motion constraints. In IROS, 2019.

[25] Sergey Levine and Pieter Abbeel. Learning neural net-
work policies with guided policy search under unknown
dynamics. In Advances in Neural Information Processing
Systems, pages 1071–1079, 2014.

[26] Sergey Levine and Vladlen Koltun. Guided policy search.
In International Conference on Machine Learning, pages
1–9, 2013.

[27] Shuo Li and Osbert Bastani. Robust model predictive
shielding for safe reinforcement learning with stochastic
dynamics. In ICRA, 2020.

[28] D Limon, I Alvarado, T Alamo, and EF Camacho.
Robust tube-based mpc for tracking of constrained linear
systems with additive disturbances. Journal of Process
Control, 20(3):248–260, 2010.

[29] David Q Mayne, James B Rawlings, Christopher V Rao,
and Pierre OM Scokaert. Constrained model predictive
control: Stability and optimality. Automatica, 36(6):789–
814, 2000.

[30] Hanna Michalska and David Q Mayne. Robust receding
horizon control of constrained nonlinear systems. IEEE
transactions on automatic control, 38(11):1623–1633,
1993.

[31] Ian M Mitchell, Alexandre M Bayen, and Claire J
Tomlin. A time-dependent hamilton-jacobi formulation
of reachable sets for continuous dynamic games. IEEE
Transactions on automatic control, 50(7):947–957, 2005.

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529, 2015.

[33] William H Montgomery and Sergey Levine. Guided pol-
icy search via approximate mirror descent. In Advances
in Neural Information Processing Systems, pages 4008–
4016, 2016.

[34] Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S
Fearing, Pieter Abbeel, Sergey Levine, and Chelsea Finn.
Learning to adapt in dynamic, real-world environments
through meta-reinforcement learning. In ICLR, 2019.

[35] Santiago Paternain, Luiz Chamon, Miguel Calvo-Fullana,
and Alejandro Ribeiro. Constrained reinforcement learn-
ing has zero duality gap. In Advances in Neural Infor-

mation Processing Systems, pages 7553–7563, 2019.
[36] Romain Pepy, Alain Lambert, and Hugues Mounier. Path

planning using a dynamic vehicle model. In 2006 2nd
International Conference on Information & Communi-
cation Technologies, volume 1, pages 781–786. IEEE,
2006.

[37] Theodore J. Perkins and Andrew G. Barto. Lyapunov
design for safe reinforcement learning. JMLR, 2002.

[38] Dung Phan, Nicola Paoletti, Radu Grosu, Nils Jansen,
Scott A Smolka, and Scott D Stoller. Neural simplex
architecture. arXiv preprint arXiv:1908.00528, 2019.

[39] Walter Rudin et al. Principles of mathematical analysis,
volume 3. McGraw-hill New York, 1964.

[40] Koushik Sen, Mahesh Viswanathan, and Gul Agha. On
statistical model checking of stochastic systems. In In-
ternational Conference on Computer Aided Verification,
pages 266–280. Springer, 2005.

[41] Danbing Seto, Bruce Krogh, Lui Sha, and Alongkrit
Chutinan. The simplex architecture for safe online
control system upgrades. In Proceedings of the 1998
American Control Conference. ACC (IEEE Cat. No.
98CH36207), volume 6, pages 3504–3508. IEEE, 1998.

[42] Lui Sha. Using simplicity to control complexity. IEEE
Software, (4):20–28, 2001.

[43] David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529
(7587):484, 2016.

[44] Elias M Stein and Rami Shakarchi. Real analysis: mea-
sure theory, integration, and Hilbert spaces. Princeton
University Press, 2009.

[45] Saied Taheri. An investigation and design of slip con-
trol braking systems integrated with four-wheel steering.
1992.

[46] Russ Tedrake. Underactuated Robotics: Algorithms for
Walking, Running, Swimming, Flying, and Manipulation.
2018. URL http://underactuated.mit.edu/.

[47] Ekaterina Tolstaya, Fernando Gama, James Paulos,
George Pappas, Vijay Kumar, and Alejandro Ribeiro.
Learning decentralized controllers for robot swarms with
graph neural networks. In CoRL, 2019.

[48] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh,
Pushmeet Kohli, and Swarat Chaudhuri. Programmati-
cally interpretable reinforcement learning. arXiv preprint
arXiv:1804.02477, 2018.

[49] Kim P Wabersich and Melanie N Zeilinger. Linear
model predictive safety certification for learning-based
control. In 2018 IEEE Conference on Decision and
Control (CDC), pages 7130–7135. IEEE, 2018.

[50] Kim P Wabersich and Melanie N Zeilinger. Safe ex-
ploration of nonlinear dynamical systems: A predictive
safety filter for reinforcement learning. arXiv preprint
arXiv:1812.05506, 2018.

[51] Kim P Wabersich, Lukas Hewing, Andrea Carron, and

 ���

http://underactuated.mit.edu/

Melanie N Zeilinger. Probabilistic model predictive
safety certification for learning-based control. arXiv
preprint arXiv:1906.10417, 2019.

[52] Min Wen and Ufuk Topcu. Constrained cross-entropy
method for safe reinforcement learning. In Advances
in Neural Information Processing Systems, pages 7450–
7460, 2018.

[53] Grady Williams, Paul Drews, Brian Goldfain, James M
Rehg, and Evangelos A Theodorou. Aggressive driving
with model predictive path integral control. In 2016 IEEE
International Conference on Robotics and Automation
(ICRA), pages 1433–1440. IEEE, 2016.

[54] Håkan LS Younes and Reid G Simmons. Probabilistic
verification of discrete event systems using acceptance
sampling. In International Conference on Computer
Aided Verification, pages 223–235. Springer, 2002.

[55] Wenbo Zhang, Osbert Bastani, and Vijay Kumar. Mamps:
Safe multi-agent reinforcement learning via model pre-
dictive shielding. arXiv preprint arXiv:1910.12639,
2019.

[56] He Zhu, Zikang Xiong, Stephen Magill, and Suresh
Jagannathan. An inductive synthesis framework for
verifiable reinforcement learning. In PLDI, 2019.

APPENDIX A
PROOF OF THEOREM IV.4

First, we have the following:

Lemma A.1. If IsRecoverable(x, t) returns true, then

Pα∼PtA(x ∈ X εtrec) ≥ 1− δt,

where α ∼ PtA is the randomness in the K(ε, δ, t) samples
~w ∼ PN+1

W taken by IsRecoverable.

Proof: In the execution of IsRecoverable(x, t), let ~wi ∼
PN+1
W be the i.i.d. sample drawn on the ith iteration of the

for-loop, where i ∈ {1, ...,K} and K = K(ε, δ, t). Then,
the value bi = IsRecoverableSingle(x, ~w) ∈ {0, 1} is an i.i.d.
Bernoulli random variable (where we represent true by 1 and
false by 0). Note that

p = P~wi∼PN+1
W

(bi = 0) = P~wi∼PN+1
W

(x 6∈ X ~w
rec),

and the goal of IsRecoverable(x, t) is to check whether p < εt.
We need to show that the probability IsRecoverable(x, t)

returns true given that p ≥ εt is bounded by δt. To this end,
assume that p ≥ εt. Note that IsRecoverable(x, t) returns true
only if bi = 1 for every i ∈ {1, ...,K}. We have

P~w1,..., ~wK∼PN+1
W

(IsRecoverable(x, t) = true)

= P~w1,..., ~wK∼PN+1
W

(∀i ∈ {1, ...,K} . bi = 1)

=

K∏
i=1

P~wi∼PN+1
W

(bi = 1)

= (1− p)K

≤ (1− εt)K

< δt.

The claim follows.
Now, our proof of safety proceeds in two steps. First, we

consider the following ideal shield policy π∗shield, defined by

π∗shield(x, t) =

{
π̂(x) if x ∈ X εtrec

πbackup(x) otherwise.

This policy is the variant of πshield where IsRecoverable never
makes mistakes, so any unsafety is due to randomness in the
transitions. First, we show that φεsafe(π

∗
shield) holds:

Lemma A.2. Assume we are using policy π∗shield. For any t ∈
N and any xt ∈ X̃ ε,trec = X εtrec ∪ Xinv, we have

P~w∼PN+1
W

(φ~w,trec) ≥ 1− εt,

where φ~w,trec is the event that there exists τ ∈ {1, ..., N} such
that (i) xt+1, ..., xt+τ ∈ Xsafe, and (ii) xt+τ ∈ X̃ t+τrec , assuming
the disturbances are ~w.

Proof: First, consider the case xt ∈ Xinv \ X εtrec. In this
case, π∗shield chooses to use πbackup. Since Xinv is invariant for
πbackup, we have xt+1 ∈ Xinv, so φε,trec holds.

Second, consider the case xt ∈ X εtrec. It suffices to show that
φ~w,trec always holds on the event xt ∈ X ~w

rec; by the definition of
X εtrec, this event holds with probability at least 1 − εt, so the
claim follows.

Consider the smallest τ ∈ {1, ..., N} (if any) such that π∗shield
chooses to use π̂ at state xt+τ . Then, it must be the case
that xt+τ ∈ X εt+τrec . Furthermore, since π∗shield used πbackup at
each state xt+σ where σ ∈ {1, ..., τ − 1}, and since we have
assumed xt ∈ X ~w

rec, it follows that xt+σ ∈ Xsafe for each σ.
Thus, φ~w,trec holds.

If no such τ exists, then π∗shield chooses to use πbackup in
every state xt+τ . Since we have assumed xt ∈ X ~w

rec, it follows
that there exists τ ∈ {1, ..., N} such that xt+1, ..., xt+τ ∈ Xsafe

and xt+τ ∈ Xinv. Thus, φ~w,trec holds. The claim follows.
In other words, Lemma A.2 says that if we are currently

in X̃ ε,trec , then with probability at least 1− εt, we safely return
to xt ∈ X̃ ε,t+τrec for some τ ∈ {1, ..., N}. If εt = ε were
constant, then Lemma A.2 would say that X̃ εrec = X̃ ε,trec is a
probabilistically safe recurrent set for π∗shield—i.e., if xt ∈ X̃ εrec,
then with probability at least 1 − ε, we safely return to X̃ εrec
in within N + 1 steps. Lemma A.2 accounts for the fact that
X̃ εrec shrinks over time.

Our next result enables us to deduce safety from existence
of safely recurrent sets:

Lemma A.3. Consider an arbitrary sequence of states
x0, x1, Suppose that there exists sets X trec ⊆ Xsafe indexed
by t ∈ N such that x0 ∈ X 0

rec, and for each t ∈ N,

(xt 6∈ X trec) ∨ φtrec (5)

holds, where φtrec is the event that there exists τ ∈ {1, ..., N}
such that (i) xt+1, ..., xt+τ ∈ Xsafe, and (ii) xt+τ ∈ X t+τrec .
Then, xt ∈ Xsafe for all t ∈ N.

Proof: Suppose to the contrary that xt 6∈ Xsafe for some
t ∈ N. Let t′ ∈ {0, 1, ..., t − 1} be the largest time step such

 ���

that xt′ ∈ X t
′

rec. Such a t′ must exist since we have assumed
x0 ∈ X 0

rec. Now, by assumption, there exists τ ∈ {1, ..., N}
such that xt+1, ..., xt+τ ∈ Xsafe and xt+τ ∈ X t+τrec . Since t′ is
the largest time step less than t such that xt′ ∈ X t

′

rec, we must
have t′ < t < t + τ . But we also have xt ∈ Xsafe for every
such t. Thus, we have reached a contradiction, and the claim
follows.

Next, we show that as a consequence, π∗shield is safe:

Lemma A.4. We have φεsafe(π
∗
shield).

Proof: Fix an initial state x0 ∈ X0, and consider the
events

Et(~w) = (xt 6∈ X̃ ε,trec) ∨ φ~wt:t+N ,trec ,

for t ∈ N, where ~w ∈ W∞, ~w0:t = (wt, ..., wt+N), and
φ
~wt:t+N ,t
rec is as defined in Lemma A.2. It follows straightfor-

wardly from Lemma A.2 that for all t ∈ N, we have

P~w∼P∞
W

(Et(~w)) ≥ 1− εt.

Taking a union bound, and using the fact that
∑∞
t=0 εt = ε,

we have

P~w∼P∞
W

(E(~w)) ≥ 1− ε,

where

E(~w) = ∀t ∈ N . Et(~w).

Now, note that on event E(~w), the assumptions in Lemma A.3
are satisfied for the trajectory x0, x1, ... obtained using π∗shield
with disturbances ~w, and for the sequence of sets X̃ ε,trec —in
particular,

x0 ∈ X0 ⊆ Xinv ⊆ X̃ ε,0rec ,

and Et(~w) is exactly the assumption (5). It follows that
x0, x1, ... ∈ Xsafe on event E(~w). The claim follows.

Next, we show that πshield acts exactly the same way as
π∗shield with probability 1− δ:

Lemma A.5. For a fixed initial state x0 ∈ X0 and sequence
of disturbances ~w ∈ W∞, let x0, x1, x2, ... be the trajectory
obtained by using πshield, and let x′0 = x0, x

′
1, x
′
2, ... be the

trajectory obtained by using π∗shield. Then, we have

P~α∼P∞
A

(∀t ∈ N . xt = x′t) ≥ 1− δ.

Proof: By Lemma A.1, for every t ∈ N, we have

Pα∼PtA(IsRecoverable(xt, t) = xt ∈ X εtrec) ≥ 1− δt.

Taking a union bound, and using the fact that
∑∞
t=0 δt = δ,

we have

P~α∼P∞
A

(E) ≥ 1− δ,

where

E(~α) = ∀t ∈ N . IsRecoverable(xt, t) = xt ∈ X εtrec.

Now, to prove the claim, it suffices to prove that on event
E(~α), xt = x′t for all t ∈ N. We prove by induction. The base

case t = 0 follows by assumption. The inductive case follows
since on event E(~α), we have

xt+1 = πshield(xt) = π∗shield(xt) = π∗shield(x′t) = x′t+1.

The claim follows.
Finally, we prove Theorem IV.4.

Proof: Fix an initial state x0 ∈ X0. Let E(~α) be the
event in the statement of Lemma A.5—i.e., for a fixed initial
state x0 ∈ X0 and sequence of disturbances ~w ∈ W∞, the
trajectory x0, x1, x2, ... obtained by using πshield is identical to
the trajectory x′0 = x0, x

′
1, x
′
2, ... obtained by using π∗shield.

As a consequence, x0, x1, x2, ... ∈ Xsafe if and only if
x′0, x

′
1, x
′
2, ... ∈ Xsafe. In other words, by Lemma A.4, on event

E(~α), we have

1− ε ≥ P~w∼P∞
W

(∀t ∈ N . x′t ∈ Xsafe)

= P~w∼P∞
W

(∀t ∈ N . xt ∈ Xsafe).

By Lemma A.5, we have P~α∼P∞
A

(E(~α)) ≥ 1− δ. The claim
follows.

APPENDIX B
PROOF OF LEMMA V.1

First, we have the following result bounding the Taylor
series approximation error [39]:

Theorem B.1. (Taylor’s theorem) Let g : Rd → R be twice
continuously differentiable and x̄ ∈ Rd. For all x ∈ Rd, there
exists ξ ∈ Rd of the form ξ = x̄+ c(x− x̄), where c ∈ [0, 1],
such that

g(x) = g(x̄) +∇xg(x̄)(x− x̄) +
1

2
(x− x̄)>∇2

xg(ξ)(x− x̄).

Now, consider the linear approximation ḡ : Rd → R of
g : Rd → R near x̄ ∈ Rd defined by

g(x) ≈ ḡ(x) = g(x̄) +∇xg(x̄)(x− x̄).

Suppose that all derivatives of g are L-Lipschitz continuous
for ‖ · ‖2. Then, each entry in ∇2

xg(x) is uniformly bounded
in absolute value by L. Thus, we have

|g(x)− ḡ(x)| ≤ ‖∇
2
xg(ξ)‖2

2
‖x− x̄‖22

≤ ‖∇
2
xg(ξ)‖F

2
‖x− x̄‖22

≤ Ld

2
‖x− x̄‖22.

As we describe next, we apply this result to each component
of the dynamics to prove Lemma V.1.

In particular, let z = (x̄, ū) ∈ Zeq be a safe equilibrium
point, let K ∈ RnX×nU be the LQR for z, and let f̃ : X ×
W → X be the closed-loop dynamics f̃(x,w) = f(x,Kx,w).
Consider the approximation

f̃(x,w) ≈ f̄(x)

= f̃(x̄, 0) +∇xf̃(x̄, 0)(x− x̄)

= x̄+∇xf̃(x̄, 0)(x− x̄),

 ���

Algorithm 2 Generate a trajectory from x0 for dynamics f
with uncertain parameters θ ∼ PΘ.

procedure RUNUNCERTAINSMPS(x0)
f̂ ← CONSTRUCTHISTORYMDP(f)
ζ̂ ← RUNSMPS(x0) using dynamics f̂ and disturbance

bound wmax + θmax
ζ ← (x0, x1, ...) where ζ̂ = ((x0, h0), (x1, h1), ...)
return ζ

end procedure

where the second inequality follows since we have assumed
that x̄ is an equilibrium point. Our goal is to bound the
approximation error

w̃ = f̃(x,w)− f̄(x),

which includes both the disturbance w and the linearization
error. To this end, we have

‖w̃‖2 = ‖f̃(x,w)− f̄(x)‖2
≤ ‖f̃(x,w)− f̃(x, 0)‖2 + ‖f̃(x, 0)− f̄(x)‖2

≤ L‖w‖2 +
L̃n

3/2
X

2
‖x− x̄‖22

≤ Lwmax +
L̃n

3/2
X r2

2
,

where the first term is bounded since f̃ is L-Lipschitz con-
tinuous in w and since ‖w‖2 ≤ wmax, and the second term
is bounded by the above discussion applied independently to
each component of f̃(x, 0)− f̄(x). The claim follows.

APPENDIX C
EXTENSION TO GAUSSIAN PROCESSES

Consider dynamics f : X × U × W × Θ → X , where
θ ∈ Θ ⊆ RnΘ are unknown parameters to be estimated
from observations. To ensure safety, we must bound the initial
uncertainty; we assume a prior θ ∼ PΘ such as a Gaussian
process [18, 2, 10]. Given initial state x0 ∈ X0, policy
π : X → U , disturbances ~w ∼ P∞W , and parameters θ ∼ PΘ,
the corresponding trajectory is ζ(x0, π, ~w, θ) = (x0, x1, ...) ∈
X∞, where xt+1 = f(xt, π(xt), wt, θ).

Assumption C.1. Given ε′ ∈ R>0, there exists θmax ∈ R>0

such that Pθ∼PΘ
(‖θ‖2 ≤ θmax) ≥ 1− ε′.

To handle this setting, we apply SMPS to the history
MDP that records the history of observations h ∈ H ⊆⋃∞
t=0(X × U × X)t. Then, we use the posterior estimate

p(θ | h) = PΘ,h(θ) of θ to sample the next state. For
simplicity, we assume PΘ,h can be reparameterized—i.e.,
θ ∼ PΘ,h has distribution equal to that of g(ψ, h), where
g : Ψ × H → Θ, ψ ∈ Ψ ⊆ RnΨ , and ψ ∼ PΨ is
an i.i.d. random variable. Then, the history MDP has states
X̂ = X × H, actions Û = U , disturbances Ŵ = W × Ψ,
where PŴ((w,ψ)) = PW(w) · PΨ(ψ), and transitions f̂ :

X̂ × Û × Ŵ → X̂ , where

f̂((x, h), u, (w,ψ)) = (x′, h ∪ [(x, u, x′)])

where

x′ = f(x, u, w, g(ψ, h)).

We can use f̂ in conjunction with SMPS; see Algorithm 2. It
uses wmax + θmax as the disturbance bound instead of wmax.
We have the following guarantee:

Theorem C.2. We have

Pα∼P∞
A

(Aε,ε′) ≥ 1− δ,

where Aε,ε′ is the event

Pθ∼PΘ, ~w∼P∞
W

(ζ(x0, πshield, ~w, θ) ⊆ Xsafe) ≥ 1− ε− ε′.

For example, suppose PΘ is a Gaussian process—i.e., θ ∼
PΘ is a function θ : X × U ×W → X , and

f(x, u, w, θ) = f0(x, u, w) + θ(x, u, w),

where f0 : X × U × W; we assume θ(x, u, w) is uniformly
bounded with probability at least 1 − ε′ [10]. Given h ∈ H,
we have

PΘ,h,x,u,w = N (µ(h, x, u, w), σ(h, x, u, w)2),

so letting ψ ∼ N (0, 1) be an i.i.d. Gaussian random variable,
we have

f̂((x, h), u, (w,ψ))

= f0(x, u, w) + µ(h, x, u, w) + σ(h, x, u, w) · ψ.

We now prove Theorem C.2. First, consider a trajectory in the
history MDP—i.e.,

ζ̂(x̂0, π̂, ~̂w) = x̂0, x̂1, ... = (x0, h0), (x1, h1), ...

where

x̂t+1 = f̂(x̂t, π̂(x̂t), ŵt).

Then, given x0 ∈ X , π : X → U , ~w ∼ P∞W , and ~ψ ∼ PΨ,
let x̂0 = (x0,∅) ∈ X̂ , π̂ : X̂ → Û be defined by π̂((x, h)) =
π(x), and

~̂w = (w0, ψ0), (w1, ψ1), ...

Then, we can construct the projected trajectory

ζ̄(x0, π, ~w, ~ψ) = x0, x1, ...

by constructing

ζ̂(x̂0, π̂, ~̂w) = (x0, h0), (x1, h1), ...

and projecting out the histories ht for all t ∈ N.

Lemma C.3. Given x0 ∈ X , policy π : X → U , and
~w ∼ P∞W , the random variable ζ(x0, π, ~w, θ) ∈ X∞, where
θ ∼ PΘ, is equal in distribution to the random variable
ζ̄T (x0, π, ~w, ~ψ) ∈ X∞, where ~ψ ∼ P∞Ψ —i.e.,

Pθ∼PΘ

(
ζ(x0, π, ~w, θ) ∈ E

)
= P~ψ∼P∞

Ψ

(
ζ̄(x0, π, ~w, ~ψ) ∈ E

)

 ���

for all events (i.e., measurable sets) E over X∞.

Proof. First, we show that the distribution of
ζT (x0, π, ~w, θ) ∈ X T+1, where θ ∼ PΘ, equals the
distribution of ζ̄T (x0, π, ~w, ~ψ) ∈ X T+1, where ~ψ ∼ P∞Ψ ;
here, ζT and ζ̄T denote partial trajectories up to time T ∈ N.
We prove by induction on T . The base case T = 0 follows
since x0 is constant. For the inductive case, let ζT (x0, π, ~w, θ)
have distribution p(x0, x1, ..., xT , xT+1), and ζ̄T (x0, π, ~w, ~ψ)
have distribution p̄(x0, x1, ..., xT , xT+1). Then, we have

p(x0, x1, ..., xT , xT+1)

= p(xT+1 | x0, x1, ..., xT) · p(x0, x1, ..., xT),

and similarly for p̄. By induction, we have p(x0, x1, ..., xT) =
p̄(x0, x1, ..., xT); thus, it suffices to show that p(xT+1 |
x0, x1, ..., xT) = p̄(xT+1 | x0, x1, ..., xT). For p, we have

xT+1 = f(xT , uT , wT , θ),

where θ ∼ PΘ,hT is the posterior distribution of θ given
history hT = (x0, u0, x1), ..., (xT−1, uT−1, xT) ∈ H and
ut = π(xt) for t ∈ {0, ..., T}. By assumption, the distribution
of θ equals that of g(ψ, ht), where ψ ∼ PΨ, so for p, we have

xT+1 = f(xT , uT , wT , g(ψ, hT)),

where ψ ∼ PΨ i.i.d. For p̄, we have

xT+1 = f(xT , uT , wT , g(ψT , hT)),

where ψT ∼ PΨ i.i.d. Now, we note that the probability
measure of ζ(x0, π, ~w, θ) and ζ̄(x0, π, ~w, ~ψ) on the infinite
product space X∞ is the product measure. Consider sets of
the form E =

∏∞
t=0Et ⊆ X∞, where Et ⊆ X is the

tth component of E, where E is measurable and only has
nontrivial components—i.e., Et ∈ {∅,X} for all but finitely
many t ∈ N; these sets are the cylindrical sets, and form a
generating family for the measurable sets of X∞ under the
product measure [44]. Thus, to prove that ζ(x0, π, ~w, θ) is
equal in distribution to ζ̄(x0, π, ~w, ~ψ), it suffices to prove that
their probabilities are equal for all such events.

To this end, consider such a set E, let T = {t1, ..., tk} be
the nontrivial components, and let T = max{t1, ..., tk}. Note
that we can assume Et = X for all t 6∈ T , since otherwise the
probability of E is zero for both random variables. We have

Pθ∼PΘ

(
ζ(x0, π, ~w, θ) ∈ E

)
= Pθ∼PΘ

(
∀t ∈ N . ζ(x0, π, ~w, θ)t ∈ Et

)
= Pθ∼PΘ

(
∀t ∈ {0, 1, ..., T} . ζ(x0, π, ~w, θ)t ∈ Et

)
= Pθ∼PΘ

(
∀t ∈ {0, 1, ..., T} . ζT (x0, π, ~w, θ)t ∈ Et

)
= P~ψ∼PT+1

Ψ

(
∀t ∈ {0, 1, ..., T} . ζ̄T (x0, π, ~w, ~ψ)t ∈ Et

)
= P~ψ∼P∞

Ψ

(
∀t ∈ {0, 1, ..., T} . ζ̄T (x0, π, ~w, ~ψ)t ∈ Et

)
= P~ψ∼P∞

Ψ

(
∀t ∈ N . ζ̄T (x0, π, ~w, ~ψ)t ∈ Et

)
= P~ψ∼P∞

Ψ

(
ζ̄T (x0, π, ~w, ~ψ) ∈ E

)
,

as claimed.
Now, we prove Theorem C.2. The key challenge is that

Assumption III.2 may not hold for f̂ . We note that Assump-
tion III.2 is only used to establish Lemma V.1; thus, it suffices
to prove that Lemma V.1 continues to hold. Furthermore,
Lemma V.1 is only used to establish that

ζ(x0, π
z
LQR, ~w) ⊆ Xsafe

for all x0 ∈ X z0 and ~w ∼ P∞W , where z ∈ Zeq is a
safe equilibrium point. Since πzLQR is not updated during the
execution of πshield, it suffices to prove Lemma V.1 with respect
to the original dynamics f . We prove that Lemma V.1 holds
on the event ‖θ‖2 ≤ θmax, which by assumption, holds with
probability at least 1− ε′.

As in the proof of Lemma V.1, let the closed-loop dynamics
f̃ : X ×W ×Θ→ X be

f̃(x,w, θ) = f(x,Kx,w, θ),

and let its linear approximation f̄ : X → X be

f̃(x,w, θ) ≈ f̄(x) = f̃(x̄, 0, 0) +∇xf̃(x̄, 0, 0)

= x̄+∇xf̃(x̄, 0, 0).

As before, our goal is to bound the approximation error w̃ =
f̃(x,w, θ)− f̄(x), which includes both the disturbance w, the
model uncertainty θ, and the linearization error. Thus, we have

‖w̃‖2 = ‖f̃(x,w, θ)− f̄(x)‖2
≤ ‖f̃(x,w, θ)− f̃(x, 0, 0)‖2 + ‖f̃(x, 0, 0)− f̄(x)‖2

≤ L‖w‖2 + L‖θ‖2 +
Ln

3/2
X

2
‖x− x̄‖22

≤ L(wmax + θmax) +
Ln

3/2
X r2

2
.

Note that Algorithm 2 constructs πzLQR using disturbance
bound wmax + θmax; with this modification, the claim of
Lemma V.1 follows.

As a consequence, by Theorem IV.4, we have

P~α∼P∞
A

(Aε) ≥ 1− δ,

where Aε is the event

P~w∼P∞
W , ~ψ∼P∞

Ψ

(
ζ̄(x0, πshield, ~w, ~ψ) ⊆ Xsafe

)
≥ 1− ε.

By Lemma C.3, ζ̄(x0, πshield, ~w), where ~w ∼ P∞W and ~ψ ∼
P∞Ψ , has equal distribution as ζ(x0, πshield, ~w, θ), where ~w ∼
P∞W and θ ∼ PΘ. Thus, we have

P~α∼P∞
A

(Aε) ≥ 1− δ,

where Aε is the event

P~w∼P∞
W ,θ∼PΘ

(
ζ(x0, πshield, ~w, θ) ⊆ Xsafe

)
≥ 1− ε

Finally, we have conditioned on the event ‖θ‖2 ≤ θmax. The
claim follows by a union bound.

 ���

	Introduction
	Background & Related Work
	Problem Formulation
	Statistical MPS
	Backup Policy
	Experiments
	Conclusion
	Appendix A: Proof of Theorem IV.4
	Appendix B: Proof of Lemma V.1
	Appendix C: Extension to Gaussian Processes

