
BEYOND DEDUCTIVE INFERENCE IN PROGRAM ANALYSIS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Osbert Bastani

November 2017

c© Copyright by Osbert Bastani 2018

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Alex Aiken) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(John Mitchell)

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Percy Liang)

Approved for the Stanford University Committee on Graduate Studies

iii

Abstract

As software becomes an increasingly critical part of our world, ensuring the safety and correctness

of software becomes increasingly important. The goal of program analysis is to automatically test

and verify programs to find bugs and improve software quality. However, in large software systems,

there are inevitably parts of the system that are too difficult for the program analysis to handle.

To scale to such systems, program analysis tools typically require specifications that summarize the

behavior of these hard-to-analyze portions of the system. However, these specifications are often

costly to produce, thus limiting the adoption of program analysis tools in practice.

In this thesis, we propose algorithms for inferring specifications. We design algorithms that

extend the capabilities of existing specification inference algorithms to far more complex and chal-

lenging settings compared to existing work. In particular, our algorithms can infer specifications that

have recursive structure, such as that of a finite-state automaton or even a context-free grammar.

We implement our specification inference algorithms, and show that they can infer specifications

that can be used by downstream program analyses that verify or test programs.

iv

Acknowledgments

I thank my advisor Alex Aiken, who has taught me so much during my five years at Stanford,

not only about program analysis, but about how to do good research. He has always found time to

support and guide me despite his many obligations, helping me develop my ideas, editing my papers,

and polishing my talks. More importantly, he has always inspired me to be ambitious in my work,

and to tackle challenging problems where the path forward is not always in sight.

I thank Saswat Anand, for guiding me through the early years of my Ph.D. and teaching me

so much about program analysis. I am still surprised when I realize that some of the insights he

taught me are not so well known as they should be. I thank Percy Liang for teaching me everything

I know about machine learning theory, and for always taking the time to think through my ideas,

often clarifying and improving them in the process. I thank Isil Dillig, who took the time to give me

much valuable advice on applying for academic jobs. I thank John Mitchell, who guided me during

the first year of my Ph.D., and introduced me to the STAMP project. I also thank Clark Barrett

and Mykel Kochenderfer for taking the time to serve on my defense committee.

I thank all my friends at Stanford—Tony Feng, Edward Gan, Carolyn Kim, Sindy Li, Armin

Pourshafeie, Bharath Ramsundar, Rick Song, Jacob Steinhardt, Alex Zhai, and Joy Zhang—who

have not only made the last five years incredibly fun, but also sat through long practice talks. I

thank all my collaborators and colleagues—Lazaro Clapp, Yu Feng, Stefan Heule, Leo Lampropou-

los, Ruben Martins, Patrick Mutchler, Aditya Nori, Manolis Papadakis, Rahul Sharma, Pratiksha

Thaker, and Dimitrios Vytiniotis—who have made my Ph.D. enjoyable and much more productive.

I thank my parents for their love and support throughout my life, always ready to help me face

whatever challenges I come across. Because they have always been so supportive of anything I do,

I have never been afraid to take risks both in my research and in life. I thank my brother for being

a great friend for almost my entire life. Finally, above all, I thank my wife and best friend, Hamsa

Bastani, for her constant love and unwavering support, and for the countless hours she has spent

listening to all my crazy ideas and giving her honest opinion, talking through what I need to do,

motivating me to finish my work, proofreading everything I write, and cheering me up and helping

me get back on my feet when things do not go so smoothly. I am eternally grateful that she made

the Ph.D. journey with me, and that we will be embarking upon our next journey together.

v

Contents

Preface iv

Acknowledgments v

1 Introduction 1

2 Background 5

2.1 The Points-To Relation . 6

2.2 Specifications . 7

2.3 CFL Reachability . 9

2.4 Static Explicit Information Flow Analysis . 10

2.4.1 Constructing the Flow Graph . 10

2.4.2 Constructing the CFG . 12

2.5 Implementation . 14

3 Interactive Specification Inference 15

3.1 Overview . 17

3.2 Problem Statement . 19

3.2.1 Missing Specifications CFL Reachability . 19

3.2.2 G Using Regular Languages . 20

3.2.3 The Specification Inference Problem for GRW 22

3.3 Algorithms for Specification Inference . 23

3.3.1 Algorithms for GRW . 24

3.3.2 Optimizations . 24

3.3.3 Interactive Refinement . 30

3.3.4 Shortest-Path CFL Reachability . 32

3.4 Implementation . 32

3.5 Evaluation . 33

3.5.1 Specification Inference Accuracy . 36

vi

3.5.2 Specification Aggregation . 37

3.5.3 Verification . 37

3.6 Conclusion . 38

4 Specification Inference with Untrusted Responses 40

4.1 Overview . 42

4.1.1 Analyzing Callbacks . 45

4.2 Interactive Verification . 46

4.2.1 Abductive Inference . 47

4.2.2 Instrumenting Cuts . 48

4.2.3 Improving Precision Using Multiple Cuts . 48

4.3 Cuts for CFL Reachability . 51

4.3.1 Algorithms for CFL Reachability Cuts . 52

4.4 Implementation . 54

4.5 Evaluation . 56

4.5.1 Inferring Cuts . 58

4.5.2 Interactive Verification . 59

4.6 CFL Minimum Cut is NP-Hard . 61

4.7 Conclusion . 63

5 Active Learning of Points-To Specifications 65

5.1 Background . 66

5.2 Overview . 67

5.2.1 Path specifications . 68

5.2.2 Phase One: Sampling Positive Examples . 69

5.2.3 Phase Two: Inductive Generalization . 69

5.3 Path Specifications . 70

5.3.1 Motivation . 70

5.3.2 Syntax and Semantics . 72

5.3.3 Admissibility . 73

5.3.4 Checking Admissibility . 74

5.3.5 Equivalence to Library Implementations . 75

5.3.6 Regular Sets of Path Specifications . 75

5.4 Specification Inference Algorithm . 76

5.4.1 Overview . 76

5.4.2 Sampling Positive Examples . 77

5.4.3 Language Inference Algorithm . 78

5.5 Test Case Synthesis Algorithm . 80

vii

5.5.1 Skeleton Construction . 80

5.5.2 Filling Holes . 81

5.5.3 Variable Initialization . 82

5.5.4 Statement Scheduling . 84

5.5.5 Guarantees . 85

5.6 Static Points-To Analysis with Regular Sets of Path Specifications 87

5.6.1 Converting a Single Path Specification . 87

5.6.2 Converting a Regular Set of Path Specifications 89

5.7 Proof of Equivalence Theorem . 90

5.7.1 Converting the Library Implementation to Path Specifications 90

5.7.2 Proof Overview . 91

5.7.3 Equivalent Semantics . 92

5.7.4 Proofs of Propositions 5.7.1 & 5.7.2 . 94

5.7.5 Reduction of Theorem 5.3.4 to Theorem 5.7.3 94

5.7.6 Proof of Technical Lemmas . 95

5.8 Implementation . 99

5.9 Evaluation . 101

5.9.1 Specification Inference . 101

5.9.2 Points-To Analysis . 102

5.10 Conclusion . 104

6 Synthesizing Program Input Grammars 105

6.1 Problem Formulation . 107

6.2 Overview . 109

6.3 Phase One: Regular Expression Synthesis . 111

6.3.1 Candidates . 111

6.3.2 Candidate Ordering . 116

6.3.3 Check Construction . 117

6.3.4 Computational Complexity . 119

6.4 Phase Two: Recursive Properties . 119

6.4.1 Translating R̂ to a Context-Free Grammar 120

6.4.2 Candidates and Ordering . 121

6.4.3 Check Construction . 124

6.4.4 Learning Matching Parentheses Grammars 125

6.4.5 Computational Complexity . 127

6.5 Extensions . 127

6.5.1 Multiple Seed Inputs . 127

6.5.2 Character Generalization . 127

viii

6.6 Discussion . 128

6.7 Evaluation . 130

6.7.1 Sampling Context-Free Grammars . 130

6.7.2 Comparison to Language Inference . 130

6.7.3 Comparison to Fuzzers . 134

6.8 Conclusion . 138

7 Related Work 139

7.1 Specification Inference for Static Analysis . 139

7.2 Program Analysis . 141

7.3 Language Learning . 142

8 Conclusion 145

Bibliography 146

ix

List of Tables

x

List of Figures

1.1 We design specifications inference algorithms that interact with an oracle to infer

specifications. 2

2.1 An information flow through the List and Double classes. 7

2.2 Specifications for Android library classes. 7

2.3 Program fact extraction rules for static information flow analysis. In Rule 8, ov′ is a

fresh vertex. 10

2.4 Productions for Cflow. 11

2.5 The flow graph G corresponding to the code in Figure 2.1 and the framework spec-

ifications in Figure 2.2. Solid edges are facts extracted from the code in Figure 2.1

(backwards edges added by Rule 9 are not shown). Dotted edges are facts extracted

from the framework specifications in Figure 2.2. Edges corresponding to alias speci-

fications are boxed in a solid red line, and edges corresponding to flow specifications

are boxed in a dashed blue line. Dashed edges are edges added by productions in

Figure 2.4 (not all such edges are shown). 12

3.1 A flow through the List and Double classes. 16

3.2 Specifications for Android framework classes. 16

3.3 The flow graph G corresponding to the code in Figure 3.1 and the framework spec-

ifications in Figure 3.2. Solid edges are facts extracted from the code in Figure 3.1

(backwards edges added by Rule 9 are not shown). Dotted edges are facts extracted

from the framework specifications in Figure 3.2. Edges corresponding to alias speci-

fications are boxed in a solid red line, and edges corresponding to flow specifications

are boxed in a dashed blue line. Dashed edges are edges added by productions in

Figure 2.4 (not all such edges are shown). 17

3.4 An information flow not captured by flow specifications. 18

3.5 An alternative (and incorrect) specification for List.add. 20

xi

3.6 An overview of our specification inference system. The system infers specifications

Ŝ and proposes them to the oracle O (i.e., the human analyst), who examines the

proposals and generates a new set of specifications Snew. Then S ← S ∪ Snew, and

the process repeats. Program fact extraction is described in Figure 2.3. While not

depicted here, C may depend on P . The graph transformation and CFG transforma-

tion are computed by Algorithm 2. The shortest-path CFL reachability algorithm is

described in Section 3.3.3 and Appendix 3.3.4. The specification refinement loop is

performed by Algorithm 3. 23

3.7 Given v
R−→ v′, N constructs the transition graph for a NFA that accepts R with start

state v and final state v′. In Rules 2 and 4, t is a fresh vertex. 24

3.8 Productions for C. 27

3.9 Examples of production rules added by Figure 3.8, along with the rules that generate

them. 27

3.10 Algorithm 2 adds the dashed edges to Figure 3.3 if the specification for List.add is

missing. We only show edges relevant to the production of the edge labeled (4). . . . 28

3.11 Statistics on inferred Android framework specifications. 33

3.12 Specification inference results on large Android apps: the number of Jimple lines of

code (“LOC”), the number of specifications proposed by our tool (“Sum.”), the num-

ber of worst-case specifications (“Tot. Sum.”), the number of critical specifications

(“Crit. Sum.”), the number of iterations with the analyst in Algorithm 3 (“Rounds”),

the proportion of proposed specifications that are correct (“Acc.”), the number of new

information flows discovered (“Flows”), the running time in seconds (“Time”), and

the specification type (“Type”). The accuracy is N/A if no specifications are inferred. 34

3.13 Sample of inferred specifications. We show the class to which the method belongs

(“Class”), the method signature (“Method”), the pair (w,w′) ∈ W returned by Al-

gorithm 3 (“Specification”), and the specification type (“Type”). 34

3.14 For (a) flow and (b) points-to: # specifications proposed (black, circle), # correct

(red, triangle), and # critical (blue, diamond). (c) Run time of the flow (black,

circle) and points-to (red, triangle) specification inference algorithms. (d) Ratio of

worst-case points-to relation size to known points-to relation size. (e) Ratio of #

specifications with aggregation to # specifications from baseline, averaged over 100

random orders (black line), and for two different random orders (red triangle, blue

diamond). (f) Proportion of common specifications proposed, for c = 2 (black, solid),

3 (blue, dashed), and 4 (red, dotted), averaged over 100 random orders. 35

xii

4.1 An app PonCreate for which the static analysis potentially finds a false positive infor-

mation flow. The comment in line 2 indicates that the first argument of sendHTTP is

a sink, and the comment in line 6 indicates that the return value of getLocation is

a source. 42

4.2 A part of the graph G for the code in Figure 4.1. Solid edges are edges extracted

using the rules in Figure 4.1. Dashed edges are edges added by the rules in Figure 2.4.

Backwards edges are omitted for clarity. 43

4.3 The interactive verification system. One iteration of the system proceeds as follows:

(i) The system produces an inferred cut λ that suffices to prove absence of source-sink

flows. (ii) The oracle O (which is the developer) either accepts λ, or generates a new

test Tnew showing that λ is invalid. 49

4.4 The derivation tree for the edge rgetLocation
SrcSink−−−−−→ param in the graph in Figure 4.2. 55

4.5 The integer linear program (ILP) corresponding to the productions shown in Figure 4.4. 55

4.6 Statistics for some of the Android apps used in the experiments: the number of lines

of Jimple bytecode (“LOC”), whether the app is malware (“Mal.”), whether the app

exhibited a true or false positive information flow (“F/TP”), the number of source-

sink edges |{e∗}| = |{vsource
T−→ vsink ∈ GC}|, the number of may-edges |Ep|, the

number of variables |V| in the ILP, the unoptimized number of constraints |C| and

the optimized number of constraints |Copt|, the percentage |Copt| compared to |C|,
the running time of the ILP solver in seconds (“Time”), and the size of the first cut

|Eλ1 | and the second cut |Eλ2 | (both on the first iteration of our algorithm). Where

relevant, we give statistics for the largest ILP solved for the given app. Also, we

include the average values over the entire corpus of 77 apps (where Ep is taken to be

Ep
p). 56

4.7 Statistics of the constraint system and resulting cuts for the corpus of 77 Android apps,

plotted on a log-log scale: (a) number of unoptimized (black, circle) and optimized

(red, triangle) constraints, (b) ILP solve time in seconds, (c) size of the search space

Ep, (d) size of the first cut Eλ1
(red, triangle) and the second cut Eλ2

(black, circle). 57

4.8 Size and validity of cuts generated by Algorithm 7 for apps with false positive flows.

“None” means no cut could be generated. For “Cause”, “u.k.” means the cause

is unknown, and “u.r.” means the information flow is unreachable. The values Ii

indicate whether the ith cut is sufficient to prove the safety property φflow, i.e., Ii =

χ ∧ λi
?

|= φflow. 61

4.9 Visualization of how many apps are successfully verified at each step of the process.

Algorithm 5 is run on each of the 12 input apps that have a false positive explicit

information flow. The x-axis describes the various points in the process, and the

y-axis describes the number of apps remaining to be verified at each point. 61

xiii

5.1 An example of a program using the Box class in the library (right), and the imple-

mentation of the library functions set, get, and clone in the Box class. 65

5.2 Productions for the context-free grammar Cpt. The start symbol of Cpt is FlowsTo. 67

5.3 The solid edges are the graph G extract for the program test shown in Figure 5.1. In

addition, the dashed edges are a few of the edges in G when computing the transitive

closure. We omit backward edges (i.e., with labels A) for clarity. Vertices and edges

corresponding to library code are highlighted in red. 67

5.4 Examples of hypothesized library implementations (left column), an equivalent set

of path specifications (middle column), and the synthesized test cases to check the

precision of these specifications (right column), with a check mark 3 (indicating that

the tests pass) or a cross mark 7 (indicating that the tests fail). 71

5.5 An overview of our specification inference system. The section describing each com-

ponent is in parentheses. 76

5.6 Steps in the test synthesis algorithm (right) for a candidate path specification for List

(left). Code added at each step is highlighted in blue. Scheduling is shown in the

same line as initialization—it chooses the final order of the statements. This figure is

a duplicate of Figure 5.6, and is shown here for clarity. 82

5.7 Rules for generating code fragment specifications from path specifications defined by

a finite state automaton M̂ = (Q,Vpath, δ, qinit, Qfin), where for simplicity we assume

M̂ has a single accept state qfin. 88

5.8 Examples of candidate code fragment specifications (left column), and the equiva-

lent path specifications as a regular expression (middle column) and as a finite state

automaton (right column). 89

5.9 The ratio of nontrivial program points-to edges discovered using (a) ground truth

specifications versus the Collections API implementation, (b) Atlas versus ground

truth specifications, and (c) Atlas versus existing specifications. The ratios are sorted

from highest to lowest for the 46 benchmark programs with nontrivial points-to edges.

In (a) and (c), some values exceeded the graph scale. 100

6.1 A context-free language L(CXML) of XML-like strings, along with an oracle OXML for

this language and a seed input αXML. 108

xiv

6.2 The generalization steps taken by our algorithm given seed input αXML and oracle

OXML. The initial language {αXML} is generalized to a regular expression in steps R1-

R9. The resulting regular expression is translated to a context-free grammar, which

is further generalized in steps C1-C2. The candidates at each step are shown in order

of preference, with the most preferable on top (ellipses indicate omitted candidates).

Checks for each candidate are shown; a green check mark 3 indicates that the check

passes and a red cross 7 indicates that it fails. A star ? is shown next to the selected

candidate. 110

6.3 The productions added to ĈXML corresponding to each generalization step are shown.

The derivation shows the bracketed subexpression [α]iτ (annotated with the step num-

ber i) selected to be generalized at step i, as well as the subexpression to which [α]iτ is

generalized. The language L(Ĉ, Ai) (i.e., strings derivable from Ai) equals the subex-

pression in R̂ that eventually replaces [α]iτ . As before, steps that select a candidate

that strictly generalizes the language are bolded (in the first column). 119

6.4 We show (a) the F1 score, and (b) the running time of L-Star (white), RPNI (light

grey), Glade omitting phase two (dark grey), and Glade (black) for each of the four

test grammars C. The algorithms are trained on 50 random samples from the target

language L∗ = L(C). In (c), for the XML grammar, we show how the precision (solid

line), recall (dashed line), and running time (dotted line) of Glade vary with the

number of seed inputs |Ein| (between 0 and 50). The y-axis for precision and recall is

on the left-hand side, whereas the y-axis for the running time (in seconds) is on the

right-hand side. 129

6.5 Examples of context-free grammars that are synthesized by Glade for the given

target languages. The symbol denotes a space. For clarity, character ranges with

large numbers of characters are denoted by [...]. 131

6.6 For each program, we show lines of program code, the lines of seed inputs Ein, and

running time of Glade. 133

6.7 In (a) we show the normalized incremental coverage restricted to valid samples for

the näıve fuzzer (black dotted line), afl-fuzz (white), and Glade (black). In (b), we

show the same metric for the näıve fuzzer (black dotted line) and Glade (black);

grey represents either a handwritten fuzzer (for Grep and the XML parser) or a

large test suite (for Python, Ruby, and Javascript). In (c), we compare the valid

normalized incremental coverage of Glade (solid) to the näıve fuzzer (dashed) and

afl-fuzz (dotted) as the number of seed inputs varies (all values are normalized by the

final coverage of the näıve fuzzer). 134

6.8 An example of a valid sample from the grammar synthesized by Glade for the XML

parser. For clarity, the string has been formatted with additional whitespace. 137

xv

Chapter 1

Introduction

Program analysis has become a vital part of the software development life-cycle due to its effec-

tiveness at finding bugs and security vulnerabilities in large software systems [38, 16, 40, 103, 156,

106, 30, 21, 63, 33, 159]. Despite this progress, the use of program analysis tools has achieved lim-

ited adoption beyond relatively shallow bug detection methods and the application of verification

techniques to some of the most safety critical systems.

An important obstacle for achieving widespread adoption is that there are often large upfront

costs to using program analysis tools on a new codebase [21, 18]. Such costs arise because large

systems typically contain components that cannot be analyzed by the tool, including (i) calls to

functions implemented as native code, (ii) use of dynamic programming language features such as

Java reflection, or (iii) dynamically loaded code. In fact, in our experience, for large systems it

is unusual if any of these situations does not frequently occur. However, many program analyses

assume that the entire program’s source code is available for analysis.

Handling missing or hard-to-analyze code in a fully automatic way generally results in using either

very pessimistic and imprecise assumptions or very optimistic and unsound assumptions [161]. An

alternative, more pragmatic solution is to require that the human user (whom we refer to as the

analyst) manually write specifications (also known as summaries, annotations, or models) describing

the relevant behavior of the missing code so that it does not need to be analyzed. For this approach

to work, it is critical that (i) the manual effort of writing the specifications is small, and (ii) the

analysis produces sound results even if some specifications are missing.

However, specifications can be time consuming for the analyst to provide. Therefore, a num-

ber of approaches to inferring specifications have been proposed. By the nature of the problem,

these algorithms must leverage inference techniques beyond deductive inference used in a program

analysis—otherwise, they would simply be part of the program analysis. Typically, these approaches

depend on one of two kinds of inference techniques. First, they can use inductive inference to

generalize a set of observations to a more general specification; these approaches can either use

1

CHAPTER 1. INTRODUCTION 2

queries

responses

specification inference
algorithm

inferred specifications
oracle

Figure 1.1: We design specifications inference algorithms that interact with an oracle to infer speci-
fications.

observations from dynamic executions [9, 107, 8, 157, 128, 57, 126, 162, 112, 163, 19] or static infor-

mation [86, 116, 131, 95, 20, 117, 22]. Alternatively, they can use abductive inference to identify the

simplest specification that explains a set of observations; these approaches typically interact with a

human analyst to refine the inferred specification [43, 161, 18, 5].

Thus far, specification inference algorithms have largely been limited to local properties of code,

such as loop invariants [107, 128, 126], type annotations [20, 117], or simple interface specifications [8,

86, 95, 22]. While these tools have proven useful, more complex specifications are required for several

widely-used program analyses, in particular, heap specifications are required for static points-to

analysis [18], and program input grammars are required for grammar-based fuzzing [61, 19]. These

specifications are differentiated by the presence of recursive or hierarchical structures. For example,

a piece of code can exhibit complex aliasing patterns by storing objects in nested data structures,

making it difficult for the specification inference algorithm to resolve how each part of the code

contributes to the observed aliasing relation. Similarly, programs often have complex input languages

defined by regular expressions or even context-free grammars.

In this thesis, we propose novel specification inference algorithms designed to infer specifications

with complex hierarchical structure. At a high level, all the algorithms we propose use an active

learning strategy where they interact with an oracle to obtain information about the true specifica-

tions. As the algorithm obtains new information, it adaptively selects new queries to ask the oracle

to further prune the search space. The oracle can either be the human analyst using the analysis, or

concrete executions of the program being analyzed. Figure 1.1 summarizes this high level approach.

In the first part of this thesis, we devise new algorithms that leverages interaction with the

human analyst to infer specifications. We focus on inferring specifications for interprocedural static

analyses, which have many practical applications such as automated software verification [16, 40, 33],

bug finding [38, 3], and taint analysis [96, 155].

CHAPTER 1. INTRODUCTION 3

As a motivating example, consider the problem of deciding whether a given Android app is ma-

licious. Typical Android malware exhibit behaviors including theft of contact information, sending

SMS text messages to premium phone numbers, and unauthorized location tracking. Many of the

malicious behaviors can be described as the flow of sensitive data to untrusted recipients, such as

location data flowing to an untrusted web server, or an untrusted phone number flowing to an SMS

send request. As a consequence, information flow analysis has been proposed as a way of identifying

Android malware [55, 51, 46, 14, 52].

In principle, a standard static information flow analysis, which we describe in Chapter 2, can

identify such malware. Unfortunately, the Android framework (written in Java, with calls to native

code) is a classic example of how system libraries cause difficulties for static analyses. Android

framework methods frequently use reflection and native methods, making it very difficult to construct

a precise call graph or to perform a sound and precise context sensitive points-to analysis. Examples

of such problems in practice include:

• System.arraycopy is a native method.

• Bundle.putLong indirectly calls the native method Parcel.nativeWriteLong in the Android

framework (bundles are used to pass data to and receive data from the Android system).

• GeoPoint.getLatitudeE6 is part of a closed-source Google library, so the source code is

unavailable.

In Chapter 3, we propose a novel algorithm that infers specifications by interacting with the

analyst. Our proposed inference algorithm formulates and issues queries to the analyst. These

queries ask for the correct specification for a given function, which the analyst provides. The key

advantage behind this approach is that it enables the analyst to implement specifications in a demand

driven fashion. As we show in our evaluation, the number of queries issued to the analyst is fairly

small, in particular, three orders of magnitude smaller than the number of specifications that must be

written using a more näıve approach. While our problem formulation and algorithm are general and

can be applied to any static analysis, we show that our framework can be used to infer particularly

complex points-to specifications that describe the heap effects of calling functions.

Next, in Chapter 4, we consider the setting where the human responding to queries may be

adversarial. In particular, the previous approach places the burden of writing specifications entirely

on the analyst. This approach is feasible for writing specifications for code such as the Android

framework, which the analyst can understand simply by reading the documentation. However, it

may not be feasible if the missing code is in the Android app itself, since documentation may be

unavailable and malicious code may be heavily obfuscated to prevent detection. Thus, we may want

the developer to respond to the queries issued by our specification inference algorithm. To account

for the possibility that the response may be adversarial, we then instrument the code to enforce

that the response holds true. For example, if the developer claims that a certain line in the program

CHAPTER 1. INTRODUCTION 4

is unreachable, then we instrument the Android app to terminate if that line is ever about to be

executed.

In the second part of this thesis, we devise new algorithms for inferring specifications that leverage

observations from executions of the code. To infer more complex program properties, our algorithms

employ active learning strategies, i.e., they adaptively choose the program inputs used in the ex-

ecutions as the search over the space of possible specifications proceeds. In Chapter 5, we show

how this approach can be used to infer points-to specifications. In particular, we demonstrate that

inferring points-to specifications can be reduced to a language learning problem [12, 110], which we

solve using an active learning variant of an existing language learning algorithm.

Finally, in Chapter 6, we show that active learning strategies can be effective for inferring an

even more complex class of program properties, namely, program input grammars. Documentation of

program input formats, if available in a machine-readable form, can significantly aid many software

analysis tools; our particular focus is on improving grammar-based fuzzers [97, 61, 75]. However,

such documentation is often poor; for example, the specifications of Flex [145] and Bison [59] input

syntaxes are limited to informal documentation. Even when detailed specifications are available,

they are often not in a machine-readable form; for example, the specification for ECMAScript 6

syntax is 20 pages in Annex A of [45], and the specification for Java class files is 268 pages in

Chapter 4 of [111].

The problem of automatically inferring program input grammars is particularly challenging.

Program input grammars often exhibit complex recursive structure, especially when the program

input language is context-free. However, the feedback from executing a program on a given input

only reveals one bit of information—namely, whether that particular input is valid. We devise an

algorithm combining ideas from program synthesis with an active learning strategy that guides the

search over the space of possible grammars. We show how we can use our algorithm to perform

grammar-based fuzzing in a way that covers 2× as many new lines of code compared to two baseline

fuzzers.

The work in this dissertation was in collaboration with Alex Aiken, Saswat Anand, Percy Liang,

and Rahul Sharma. The ideas discussed here appear in the conference papers [18, 17, 19].

Chapter 2

Background

In this chapter, we describe a static analysis for finding information flows. Our analysis performs

context-free language (CFL) reachability on the portion of the code that is available, and uses

specifications for the portion of the code that is unavailable. The specifications are usually manually

generated, for example by a human auditor. We do not claim that this design is novel, but to the

best of our knowledge this approach is not well-documented in the literature, so we describe it here

in detail.

We describe a standard flow-, path-, context-, and object-insensitive static analysis for computing

explicit information flow analysis (also known as taint analysis) [123]. while our static analysis is

context- and object-insensitive, it straightforwardly generalizes to an context- and object-sensitive

analysis by using cloning [152]. The goal of information flow analysis is to determine whether

sensitive information (e.g., location) is leaked outside of the system (e.g., to the Internet). It does

so by computing whether specified sink variables in the program (e.g., the parameter of sendHTTP)

may depend on specified source variables in the program (e.g., the return value of getLocation).

If such a dependence exists, we say the parameter of sendHTTP is tainted by location information.

Our focus is on a sound static analysis—if such a dependence exists, then it is computed by the

analysis, but false positive information flows may also be reported.

Intuitively, explicit information flows only track information through data flows, ignoring infor-

mation flows due to control flow depending on sensitive values. More precisely, explicit information

flow analysis computes information flows assuming control flow is replaced with random (or non-

deterministic) choices independent of the program state. We focus on explicit information flow

analysis because it finds substantially fewer false positives compared to implicit information flow

analysis, and furthermore is known to be useful for a wide range of tasks including finding many

security vulnerabilities in web applications [96, 146, 135] and detecting most current Android mal-

ware [55, 51, 14]. Nevertheless, the techniques we develop generalize to any static analysis that can

be expressed as a CFL reachability problem, which includes formulations of implicit information

5

CHAPTER 2. BACKGROUND 6

flow analysis.

To analyze a program P , our static analysis uses specifications serving two distinct purposes.

First, it requires a specification that encodes the property to be verified; in particular, this speci-

fication encodes which data in the program are sensitive and which functions in the program leak

information out of the system. For simplicity, we focus on safety properties, which are specifications

that assert that certain bad events (e.g., an information leak, or information corruption) never occur.

Second, our analysis consumes specifications that describe the semantics of functions. For ex-

ample, in the case of information flow analysis, the specification for the toString method in the

Double class might say something to the effect of

In a call to toString, if the receiver is tainted, then the return value may be tainted.

Then, the static analysis would use this specification to propagate taint through the toString

method, eliminating the need to analyze this method. More precisely, if the analyst provides a spec-

ification for a function, then the static analysis omits analyzing that function and instead assumes

that the provided specification encodes the relevant semantics of the function.

Whereas the first kind of specification must be provided by the analyst, the second kind of

specification is often optional—specifications are primarily designed to improve the scalability and

precision of the static analysis. However, in cases where the function is missing (e.g., implemented

in native code that cannot be analyzed, or dynamically loaded), then specifications are necessary as

well. Finally, as we discuss below, specifications can also enable us to describe implicit flows that

cannot be discovered by our static analysis. Thus, the analyst can provide specifications to capture

an information flow that includes some implicit portions.

We begin by describing the points-to relation, which is an important intermediate relation com-

puted by our analysis. Then, we describe the specifications used by our static information flow

analysis, and we finally describe the rules for extracting the labeled graph G and CFG C from the

input program P .

2.1 The Points-To Relation

An important intermediate relation computed by our static analysis is the points-to relation [11,

100, 152, 69], which computes what heap locations a reference variable may point to. In particular,

points-to analysis enables our static analysis to resolve information flows due to aliasing, where two

reference variables point to the same heap location.

We consider programs with assignments y ← x (where x, y ∈ V are variables), allocations x ←
X() (where X ∈ C is a type), stores y.f ← x and loads y ← x.f (where f ∈ F is a field), and calls

to library functions y ← m(x) (where m ∈M is a library function). For simplicity, we assume that

each library function m has a single parameter pm and a return value rm.

CHAPTER 2. BACKGROUND 7

1. Double lat = getLatitude();

2. List list = new List();

3. list.add(lat);

4. Double latAlias = list.get(0);

5. String latStr = latAlias.toString();

6. sendSMS(latStr);

Figure 2.1: An information flow through the List and Double classes.

1. class List:

2. Object val;

3. void add(Object arg) { val = arg; }

4. Object get(Integer index) { return val; }

5. class Double:

6. @Flow(this, return)

7. String toString() {}

8. class LocationManager:

9. @Src(LOC, return)

10. static String getLatitude() {}

11.class SMS:

12. @Sink(text, SMS)

13. static void sendSMS(String text) {}

Figure 2.2: Specifications for Android library classes.

In points-to analysis, heap locations are abstractly represented by an allocation statement o =

(x← X()), which we call an abstract object o ∈ H. Then, a points-to edge is a pair x ↪→ o ∈ V ×H,

which says that reference variable x may point to abstract object o. More precisely, this relation

means that during some execution, x may point to a heap location containing a concrete object

allocated at o. A points-to analysis is a static analysis that computes sets of points-to edges Π ⊆
V ×H.

Our static analysis uses a points-to analysis for Java programs formulated as a CFL reachability

problem [137, 136]. In particular, the constructed labeled graph and CFG for points-to analysis is

a subset of the graph G and CFG C constructed for our information flow analysis.

2.2 Specifications

In this section, we describe the specifications used by our static analysis. The source-sink specifica-

tions encode the safety property that we aim to verify; the remaining specifications are specifications

designed to improve precision and scalability or handle missing code.

CHAPTER 2. BACKGROUND 8

Source-sink specifications. The source specifications and the sink specifications specify the

safety property that we seek to verify. More precisely, a source specification Src(`, x) says that

program variable x is tainted with source ` ∈ Lsource, and Sink(x, `) says that x is tainted with sink

` ∈ Lsink. Together, the source and sink specifications encode the safety property to be verified.

In particular, the safety property says that no data in a source variable should ever flow to a sink

variable. Sources and sinks must be annotated by the analyst using the annotations @Source and

@Sink. For example, in Figure 2.2, the return value of getLocation is annotated as a source, and

the parameter of sendHTTP is annotated as a sink.

Information flow specifications. The flow specifications describe how information flows from

the parameters of a function to other parameters or to its return value. More precisely, a flow

specification Flow(x, y) says that if x is tainted, then y may be tainted as well. Here, x and y can

be a parameter pm, the return value rm, or the receiver thism; x may also be a label ` ∈ Lsource

representing a source, and y may also be a label ` ∈ Lsink representing a sink. Similar to source

and sink specifications, flow specifications are provided by the @Flow annotations. In Figure 2.2,

the toString method has an annotation specifying the flow specification Flow(this, rtoString). For

example, the specification of Double.toString means that if thistoString is tainted, then rtoString

is also tainted.

Points-to specifications. The points-to specifications summarize the potential points-to effects

of a library function. These are written as short functions that do nothing except introduce the

desired aliasing. For example, the specification for List.add means that calling List.add may

cause argadd and thisadd.val to be aliased. Also, the specification for List.get says that calling

List.get may cause thisget.val and rget to be aliased. Note that if thisarg and thisget are aliased,

then these specifications cause argadd and rget to be aliased.

Reachability specifications. The reachability specifications describe which functions in the pro-

gram are reachable. These are simply annotations @Reachable indicating that a function is reach-

able. If a function is reachable, then the static analysis marks any function it calls as reachable as

well; thus, only entry-points need to be annotated as being reachable. For example, in Figure 2.1,

only the function main needs to be marked as reachable.

In general, the static analysis assumes that the main function is reachable. These specifica-

tions are required because the Android framework allows apps to register callbacks, which are

functions in the app that should be called when certain system events occur. For example, the

onLocationChanged callback is triggered if the user location changes. Callbacks must be marked as

entry points since they are reachable, or else the static analysis will be unsound.

CHAPTER 2. BACKGROUND 9

2.3 CFL Reachability

We assume our static analysis problem is formulated as a CFL reachability problem [119, 118, 99,

83, 85, 137, 136], which we describe in this section. Let C = (Σ, U, P, T) be a context-free grammar

(CFG), where U is the set of non-terminals, Σ is the set of terminals, P is the set of productions, and

T is the start symbol. We assume C is normalized so that every production has the form A→ BC.

We write A
∗

=⇒ α, where A is a non-terminal and α is a string of terminals and non-terminals, if α

can be derived from A.

Let G be a directed graph such that the edges v
σ−→ v′ in G are labeled with terminal symbols

σ ∈ Σ. A path v
α
99K v′ ∈ G is a sequence of edges v

σ1−→ w1
σ2−→ ...

σk−→ v′ such that α = σ1...σk.

The transitive closure of G under C is the graph GC such that v
A−→ v′ ∈ GC if and only if

• A is a terminal and there exists v
A−→ v′ ∈ G, or

• there exists v
α
99K v′ ∈ G such that A

∗
=⇒ α.

If v
T−→ v′, we say v′ is C-reachable from v. When C is unambiguous, we also use the notation

G = GC . Now, we can efficiently solve the following graph reachability problem:

Definition 2.3.1 Given a CFG C, a graph G = (V,E), and subsets of vertices Vsource, Vsink ⊆ V ,

the CFL reachability problem is to determine whether there exist v ∈ Vsource and v′ ∈ Vsink such that

v′ is C-reachable from v.

Typically, formulating a program analysis as a CFL reachability problem proceeds in two phases.

In the first phase, the input program is converted into a graph G = (V,E) and a CFG C. In the

second phase, the CFL reachability problem for C and G is solved for some given sets of sources

and sinks Vsource, Vsink ⊆ V , typically by finding the transitive closure GC using a standard dynamic

programming algorithm [99]. In particular, GC is computed as the (unique) minimal solution to the

following constraint system:

• e ∈ G
e ∈ GC

• v
B−→ v′ ∈ GC , A→ B ∈ C

v
A−→ v′ ∈ GC

• v
B−→ v′′

D−→ v′ ∈ GC , A→ BD ∈ C

v
A−→ v′ ∈ GC

Finally, the safety property says that no source-sink paths exist in GC . More precisely:

∧
x∈Vsource

∧
y∈Vsink

(x
T−→ y 6∈ GC).

CHAPTER 2. BACKGROUND 10

1. v=new X()⇒ o
New−−−→ v

2. u=v ⇒ v
Assign−−−−→ u

3. u.f=v ⇒ v
Put[f]−−−−→ u

4. u=v.f ⇒ v
Get[f]−−−−→ u

5. Src(v, `) ∈ S ⇒ `
SrcRef−−−−→ v

6. Sink(v, `) ∈ S ⇒ v
RefSink−−−−−→ `

7. Flow(v, v′) ∈ S ⇒ v
RefRef−−−−→ v′

8. ∃v (Flow(v, v′) ∈ S)⇒ ov′
New−−−→ v′

9. v
σ−→ v′ ⇒ v′

σ−→ v (where σ = σ)

Figure 2.3: Program fact extraction rules for static information flow analysis. In Rule 8, ov′ is a
fresh vertex.

2.4 Static Explicit Information Flow Analysis

In this section, we describe the rules by which our static information flow analysis constructs the

labeled graph G and the CFG C.

2.4.1 Constructing the Flow Graph

Given a program P , the flow graph for P isG = (V,E), where V = V∪H∪L, where L = Lsource∪Lsink

is the set of source and sink labels. Figure 2.3 gives rules for generating an initial set of edges for

the graph. Rules 1-4 handle primitive forms of statements. Rule 1 says that the contents of the

abstract object o flow to the reference x on the left-hand side of the assignment. Rule 2 similarly

encodes the flow when a reference variable x is assigned to another reference variable y. Rules 3 and

4 record the flows induced by field writes (or puts) and field reads (or gets) respectively; note that

there is a distinct put/get operation for each field f .

Rules 5 and 6 add edges to G encoding the given source-sink specifications, and Rule 7 adds

edges encoding the given information flow specifications. Rule 5 (symbol SrcRef) says that a source

taints a reference variable, Rule 6 (symbol RefSink) says that the contents of a reference variable

flow to a particular sink, and Rule 7 (symbol RefRef) says that the contents of one reference variable

flow to another reference variable. Rules 8 and 9 are technical devices. Intuitively, Rule 8 ensures

at least one abstract object flows to the target reference variable of any flow specification, which

eliminates the need to include points-to specifications for every method allocating a non-primitive

return value (Rule 8 is discussed further below). Finally, Rule 9 allows us to express paths with

CHAPTER 2. BACKGROUND 11

10. FlowsTo→ New

11. FlowsTo→ FlowsTo Assign

12. FlowsTo[f]→ FlowsTo Put[f] FlowsTo

13. FlowsTo→ FlowsTo[f] FlowsTo Get[f]

14. SrcObj→ SrcRef FlowsTo

15. SrcObj→ SrcObj FlowsTo RefRef FlowsTo

16. SrcSink→ SrcObj FlowsTo RefSink

17. A→ A1...Ak ⇒ A→ Ak...A1 (where A = A)

Figure 2.4: Productions for Cflow.

“backwards” edges by introducing a label σ to represent the reversal of an edge labeled σ.

We handle interprocedural taint flow as follows: arguments passed by the caller are assigned to

formal parameters, which are assigned to the corresponding references in the callee. Values returned

by the callee are assigned to a formal return value, which is assigned to the corresponding reference

in the caller. Vertices representing formal parameters and formal return values are added to G by

the analysis, for example lat
Assign−−−−→ thisformaladd

Assign−−−−→ thisadd and rtoString
Assign−−−−→ rformaltoString

Assign−−−−→
latString. This indirection ensures that function boundaries are clear.

Figure 2.5 shows the taint graph generated from the code in Figure 2.1 and the specifications in

Figure 2.2 using the rules in Figure 2.3. For clarity, we have not included formal parameters and

formal return values in the graph, but have assigned caller arguments directly to the corresponding

callee references and callee return values directly to corresponding caller reference. The graph

describes the explicit flows in the program. For example, the edges

argadd
Put[val]−−−−−→ thisadd

Assign←−−−− list
Assign−−−−→ thisget

Get[val]−−−−−→ rget

capture the fact that any value stored in the list through the List.add method can potentially be the

result of the List.get method. More precisely, the middle two edges show that the reference list,

the receiver of List.add, and the receiver of List.get all potentially point to the same abstract

object.

CHAPTER 2. BACKGROUND 12

LOC

𝑟getLatitude

olat

thistoString

textsendSMS

otoString

FlowsTo

A
ssign

lat

SrcRef

RefRef

SMS

RefSink

latAlias

argadd
Put[val]

𝑟get Get[val]

N
ew

list
thisadd

thisget

latString

A
ssign

SrcSink

olist

𝑟toString

Figure 2.5: The flow graph G corresponding to the code in Figure 2.1 and the framework specifi-
cations in Figure 2.2. Solid edges are facts extracted from the code in Figure 2.1 (backwards edges
added by Rule 9 are not shown). Dotted edges are facts extracted from the framework specifications
in Figure 2.2. Edges corresponding to alias specifications are boxed in a solid red line, and edges
corresponding to flow specifications are boxed in a dashed blue line. Dashed edges are edges added
by productions in Figure 2.4 (not all such edges are shown).

2.4.2 Constructing the CFG

The next step is to identify the paths through the graph that correspond to explicit taint flows,

which we specify using the CFG Cflow defined as follows (with F denoting the set of fields in P):

Σflow = {New,Assign,SrcRef,RefSink,RefRef} ∪ {Put[f],Get[f] | f ∈ F}

Uflow = {FlowsTo,SrcObj,SrcSink} ∪ {FlowsTo[f] | f ∈ F}.

We also include symbols σ and A in Σflow and Uflow, respectively. The start symbol of Cflow is

Tflow = SrcSink. The source vertices we consider are the source labels (i.e. Vsource = Lsource), and

the sink vertices we consider are the sink labels (i.e. Vsink = Lsink).

The productions are shown in Figure 2.4. Rules 10-13 build the points-to relation o
FlowsTo−−−−−→ x,

which means that the reference variable x ∈ U may point to the abstract object o ∈ O. For example,

because Figure 2.5 contains the path

olat
FlowsTo−−−−−→ argadd

Put[val]−−−−−→ thisadd
FlowsTo−−−−−→ olist,

Rule 12 adds edge olat
FlowsTo[val]−−−−−−−−→ olist. Here, olat and olist are the abstract objects allocated to

CHAPTER 2. BACKGROUND 13

lat and list, respectively. Then we have path

olat
FlowsTo[val]−−−−−−−−→ olist

FlowsTo−−−−−→ thisget
Get[val]−−−−−→ rget.

Therefore Rule 13 adds olat
FlowsTo−−−−−→ rget, which causes Rule 11 to add olat

FlowsTo−−−−−→ latAlias. This

means that rgetLatitude and latAlias may point to the same abstract object olat, i.e. rgetLatitude

and latAlias are aliased.

The backwards edge thisadd
FlowsTo−−−−−→ olist in the example path above is added by Rule 17, which

introduces a reversed edge y
A−→ x for every non-terminal edge x

A−→ y. In this way, Rule 17 plays

the same role for non-terminal edges that Rule 9 plays for terminal edges. Note that the (forward,

non-reversed) edge olist
FlowsTo−−−−−→ thisadd arises from the path of terminal edges

olist
New−−−→ list

Assign−−−−→ thisadd

and the application of Rule 10 followed by Rule 11.

Because rgetLatitude and latAlias can point to the same object, if one of them is tainted, then

the other should be tainted as well. Instead of keeping track of taint on the reference variables, it is

simpler to keep track of taint on the objects. In Figure 2.5, Rule 14 adds the edge LOC
SrcObj−−−−→ olat,

which says that olat is tainted. For this taint to flow to the sink, the analysis must be able to pass

the taint to otoString (the object allocated to rtoString).

But here we encounter a problem: there is no explicit flow through the toString method in

the Double class, because no data is copied from the input to the output of the method. Instead,

there is an implicit flow through a sequence of look-ups converting digits in the double value to

characters in the string. That is, information still flows from the input to the output of the method,

but through control flow decisions rather than through explicit data flow. The flow specification on

toString enables us to capture the information flow despite this portion of the flow being implicit.

In particular, it says that if the receiver of toString is tainted, then the return value of toString

is tainted as well.

One caveat is that for our analysis to propagate the taint using the specification for toString,

it needs to apply Rule 15, which requires that the return value of toString point to an abstract

object. However, since the static analysis omits analyzing toString, it appears that this return

value does not point to any abstract object, in which case the static analysis would fail to propagate

taint. Thus, Rule 8 from Figure 2.3 adds a phantom object to the graph, which is a (fresh) abstract

object that is pointed to by the return value of a function with a analyst-provided specification. For

example, Rule 8 adds otoString
New−−−→ rtoString, causing Rule 10 to add otoString

FlowsTo−−−−−→ rtoString.

CHAPTER 2. BACKGROUND 14

Now we can capture the flow in Figure 2.1. In Figure 2.5, we have the path

LOC
SrcObj−−−−→ olat

FlowsTo−−−−−→ thistoString

RefRef−−−−→ rtoString
FlowsTo−−−−−→ otoString.

Rule 15 adds the edge LOC
SrcObj−−−−→ otoString. Now we have

LOC
SrcObj−−−−→ otoString

FlowsTo−−−−−→ textsendSMS
RefSink−−−−−→ SMS,

so Rule 16 adds the edge LOC
SrcSink−−−−−→ SMS.

2.5 Implementation

We have implemented this static information flow analysis for Android apps build on the Android

framework. A number of extensions are required beyond the essentials we have described, but

these extensions do not introduce any new ideas. For example, we include rules for primitive vari-

ables that are essentially rules for reference variables without fields. Prior to this work, we had

manually written many specifications over a period of more than one year. These baseline specifica-

tions S cover 176 Android library classes, including a number of sources (location, device ID, SIM

data, contacts, and calendar data) and sinks (network sockets, SMS messages, and user settings

modifications). This baseline also includes specifications for important container objects including

ArrayList, LinkedList, and HashMap.

In our implementation, program fact extraction is performed using the Chord platform [103]

(which uses BDDBDDB as a backend [152]), modified to work with the Jimple intermediate rep-

resentation provided by Soot [147]. In order to improve precision of our analysis, we extend the

points-to rules (Rules 10-13 in Figure 2.4) so that they are context sensitive—more precisely, we use

a 1-CFA points-to analysis. Additionally, because Java is type safe, we use type filters in the points-

to analysis (i.e., a reference of type T can only point to an object of type T ′ if T ′ is a subtype of T).

Our solver detects and discards points-to edges that are not consistent with the type constraints of

the program.

Chapter 3

Interactive Specification Inference

In this chapter, we study the problem of interacting with a human analyst to infer specifications for

a sound interprocedural static analysis. Such static analyses often have trouble analyzing programs

that include large third-party libraries such as the Android framework. For example, these libraries

often make significant use of code that is difficult to analyze, such as native code or dynamic

programming language features such as Java reflection. Optimistically assuming these functions are

no-ops can introduce unsoundness, whereas pessimistically making worst-case assumptions about

the behaviors of these functions can substantially reduce precision and scalability.

We consider an approach where the analyst provides specifications that describe the behaviors of

functions in the third-party library relevant to the static analysis. The static analysis processes the

specifications in place of analyzing the library implementation, thereby substantially improving its

precision and scalability. However, manually writing these specifications can be very time-consuming

and error-prone [18]. In practice, the analyst typically writes specifications in a demand-driven

fashion—given a new program, they try to identify all library functions that may be relevant to

the static analysis, and implement specifications for just these functions. This strategy is effective

in practice because in many settings, only a small number of functions are relevant to the static

analysis, especially for a given program. The drawback is that if the analyst omits implementing a

specification for a relevant library function, then the static analysis may become unsound.

We propose an algorithm for automating this process. Given a new program, our algorithm

computes a set of library functions that are potentially relevant to the static analysis (possibly along

with hypothetical specifications for these functions). Then, it requires that the analyst implement

specifications for this set of functions. Depending on the responses of the analyst, it may identify

new functions that may be relevant to the static analysis, so this process is iterated until it converges,

i.e., no potentially relevant library functions remain. At this point, our algorithm guarantees that

the results produced by the static analysis are sound, i.e., they are equivalent to the results obtained

by running the static analysis with specifications provided for every library function.

15

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 16

1. Double lat = getLatitude();

2. List list = new List();

3. list.add(lat);

4. Double latAlias = list.get(0);

5. String latStr = latAlias.toString();

6. sendSMS(latStr);

Figure 3.1: A flow through the List and Double classes.

1. class List:

2. Object val;

3. void add(Object arg) { val = arg; }

4. Object get(Integer index) { return val; }

5. class Double:

6. @Flow(this, return)

7. String toString() {}

8. class LocationManager:

9. @Flow(LOC, return)

10. static String getLatitude() {}

11.class SMS:

12. @Flow(text, SMS)

13. static void sendSMS(String text) {}

Figure 3.2: Specifications for Android framework classes.

Our algorithm can be used for any static analysis expressed as a context-free reachability prob-

lem. We apply our algorithm to infer specifications for the information flow analysis of Android

apps described in Chapter 2, and perform an extensive experimental study on 179 apps. Many of

these apps have hundreds of thousands of bytecode instructions and thousands of calls to Android

framework methods.

Our work has three main contributions:

• We develop a general framework for describing potentially missing specifications for CFL reach-

ability analyses (Section 3.2).

• We present a specification inference algorithm based on this framework that interacts with the

analyst to infer relevant specifications (Section 3.3).

• We use our algorithm to infer a large collection of specifications for Android framework methods

(Section 3.5).

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 17

LOC

𝑟getLatitude

olat

thistoString

textsendSMS

otoString

FlowsTo

A
ssign

lat

SrcRef

RefRef

SMS

RefSink

latAlias

argadd
Put[val]

𝑟get Get[val]

N
ew

list
thisadd

thisget

latString

A
ssign

SrcSink

olist

𝑟toString

Figure 3.3: The flow graph G corresponding to the code in Figure 3.1 and the framework specifi-
cations in Figure 3.2. Solid edges are facts extracted from the code in Figure 3.1 (backwards edges
added by Rule 9 are not shown). Dotted edges are facts extracted from the framework specifications
in Figure 3.2. Edges corresponding to alias specifications are boxed in a solid red line, and edges
corresponding to flow specifications are boxed in a dashed blue line. Dashed edges are edges added
by productions in Figure 2.4 (not all such edges are shown).

3.1 Overview

While implementations of the Android framework methods may be missing, the net information

flows through these methods are generally simple. For example, consider the code in Figure 3.1.

We can summarize the net information flows through List.add, List.get, and Double.toString

as follows: (i) argadd may be aliased with rget, and (ii) if taint flows to thistoString, then taint also

flows to rtoString.

The specifications in Figure 3.2 enable the analysis to find the flow from the source LOC to the

sink SMS in Figure 3.1. First, the return value rgetLatitude is tainted with the LOC source. Second,

this taint is passed to lat, which is stored in list.val. Third, the value is retrieved from list and

stored in latAlias, before being converted into a string and passed as the text argument of the

Android framework method sendSMS. Finally, our specification says that the text parameter of the

method sendSMS is sent to the SMS sink, so the code exhibits a flow from LOC to SMS.

Näıvely, we may expect that flow specifications are sufficient to capture all information flows.

For example, we may consider using flow specifications that handle field accesses, and replace the

points-to specification for List.add with the flow specification @Flow(arg, this.val). However,

this specification is unsound—it fails to capture the flow from LOC to SMS in Figure 3.4: boxAlias.f

is tainted by LOC, so list.val.f is tainted (since boxAlias and list.val are aliased), but the

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 18

1. class Box: String f;

2. List list = new List();

3. Box box = new Box();

4. list.add(box);

5. Box boxAlias = list.get(0);

6. boxAlias.f = getLatitude();

7. sendSMS(box.f);

Figure 3.4: An information flow not captured by flow specifications.

proposed specification for List.add does not transfer this taint to box.f (even though taint flows

to box.f). In general, we need points-to specifications to precisely and soundly capture flows due

to aliasing.

Manually writing specifications is expensive: the Android framework contains over 5000 classes,

many exhibiting complex taint flow behavior. Typically, the analyst must search the application for

calls to potentially important framework methods, and then manually write specifications for these

methods. Even moderately large apps contain thousands of framework method calls, but most of

them are irrelevant to finding information flows. Our experience is likely representative: over a one

year period spent analyzing potential Android malware, we have written specifications for just 179

library classes, and we continue to find important new specifications.

Missing specifications can introduce false negatives into the static analysis results. For example,

suppose we remove the specification for List.add from Figure 3.2. Then the static analysis cannot

find the flow from LOC to SMS (since the information flow path between them is broken), causing a

false negative. Unlike false positives, where the analyst has a list of flows to inspect in detail, false

negatives are difficult to track down—ensuring that a tool has not produced a false negative such

as the missing flow from LOC to SMS may require examining every framework method call made by

the app.

Intuitively, the visible application code contains useful information about the correct specifica-

tions for the framework methods. For example, if we remove the specification for List.add, then

there is still a flow from the LOC to argadd, and a flow from thisget.val to SMS. However, argadd and

thisadd.val are no longer aliased, so the flow is broken. Only one additional assumption (i.e., that

argadd is aliased with thisadd.val) is needed to complete the flow.

This example motivates an approach to specification inference that searches for specifications that

complete broken flows. Our approach proceeds in two steps. First, our tool finds potential flows by

pessimistically making worst-case assumptions about the possible effects of missing specifications.

Second, for each potential flow, our tool keeps track of which assumptions are sufficient to prove

that the potential flow is a true flow, which we call sufficient assumptions for the potential flow.

Finally, the tool proposes that these sufficient assumptions are true. These assumptions correspond

to specifications that are the inferred specifications produced by the tool.

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 19

Continuing our example, our tool would find a potential flow from LOC to SMS by making worst-

case assumptions about the specification for List.add, which includes introducing aliasing between

argadd and thisadd.val. This specification for List.add is a sufficient assumption for the potential

flow from LOC to SMS, so it is inferred by our tool. Upon seeing this inferred specification, the human

analyst can confirm that it is correct and thereby determine that the potential flow is a true flow.

In practice, there may be multiple sufficient assumptions for each potential flow. Our tool keeps

track of a minimal set of sufficient assumptions—i.e., it looks for flows that are broken in the fewest

places possible. The guiding principle is that potential flows that require fewer assumptions are more

likely to be real flows than potential flows that require more assumptions. By extension, potential

flows that produce the fewest inferred specifications are most likely to be correct and should be

checked first by an analyst.

3.2 Problem Statement

In this section, we formulate the problem of performing a sound and precise CFL reachability analysis

when specifications are missing, along with the problem of inferring the missing specifications .

Our formulation extends the CFL reachability framework for designing static analyses described in

Chapter 2.

3.2.1 Missing Specifications CFL Reachability

Suppose we want to perform a CFL reachability analysis on a program P . Assume G∗ = (V ∗, E∗)

is the graph constructed from P with complete specifications. If specifications are missing, then the

constructed graph Ĝ = (V̂ , Ê) may be missing vertices and edges, i.e. V̂ ⊆ V ∗ and Ê ⊆ E∗. The

goal is to perform a sound and precise worst-case analysis given some information about the missing

vertices and edges. We encode the possible missing data as a family of graphs G, where we only

know that G∗ ∈ G.

Definition 3.2.1 Suppose we are given Ĝ = (V̂ , Ê), a set of sources Vsource ⊆ V̂ , a set of sinks

Vsink ⊆ V̂ , along with some family G of graphs such that for each G ∈ G, Ĝ is a subgraph of G,

i.e. Ĝ ⊆ G. We call G a completion of Ĝ. Let A : Vsource × Vsink → Bool be the result of a static

analysis, where A(v, v′) = true indicates that taint flows from v to v′.

• A is sound if for every v ∈ Vsource and v′ ∈ Vsink, A(v, v′) = false if and only if there does not

exist any G ∈ G such that v
T−→ v′ ∈ GC .

• A is precise if for every v ∈ Vsource and v′ ∈ Vsink, A(v, v′) = true if and only if there exists

G ∈ G such that v
T−→ v′ ∈ GC .

The idea behind this definition is that an analysis is sound if it does not miss any information

flow present in at least one of the possible completions of Ĝ, and the algorithm is precise if it does

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 20

1. class List:

2. void add(Object arg) {

3. arg.f = arg;

4. this.val = arg; }

Figure 3.5: An alternative (and incorrect) specification for List.add.

not report any flows that do not occur in any completion of Ĝ. An analysis A solves the missing

specifications CFL reachability problem for a family G if it is both sound and precise.

While Definition 3.2.1 captures the notion of performing a worst-case analysis that is sound

and precise, we are also interested in keeping track of the assumptions that the worst-case analysis

makes about missing specifications. In practice, many assumptions may produce the same results.

Therefore we are interested in producing a minimal set of assumptions. Suppose we have a partial

order (G,≤), where G1 ≤ G2 should mean that the graph G1 makes at most as many assumptions

as G2. The definition of ≤ depends on the family G. In addition to producing sound and precise

results A, we would like to produce a minimal G ∈ G (with respect to ≤) such that performing the

CFL reachability analysis on G yields A.

Definition 3.2.2 Suppose we are given the inputs as in Definition 3.2.1, along with a partial order

(G,≤). We use the notation e
?
∈ G; this expression evaluates to true if e ∈ G and false otherwise.

The CFL reachability specification inference problem is to produce sound and precise results A, along

with sufficient assumptions, encoded as a graph G ∈ G satisfying A(v, v′) = (v
T−→ v′

?
∈ GC) for

every v ∈ Vsource and v′ ∈ Vsink. Furthermore, we require that G is minimal, i.e. there does not

exist sufficient assumptions G′ ∈ G such that G′ < G.

In the remainder of this section, we describe how we apply this framework to inferring points-to and

flow specifications.

3.2.2 G Using Regular Languages

To design an algorithm for solving a missing specifications CFL reachability problem, we must first

specify the family G of graphs to which G∗ may belong. Our goal is to define a family G that is

simultaneously general, retains precision in practice, and admits efficient algorithms. We confine

our presentation to inferring specifications for missing functions. This restriction is without loss of

generality and is done to simplify notation and discussion throughout the rest of the paper.

One restriction we do make is that inferred specifications do not access static fields. Our algo-

rithms in fact work without this restriction, but the results are almost always not useful. It is easy

to see why: if there are at least two missing functions that can access static fields, it is possible for

one to store a tainted value in a static field and the other to read it, whether or not these functions

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 21

have anything else to do with each other. Furthermore, specifications involving static fields are rare:

none of the specifications we have manually written have involved static fields.

Consider the flow graph G in Figure 3.3. Suppose the specification the method List.add in

Figure 3.2 is missing, so the edge argadd
Put[val]−−−−−→ thisadd in Figure 3.3 is missing, giving us the

graph Ĝ. Without access to static fields, the only way to complete a flow through Ĝ is if there

is a path connecting argadd to thisadd. In general, for a function m, the only possible taint flows

through m are from a parameter of m to a return value of m, or from one parameter to another

parameter. We use Vm ⊆ V̂ to denote the vertices of Ĝ corresponding to the parameters and return

value of m.

To be sound, we must assume that the specification of List.add could execute any sequence of

operations. In other words, G consists of Ĝ with some additional subgraph Gargadd,thisadd
connecting

argadd to thisadd. Note that for any subgraph Gargadd,thisadd
corresponding to a possible specification

of List.add’s behavior, the only information relevant to the CFL reachability problem is the possible

sequences of terminals α ∈ Σ∗ that can occur along paths argadd
α
99K thisadd. Generalizing from

this example, for a missing function m, it suffices to consider the family of graphs G consisting of

all graphs containing Ĝ as a subgraph with additional paths w
α
99K w′, where w,w′ ∈ Vm.

For example, one completion of Ĝ is the flow graph G in Figure 3.3, which is just Ĝ with the

edge argadd
Put[val]−−−−−→ thisadd added back in. But there are other ways to complete Ĝ, even for this

simple example. Consider the graph G′ obtained when the specification for List.add is given in

Figure 3.5. Then G′ is Ĝ with the additional path

argadd
Put[f]−−−−→ argadd

Put[val]−−−−−→ thisadd

In general, there may be infinitely many possible paths argadd
α
99K thisadd.this because the

sequence of operations α can be arbitrarily long. Thus, we need some compact way to represent an

infinite language of strings; the regular languages are a natural choice. This discussion motivates

our definition of the family GRW :

Definition 3.2.3 Let W ⊆ V̂ × V̂ and let R be a regular language over Σ. The family of graphs

GRW contains the graph G if

• Ĝ ⊆ G

• If (w,w′) ∈ W , then the nondeterministic finite automaton (NFA) N with the transition

matrix given by the subgraph Gw,w′ satisfies L(N) ⊆ L(R).

Here, Gw,w′ is the subgraph connecting w to w′ (not including w or w′). This definition exploits

the insight that we can think of the subgraph Gw,w′ as the transition graph of an NFA N with start

state w and final state w′. Any path w
α
99K w′ ∈ Gw,w′ satisfies α ∈ L(N). Conversely, for any

α ∈ L(N), there exists a path w
α
99K w′ ∈ Gw,w′ .

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 22

In general, choosing R = Σ∗ will produce sound results, since this choice imposes no constraints

on the allowed paths connecting w and w′. In practice, a more restrictive language may be chosen

either to incorporate known constraints on potential specifications, or to trade some soundness for

improved scalability.

3.2.3 The Specification Inference Problem for GRW
We now formulate the corresponding missing specifications problem. Our goal is to infer specifica-

tions of the following form: there exists a path (or set of paths) connecting w and w′. As discussed

above, both points-to and flow specifications can be described in this manner. We need to define

a partial order ≤ on GRW that captures the notion of making minimal assumptions about missing

specifications. Because we are searching for source-sink paths, it is natural to define ≤ in terms of

source-sink paths through G. To simplify notation, we assume there is a single source and a single

sink, i.e. Vsource = {vsource} and Vsink = {vsink}. Let P(G) = {vsource
α
99K vsink ∈ G | T ∗

=⇒ α}
denote the set of all possible source-sink paths in G. We define the weight of a source-sink path

p ∈ P(G) to be

weight(p) =
∑

(w,w′)∈W

(# times p passes through Gw,w′).

In other words, the weight of a path p equals the number of assumptionsGw,w′ 6= ∅ used along p. Note

that if an assumption is used multiple times (i.e., p passes through Gw,w′ multiple times), then each

use is counted separately. Define the weight of G ∈ GRW to be the minimum weight of any source-sink

path in G: weight(G) = arg minp∈P(G) weight(p). Now define G1 ≤ G2 if weight(G1) ≤ weight(G2).

In other words, we want to find G ∈ GRW with the source-sink path of lowest weight. In Section 3.3,

we show how to reduce this problem to the shortest-path CFL reachability problem.

We are interested in inferring both flow and points-to specifications. Let Vm = V arg
m ∪ {rm},

where V arg
m is the set of parameters of a function m, and rm is the return value of m. First, we infer

missing flow specifications:

Wflow = {(w,w′) : w ∈ V arg
m and w′ ∈ Vm}

Rflow = RefRef

For example, we could use the family GRflow

Wflow
to infer the specification for Double.toString if it were

missing.

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 23

CFG 𝐶 Family 𝒢#$ Program 𝑃

Program Fact
Extraction

Graph 𝐺'

Graph 𝐺̅

Graph
Transformation

CFG
Transformation

Transformed CFG 𝐶̅

Shortest Path
CFL Reachability

Inferred Specifications 𝒮* Oracle 𝒪

Library
Specifications 𝒮

Specifications 𝒮,-.

Figure 3.6: An overview of our specification inference system. The system infers specifications Ŝ
and proposes them to the oracle O (i.e., the human analyst), who examines the proposals and
generates a new set of specifications Snew. Then S ← S ∪ Snew, and the process repeats. Program
fact extraction is described in Figure 2.3. While not depicted here, C may depend on P . The
graph transformation and CFG transformation are computed by Algorithm 2. The shortest-path
CFL reachability algorithm is described in Section 3.3.3 and Appendix 3.3.4. The specification
refinement loop is performed by Algorithm 3.

Second, we infer missing points-to specifications:

Walias = {(w,w′) : w,w′ ∈ Vm}

Ralias = (Assign + Assign)

(New + Assign + Put[f]f∈F + Get[f]f∈F

+New + Assign + Put[f]f∈F + Get[f]f∈F)∗

(Assign + Assign)

The possible sequences of operations are bracketed by (Assign+Assign) because allocation and field

access operations cannot be performed on parameters and return values (since they are added to Ĝ

by the static analysis and do not correspond to references in the program, as described in Chapter 2).

3.3 Algorithms for Specification Inference

In this section we present an algorithm that solves the missing specifications problem stated in Def-

inition 3.2.1 for GRW . Next, we discuss an optimization that enables our algorithm to scale to large

programs. Finally, we describe how to extend the algorithm to solve the specification inference prob-

lem stated in Definition 3.2.2 by using a shortest-path extension of the CFL reachability algorithm.

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 24

1. N (v
σ−→ v′) = {v σ−→ v′} for all σ ∈ Σ

2. N (v
R1R2−−−→ v′) = N (v

R1−−→ t) ∪N (t
R2−−→ v′)

3. N (v
R1+R2−−−−−→ v′) = N (v

R1−−→ v′) ∪N (v
R2−−→ v′)

4. N (v
R∗1−−→ v′) = {v ε−→ t} ∪ N (t

R1−−→ t) ∪ {t ε−→ v′}

Figure 3.7: Given v
R−→ v′, N constructs the transition graph for a NFA that accepts R with start

state v and final state v′. In Rules 2 and 4, t is a fresh vertex.

This allows us to construct an algorithm that interacts with a human analyst to produce results

that are sound and precise with respect to G∗. An overview of our system is given in Figure 3.6.

3.3.1 Algorithms for GRW
Consider (w,w′) ∈ W . Recall that every potential path w

α
99K w′ satisfies α ∈ L(R). To be sound

and precise with respect to GRW , it suffices to construct a subgraph connecting w and w′ such that

there is a path w
α
99K w′ through this subgraph if and only if α ∈ L(R).

The subgraphs that satisfy this property are the transition graphs for nondeterministic finite

automata (NFAs) that accept L(R). For every (w,w′) ∈ W , Algorithm 1 constructs the transition

graph N (s
R−→ f) for one such NFA, and then adds this transition graph to Ĝ to connect w to w′,

resulting in graph G′. Finally, we compute the transitive closure (G′)C of G′ with respect to the

context-free language C. The following correctness result follows from the correspondence between

L(R) and N (s
R−→ f) described above.

Theorem 3.3.1 Algorithm 1 is sound and precise for GRW .

3.3.2 Optimizations

Consider the subgraph Gi = N (si
R−→ fi) constructed by Algorithm 1 for a pair (wi, w

′
i) ∈W (where i

is an index over pairs (wi, w
′
i)). One issue scaling Algorithm 1 is that the CFL reachability algorithm

may add a large number of edges that are only among the vertices within Gi. Any such internal edge

ni
A−→ mi, where ni and mi are vertices in Gi, is added whenever there is a path ni

α
99K mi ∈ Gi

such that A
∗

=⇒ α. The problem is that the subgraphs Gi are all isomorphic—thus, the same edges

are recomputed many times by the standard CFL reachability algorithm. This observation suggests

that we can benefit from precomputing the internal edges.

One convenient way to implement this optimization is to preprocess the grammar C instead of

adding graphs to Ĝ. That is, we embed an (optimized) version of Gi in C. Since the graphs Gi are

all isomorphic to one another, this embedding only needs to be performed once. Intuitively, such an

transformation is possible because Gi encodes a regular language and C is context-free.

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 25

Algorithm 1 A sound and precise algorithm for GRW . Here, N (s
R−→ f) is defined in Figure 3.7.

function Expansion(C, Ĝ,W,R, v, v′)

return v
T−→ v′

?
∈ (ExpansionHelper(Ĝ,W,R))C

end function
function ExpansionHelper(Ĝ,W,R)

G′ ← Ĝ
for all (w,w′) ∈W do

// s and f are fresh vertices

G′ ← G′ ∪ {w ε−→ s, f
ε−→ w′} ∪ N (s

R−→ f)
end for
return G′

end function

The essential idea is that for every (wi, w
′
i) ∈ W , we replace Gi by a single vertex. Because we

are only interested in summarizing the transitive closure of Gi with respect to C, we only need one

vertex to represent the net effect of Gi, though this vertex may have many incident edges. More

specifically, we modify Ĝ in the following ways to define a new graph G:

• We add a new vertex vi to Ĝ; here the single vertex vi will represent Gi.

• We add two new, distinct terminal symbols b and e to Σ, standing for “beginning Gi at wi”

and “exiting Gi at w′i”, respectively. These terminals are needed to mark in the modified

grammar where we enter and exit Gi.

• We add the edges wi
b−→ vi

e−→ w′i to Ĝ.

We now turn to incorporating the transitions of each Gi into C, defining a new grammar C. Let

ni, mi, and ri denote vertices in Gi (corresponding to NFA states n, m, and r, respectively). Let

v ∈ V̂ (recall that V̂ is the set of vertices of Ĝ—i.e., all the vertices not in any Gi). Finally, G′ is

the graph constructed by Algorithm 1. We want C and C to correspond in the following way:

1. If there is an edge v
A−→ ni ∈ (G′)C , then there should be an edge v

An−−→ vi ∈ G
C

. Intuitively,

the non-terminal An records that A was matched ending at the vertex in Gi corresponding to

state n.

2. If there is an edge ni
A−→ v ∈ (G′)C , then there should be an edge vi

An−−→ v ∈ GC . Intuitively,

the non-terminal An records that A was matched starting at the vertex in Gi corresponding

to state n.

3. If there is an edge ni
A−→ mj ∈ (G′)C (that is not an internal edge), then there should be an

edge vi
Anm−−→ vj ∈ G

C
. Intuitively, the non-terminal Anm records that A was matched starting

at the vertex in Gi corresponding to state n, and ending at the vertex in Gj corresponding to

state m.

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 26

Algorithm 2 Optimized algorithm for GRW . Here, T (Gi, C) applies the rules in Figure 3.8 to C for
the given graph Gi. Also, s and f are fresh vertices.

function Preprocess(C, Ĝ,W,R, v, v′)

Gi ← N (s
R−→ f); C ← T (Gi, C)

return v
T−→ v′

?
∈ (PreprocessHelper(Ĝ,W))C

end function
function PreprocessHelper(Ĝ,W)

G← Ĝ
for all (w,w′) ∈W do

// v is a fresh vertex

G← G ∪ {w b−→ v, v
e−→ w′}

end for
return G

end function

Finally, we need to define the productions for each of the additional non-terminals so that conditions

1-3 above are satisfied. We generate these additional productions of C from the productions in C

and the C-closure of Gi using the rules in Figure 3.8. In the figure, we refer to vertices si and fi in

Gi introduced by Algorithm 1, which correspond to the start state s and end state e of the NFA,

respectively.

We briefly explain Rules 1a-f (the rules for non-terminals of the form An) for producing produc-

tions of C in Figure 3.8; Rules 2a-f and 3a-h are similar.

(a) Suppose we have edge v
A−→ wi ∈ (G′)C . Because we have edge wi

ε−→ si ∈ G′, we produce

v
A−→ si ∈ (G′)C . In G

C
, we have edges v

A−→ wi
b−→ vi, and we need to produce v

As−−→ vi. This

is achieved by the production As → Ab ∈ C.

(b) Suppose we have internal edge si
A−→ ni ∈ GCi . Because we have edge wi

ε−→ si ∈ G′, we

produce wi
A−→ ni ∈ (G′)C . In G

C
, we have edge wi

b−→ vi and we need to produce wi
An−−→ vi.

This is achieved by the production An → b ∈ C.

(c) Suppose we have internal edge ni
ε−→ mi ∈ GCi and edge v

A−→ ni ∈ (G′)C . Then we produce

v
A−→ mi ∈ (G′)C . In G

C
, we have edge v

An−−→ vi, and we need to produce v
Am−−→ vi. This is

achieved by the production Am → An ∈ C.

(d) Suppose we have edge v
B−→ ni ∈ (G′)C and production A → B ∈ C. Then we produce

v
A−→ ni ∈ (G′)C . In G

C
, we have edge v

Bn−−→ vi, and we need to produce v
An−−→ vi. This is

achieved by the production An → Bn ∈ C.

(e) Suppose we have edges v
B−→ v′

D−→ ni ∈ (G′)C and production A → BD ∈ C. Then we

produce v
A−→ ni ∈ (G′)C . In G

C
, we have edges v

B−→ v′
Dn−−→ vi, and we need to produce

v
An−−→ vi. This is achieved by the production An → BDn ∈ C.

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 27

1. Productions for An:

(a)
As → Ab ∈C

(b)
si

A−→ ni ∈GCi
An → b ∈C

(c)
ni

ε−→ mi ∈GCi
Am → An ∈C

(d) A→ B ∈C
An → Bn ∈C

(e) A→ BD ∈C
An → BDn ∈C

(f)

A → BD ∈ C

ni
D−−→ mi ∈ G

C
i

Am → Bn ∈C

2. Productions for An:

(a)
Af → eA ∈C

(b)
ni

A−→ fi ∈GCi
An → e ∈C

(c)
mi

ε−→ ni ∈GCi
Am → An ∈C

(d) A→ B ∈C
An → Bn ∈C

(e) A→ BD ∈C
An → BnD ∈C

(f)

A → BD ∈ C

mi
B−−→ ni ∈ G

C
i

Am → Dn

3. Productions for Anm:

(a)
Ans → Anb ∈C

(b)
Afn → eAn ∈C

(c)
ni

ε−→ mi ∈GCi
Arm → Arn ∈C

(d)
mi

ε−→ ni ∈GCi
Amr → Anr ∈C

(e) A→ B ∈C
Amn → Bmn ∈C

(f) A→ BD ∈C
Amn → BmDn ∈C

(g)

A → BD ∈ C

ni
D−−→ mi ∈ G

C
i

Arm → Brn ∈C

(h)

A → BD ∈ C

mi
B−−→ ni ∈ G

C
i

Amr → Dnr ∈C

4. Stitching productions:

(a)
A→ Afe ∈C

(b)
A→ bAs ∈C

(c) A→ BD ∈C
A→ BnDn ∈C

(d) A→ BD ∈C
An → BmDmn ∈C

(e) A→ BD ∈C
An → BnmD

m ∈C

(f) A→ BD ∈C
Anm → BnrD

r
m ∈C

Figure 3.8: Productions for C.

1. FlowsTon → FlowsTos (Rule 1f)

2. FlowsTon → FlowsTo[f]n (Rule 1f)

3. FlowsTon → FlowsTo[f] FlowsTon (Rules 1e & 1f)

4. FlowsTo[f]n → FlowsTon (Rule 1f)

5. FlowsTo[f]n → FlowsTo Put[f] FlowsTon (Rule 1e)

Figure 3.9: Examples of production rules added by Figure 3.8, along with the rules that generate
them.

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 28

𝑟getLatitude

argadd Assign𝑏 e𝑣

olat

N
ew

listAssign

A
ssign

lat thisadd

olist

N
ew

Figure 3.10: Algorithm 2 adds the dashed edges to Figure 3.3 if the specification for List.add is
missing. We only show edges relevant to the production of the edge labeled (4).

(f) Suppose we have edge v
B−→ ni ∈ (G′)C , internal edge ni

D−→ mi ∈ GCi , and production

A → BD ∈ C. Then we produce v
A−→ mi ∈ (G′)C . In G

C
, we have edge v

Bn−−→ vi, and we

need to produce v
Am−−→ vi. This is achieved by the production Am → Bn ∈ C.

Note that cases (e) and (f) correspond to two possibilities for binary productions, (e) handling the

case where one edge is fully outside of Gi and (f) handling the case where one edge is fully inside

Gi. In the case where only the middle vertex is in Gi and both endpoints are outside, then we need

the “stitching production” (c) in Figure 3.8. We describe stitching productions (a), (b), and (c):

(a) Suppose we have edge v
A−→ fi ∈ (G′)C . Because we have edge fi

ε−→ w′i ∈ G′, we produce

v
A−→ w′i ∈ (G′)C . In G

C
, we have edges v

Af−−→ vi
e−→ w′i, and we need to produce v

A−→ w′i. This

is achieved by the production A→ Afe ∈ C.

(b) Suppose we have edge si
A−→ v ∈ (G′)C . Because we have edge wi

ε−→ si ∈ G′, we produce

wi
A−→ v ∈ (G′)C . In G

C
, we have edges wi

b−→ vi
As−−→ v, and we need to produce wi

A−→ v. This

is achieved by the production A→ bAs ∈ C.

(c) Suppose we have edges v
B−→ ni

D−→ v′ ∈ (G′)C and production A → BD ∈ C. Then we

produce v
A−→ v′ ∈ (G′)C . In G

C
, we have edges v

Bn−−→ vi
Dn−−→ v′, and we need to produce

v
A−→ v′. This is achieved by the production A→ BnD

n.

The stitching productions (d), (e), and (f) are similar to (c).

Finally, we show that the rules given in Figure 3.8 are complete. As above, we focus on Rules

1a-f first. Note that we need to add an edge v
An−−→ vi whenever there exists a path v

α
99K wi and

there exists β ∈ Σ∗ such that A
∗

=⇒ αβ and si
β
99K ni ∈ Gi. In other words, α is the portion of the

path in Ĝ and β is the portion of the path in Gi, and the path ends at vertex ni ∈ Gi. Consider the

production that is the first step in the derivation of A
∗

=⇒ αβ:

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 29

• Case A→ ε: then α = ε, so v = wi, and we need to add edge wi
An−−→ vi. The fact that α = ε

also implies that A
∗

=⇒ β, so si
A−→ ni ∈ GCi . Hence this case is handled by Rule 1b.

• Case A→ BD: either α is a prefix of BD and β is a suffix of D (handled by Rule 1e), or α is

a prefix of B and β is a suffix of BD (handled by Rule 1f).

• Case A→ B: then α is a prefix of B and β is a suffix of B, so this case is handled by Rule 1d.

Rule 1a is added to satisfy the semantics of the symbol b ∈ Σ. Finally, we have to consider ε

transitions that occur in GCi —i.e., ni
ε−→ mi ∈ GCi (these transitions are used in conjunction with

the implicit productions A → εA and A → Aε). These transitions are handled by Rule 1c. Rules

2a-f and 3a-h follow similarly.

Next, we show that Rules 4a-f are complete. Note that we need to add an edge v
A−→ v′ whenever

there exist paths v
α
99K wi and w′i

γ
99K v′, and there exists β ∈ L(R) such that A

∗
=⇒ αβγ. Here, α

and γ are the portions of the path in Ĝ, and β is the portion of the path in Gi. As before, we can

consider production that is the first step in the derivation of A
∗

=⇒ αβγ. This time, we only need

to handle the case where the production is split at vertex vi—i.e., A → BD, where B
∗

=⇒ αβ1 and

D
∗

=⇒ β2γ (and β = β1β2); this is handled by Rule 4c. Rules 4d-f follow similarly when considering

productions for An, An, and Amn . Finally, the semantics of the symbols b and e are handled by Rules

4b and 4a, respectively. While we only described the case where the path passes through a single

pair (wi, w
′
i), the general case follows because the first step in the derivation can be split only at a

single vertex vi.

We denote the subroutine constructing C by T , i.e. C = T (Gi, C). Note that any Gi can be

used, since Gi (and hence GCi) is the same for every (wi, w
′
i) ∈ W . Algorithm 2 calls T to obtain

a new grammar C. It then computes the transitive closure G
C

. We have the following correctness

result:

Theorem 3.3.2 Algorithm 2 is sound and precise for GRW .

We briefly discuss the complexity of Algorithm 2. The rules in Figure 3.8 are not recursive, so

the number of productions in C is a constant multiple of the number of productions in C. Similarly,

the graph G constructed by Algorithm 2 is a constant mulitple of the size of Ĝ. The complexity

of Algorithm 2 is dominated by the complexity of computing the transitive closure G
C

. This is

O(|G|3|C|3) (where |G| is the number of vertices in G, and |C| is the number of terminals and

non-terminals in C) [99].

As an example, consider GRalias

Walias
defined in Section 3.2. Let

Σpt = {New,Assign} ∪ {Get[f ′],Put[f ′] | f ′ ∈ F}.

As before, we include symbols σ in Σpt. Recall that Ralias = (Assign + Assign)Σ∗pt(Assign + Assign).

Then N (s
Ralias−−−→ f) produces the transition graph for the NFA N = ({s, n, f}, δ, s, f), where n ∈

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 30

δ(s,Assign), n ∈ δ(s,Assign), n ∈ δ(σ, n) for all σ ∈ Σpt, f ∈ δ(Assign, n), and f ∈ δ(Assign, n).

Productions for FlowsTon and FlowsTo[f ′]n (f ′ ∈ F) are shown in Figure 3.9.

Consider the code in Figure 3.1, and suppose the specification for List.add is missing, so Walias =

VList.add. In Figure 3.10, we show the following edges that are added by Algorithm 2:

1. This edge represents two edges: FlowsTos is added by FlowsTos → FlowsTo b (Rule 1a), and

FlowsTon is added by FlowsTos → FlowsTon (Rule 1f, since FlowsTo→ FlowsTo Assign).

2. This edge is added by FlowsTo ◦ Put[f]n → FlowsTon (Rule 1f, since FlowsTo ◦ Put[f] →
FlowsTo Put[f]).

3. This edge represents two edges: FlowsTo
f

is added by FlowsTo
f → e FlowsTo (Rule 2a), and

FlowsTo
n

is added by FlowsTo
n → FlowsTo

f
(Rule 2f, since FlowsTo→ Assign FlowsTo).

4. This edge is added by FlowsTo[f]→ FlowsTo◦Put[f]n FlowsTo
n

(Rule 4c, since FlowsTo[f]→
FlowsTo ◦ Put[f] FlowsTo).

We have used the production FlowsTo ◦Put[val]→ FlowsTo Put[val] that comes from normalizing

the CFG. Once Algorithm 2 adds the edge olat
FlowsTo[val]−−−−−−−−→ olist, it will add the edge LOC

SrcSink−−−−−→ SMS

as a consequence of the productions in Ctaint.

3.3.3 Interactive Refinement

We extend Algorithm 2 to find sufficient assumptions for the edge e′ = vsource
T−→ vsink (recall

that sufficient assumptions are encoded as graphs G ∈ GRW such that A(vsource, vsink) = e′
?
∈ GC). If

Algorithm 2 does not produce any source-sink edge e′, then we simply return Ĝ. Otherwise, we record

the inputs for each edge produced by Algorithm 2 when computing the closure G
C

. Recursively

searching through the inputs of e′, we reconstruct a path p = vsource
α
99K vsink such that T

∗
=⇒ α.

We record the index of every pair of edges wi
b−→ vi

e−→ w′i that occurs along p, which we denote by

I. Then we add the corresponding graphs Gi = N (si
R−→ fi) to Ĝ, i.e. G = Ĝ ∪ {Gi | i ∈ I}. The

resulting graph G has the desired property e′ ∈ GC .

There may exist multiple paths p = vsource
α
99K vsink such that T

∗
=⇒ α, each of which may

yield different sufficient assumptions G. We further extend Algorithm 2 to find minimal sufficient

assumptions G for e′. Recall that this corresponds to minimizing weight(G), i.e. finding G ∈ GRW
with source-sink path p of minimum weight(p). To do so, we define a weight function on Σ by setting

weight(b) = weight(e) = 1
2 , and weight(σ) = 0 for all other σ ∈ Σ. This extends to Σ∗ by setting

weight(σ1...σk) =
∑k
i=1 weight(σi). Note that for source-sink path p = vsource

α
99K vsink ∈ P(G),

weight(p) = weight(α). Consider the following:

Definition 3.3.3 Let G be the graph defined above. The shortest-path CFL reachability problem is

to return the shortest path p∗ = arg minp∈P(G) weight(α), or return ∅ if P(G) = ∅.

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 31

Algorithm 3 Iterative refinement of results. Here, s and f are fresh vertices.

function OracleRefine(C, Ĝ,W,R, v, v′,O)

Gi ← N (s
R−→ f); C ← T (Gi, C)

repeat
G←PreprocessHelper(Ĝ,W)

p∗ ←ShortestPath(C,G, v
T−→ v′)

for all w
b−→ v

e−→ w′ ∈ p∗ do
Ĝ← Ĝ ∪ O(w,w′)
W ←W − {(w,w′)}

end for

until v
T−→ v′ 6∈ GC or weight(p∗) = 0

return v
T−→ v′

?
∈ GC

end function

Knuth describes a generalization of Djikstra’s algorithm to find the shortest string in a context-

free grammar [82]. This algorithm generalizes to solving the shortest-path CFL reachability problem:

we replace the worklist of edges in [99] with a heap of edges, where the priority of an edge is the

weight of its shortest path; see Algorithm 4 in Section 3.3.4 for details. By using Algorithm 4 to

compute the closure G
C

, we find the source-sink path p∗ ∈ P(G) that passes through the fewest

possible edges w
b−→ v

e−→ w′. Then the sufficient assumptions G constructed from p∗ has minimum

weight.

Finally, we describe an algorithm for interactively refining the static analysis results with the

help of a human analyst. Recall that the graph Ĝ is missing some vertices and edges from G∗.

Suppose we can query an oracle to obtain information about G∗:

Definition 3.3.4 We say O is an oracle for G if for every (w,w′) ∈W , O(w,w′) = G∗w,w′ .

We use a human analyst as an oracle O. On input (w,w′), the analyst examines the library docu-

mentation and return the true specification G∗w,w′ . The problem is to produce static analysis results

that are sound and precise with respect to G∗, while making as few queries O(w,w′) as possible.

Algorithm 3 solves this problem. It obtains the shortest path p∗ ∈ P(G) for the edge e′ =

vsource
T−→ vsink by calling p∗ ← ShortestPath(C,G, e′). Then the algorithm replaces every edge

w
b−→ v

e−→ w′ in p∗ with O(w,w′). Algorithm 3 repeats this process until either weight(p∗) = 0, or

until P(G′) = ∅. In the former case, the path p∗ does not contain any symbols b or e, i.e. p∗ does not

pass through any potentially missing specifications. This proves that p∗ ∈ Ĝ, i.e. e′ ∈ ĜC ⊆ (G∗)C .

In the latter case, because Algorithm 2 is sound, it only returns p∗ = ∅ if there does not exist any

G ∈ GRW such that e′ ∈ G. Since we have assumed that G∗ ∈ GRW , this proves that e′ 6∈ (G∗)C .

Therefore:

Theorem 3.3.5 Algorithm 3 computes vsource
T−→ vsink

?
∈ (G∗)C .

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 32

3.3.4 Shortest-Path CFL Reachability

The shortest-path algorithm in Algorithm 4 generalizes Knuth’s algorithm for finding shortest strings

in CFLs to computing shortest-path CFL reachability. Essentially, Knuth’s algorithm [82] builds on

an algorithm for determining emptiness of a context-free grammar: it adds a heap that keeps track

of the shortest sequence of terminals that can be derived from each non-terminal symbol. Similarly,

Algorithm 4 generalizes the algorithm for computing CFL reachability described in [99]. In the

pseudocode, arrays are denoted as [x1, ..., xk], and addition of arrays is defined to be [x1, ..., xk] +

[y1, ..., yh] = [x1, ..., xk, y1, ..., yh].

We introduce a heap H that keeps track of the shortest path for each edge v
A−→ v′. The current

priority of the edge v
A−→ v′ is the length of the current shortest path. If a shorter path is found, then

the heap is updated with the new path and the new priority. At every iteration of the algorithm,

the lowest priority edge v
A−→ v′ (with priority Pcur) is removed from the heap, added to GC , and

then processed. Note that once this happens, there can be no way of producing v
A−→ v′ with

lower priority: every subsequent edge removed from H must have priority at least Pcur, so any edge

produced while processing such an edge must also have priority at least Pcur. Since every possible

way of producing v
A−→ v′ is considered, the shortest path is correctly identified.

The heap H supports the following operations: Update(e) updates the priority of edge e (and

adds e to H if e 6∈ H), Empty() returns true if the heap contains no edges, Priority(e) returns

the current priority of edge e, and DeleteMin() removes the lowest priority element in the heap

and returns it (along with its current priority). We assume that Priority returns ∞ for edges

not yet added to H, and 0 for edges already removed from H. The complexity of Algorithm 4 is

O(|G|3|C|3(log |G|+ log |C|)) because of the additional cost of updating the heap (as before, |G| is

the number of vertices in G, and |C| is the number of terminals and non-terminals in C).

The shortest path itself is stored in a map I, which keeps track of the edges [e1, ..., ek] (where

k ∈ {0, 1, 2}) used to produce v
A−→ v′. The shortest path itself is reconstructed by recursively

querying the shortest path for each edge in I[v
A−→ v′].

Algorithm 4 does not handle edges labeled with the empty string ε, or productions A → ε. In

order to handle the former, our solver introduces a fresh terminal symbol ε̂, replaces every edge

v
ε−→ v′ with v

ε̂−→ v′, and adds productions A → ε̂A and A → Aε̂ for every non-terminal A in the

input grammar. The latter is handled by adding self loops v
A−→ v for every v ∈ V and every A ∈ U

such that A→ ε ∈ C (see [99]).

3.4 Implementation

We have implemented the system described in Figure 3.6. Within our specification inference frame-

work, we infer both flow and points-to specifications. For each inferred specification, we manually

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 33

Spec. Type Flow Alias
Android apps 179 156

Total Correct Specifications Proposed 486 35
Total Specifications Proposed 1122 63

Overall Accuracy 0.433 0.556
Average # Specifications Proposed 23.8 0.813

Accuracy of Random Sample 0.140 N/A

Figure 3.11: Statistics on inferred Android framework specifications.

reference the Android framework documentation to determine if the specification is correct, and re-

run the analysis with the updated specifications. We repeat this process until no new specifications

are inferred.

When inferring points-to specifications, the large size of the static points-to sets makes it difficult

to scale the inference algorithm. We implemented a demand-driven optimization. First, we perform

the entire analysis using BDDBDDB as the solver. However, BDDBDDB cannot compute shortest

paths. Instead, we use the results from BDDBDDB to prune irrelevant edges (i.e., edges that do not

contribute to a source-sink path) from G. Finally, we recompute the analysis using our shortest-path

CFL solver.

Since our focus in on the long tail of missing specifications, we bootstrap our implementation

of the specification inference framework with these baseline specifications. Also, our current im-

plementation does not consider specifications involving static fields; as discussed in Section 3.2, in

our experience such specifications lead to many false positives as there are few constraints on the

possible flows between static variables, and in practice there are few flows among them.

Finally, to be fully sound, we would ideally infer flow and points-to specifications simultaneously.

However, worst-case flow specifications introduce a large number of incorrect information flows,

causing the demand-driven optimization to fail to eliminate enough edges for the specification infer-

ence algorithm to scale for some benchmarks. As a result, we infer the two kinds of specifications

separately in our experiments.

3.5 Evaluation

We ran our tool on a corpus of 179 Android apps. Our results are for the optimized version of our

specification inference algorithm, i.e., Algorithm 2, since preliminary experiments with Algorithm 1

did not scale even to apps of moderate size. The running time for one iteration of Algorithm 3 is

plotted in Figure 3.14(c). The flow specification inference algorithm ran on all 179 apps, running in

fewer than 10 seconds per iteration on average for most apps, which is fast enough to allow a human

analyst to interactively run the analysis. The points-to specification inference algorithm successfully

ran on 156 apps. The worst-case assumptions cause a substantial increase in the points-to relation

size (see Figure 3.14(d)), which proved to be too large on the remaining 23 apps. Still, inferring

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 34

App LOC Sum. Crit. Sum. Tot. Sum. Rounds Acc. Flows Time Type

411524 497178 43 20 6478 5 0.5116 42 178.6 Flow
APG-M 471943 20 9 5553 5 0.5 16 22.30 Flow
browser 421026 139 24 10361 16 0.2662 48 607.3 Flow
0C2B78 395053 244 11 4726 78 0.1066 222 10.38 Flow
highrail 265875 142 15 4242 18 0.1690 64 12.20 Flow

iwz 263014 38 17 4937 5 0.5789 38 14.24 Flow
ce667f 193518 48 26 4388 5 0.6042 44 10.38 Flow

ConnectBot 136800 4 4 3454 2 1.0 2 2.357 Flow
yaaic 109286 0 0 5440 1 N/A 0 3.769 Flow

tomdroid 44478 14 5 3029 6 0.3571 2 1.607 Flow

highrail 265875 2 2 5167 2 1.0 1 9623 Points-To
andmj 239227 0 0 5229 1 N/A 0 1555 Points-To
ce667f 193518 0 0 5509 1 N/A 0 3234 Points-To

ConnectBot 136800 0 0 3293 1 N/A 0 3193 Points-To
05ed92 134235 1 1 12632 2 1.0 3 2254 Points-To
SMSBot 134230 15 3 4693 7 0.467 2 284.3 Points-To
yaaic 109286 0 0 4161 1 N/A 0 816.1 Points-To
ca70f4 81974 3 0 3307 3 0.0 0 45.57 Points-To

tomdroid 44478 0 0 3697 1 N/A 0 68.154 Points-To
a1d58b 41682 2 1 2285 3 0.5 1 7.847 Points-To

Figure 3.12: Specification inference results on large Android apps: the number of Jimple lines of
code (“LOC”), the number of specifications proposed by our tool (“Sum.”), the number of worst-case
specifications (“Tot. Sum.”), the number of critical specifications (“Crit. Sum.”), the number of
iterations with the analyst in Algorithm 3 (“Rounds”), the proportion of proposed specifications that
are correct (“Acc.”), the number of new information flows discovered (“Flows”), the running time
in seconds (“Time”), and the specification type (“Type”). The accuracy is N/A if no specifications
are inferred.

Class Method Specification Type

com.google.android.maps.GeoPoint int getLatitudeE6() (this, return) Flow
java.lang.Double double parseDouble(java.lang.String) (arg1, return) Flow

org.json.JSONObject org.json.JSONObject getJSONObject(java.lang.String) (this, return) Points-To
android.telephony.gsm.SmsMessage java.lang.String getMessageBody() (this, return) Points-To

android.content.ContentValues void put(java.lang.String, java.lang.String) (arg2, this) Points-To

Figure 3.13: Sample of inferred specifications. We show the class to which the method belongs
(“Class”), the method signature (“Method”), the pair (w,w′) ∈W returned by Algorithm 3 (“Spec-
ification”), and the specification type (“Type”).

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 35

1
2
4
8
16
32
64
128
256

512 4096 32768 262144

Fl
ow

 S
um

m
ar

ie
s

Pr
op

os
ed

Jimple Lines of Code

0
2
4
6
8
10
12
14
16

512 4096 32768 262144Po
in

ts
-T

o
Su

m
m

ar
ie

s
Pr

op
os

ed

Jimple Lines of Code

(a) (b)

0.1

1

10

100

1000

10000

100 1000 10000 100000 1000000

In
fe

re
nc

e
R

un
 T

im
e

(s
)

Jimple Lines of Code

1

2

4

8

16

32

64

128

512 4096 32768 262144W
or

st
 C

as
e

Po
in

ts
-T

o
R

el
at

io
n

Si
ze

 /
K

no
w

n
Po

in
ts

-T
o

R
el

at
io

n
Si

ze

Jimple LOC

(c) (d)

0

0.25

0.5

0.75

1

0 20 40 60 80 100 120 140 160 180

%
 S

um
m

ar
ie

s
th

at
 a

re
 N

ew

Apps Analyzed

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180%
 C

om
m

on
 S

um
m

ar
ie

s
Fo

un
d

Apps Analyzed

(e) (f)

Figure 3.14: For (a) flow and (b) points-to: # specifications proposed (black, circle), # correct (red,
triangle), and # critical (blue, diamond). (c) Run time of the flow (black, circle) and points-to
(red, triangle) specification inference algorithms. (d) Ratio of worst-case points-to relation size to
known points-to relation size. (e) Ratio of # specifications with aggregation to # specifications from
baseline, averaged over 100 random orders (black line), and for two different random orders (red
triangle, blue diamond). (f) Proportion of common specifications proposed, for c = 2 (black, solid),
3 (blue, dashed), and 4 (red, dotted), averaged over 100 random orders.

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 36

points-to specifications runs in under 100 seconds for most apps with up to 100,000 lines of Jimple

code.

Results for selected apps, including the largest four that ran successfully for each analysis, are

shown in Figure 3.12. We show the number of specifications proposed by our tool, along with

the number of worst-case specifications. Our tool may propose specifications that are correct (i.e.,

represent valid paths throughs framework methods), but do not contribute to a correct source-sink

path in the program. Therefore, we also show the number of specifications that are both correct and

contribute to a true source-sink flow, which is a lower bound for the number of specifications that

must be proposed to achieve soundness. We call such specifications critical specifications, because

they are the specifications that an analyst must examine in order to find all source-sink flows.

The number of inferred specifications is plotted as black circles in Figure 3.14(a) and (b), along

with the number of inferred specifications that are correct (plotted as red triangles), and the number

of critical specifications (plotted as blue diamonds). For readability, (a) is a log-log plot, and the

x-axis of (b) is log-scale. The accuracy of the aggregated specifications are shown in Figure 3.11.

Note that the accuracy is directly correlated with the manual labor required by the oracle: higher

accuracy means that the oracle will have to examine fewer incorrect specifications.

3.5.1 Specification Inference Accuracy

Our first experiment demonstrates the accuracy of the specifications inferred. For each app, we

ran our inference algorithm with the baseline specifications S. The inferred points-to specifications

very accurate, in part because of type filters. We show some examples of inferred specifications in

Figure 3.13.

We compare our results to randomly chosen specifications. We randomly chose 50 possible flow

specifications in the following way: randomly choose a method, randomly choose a pair of parameters

v and v′ (or a parameter v and the return value v′), and propose the flow specification v
RefRef−−−−→ v′.

The accuracy of a specification randomly chosen in this way is only 0.140, whereas the overall

accuracy of the specifications inferred by our tool is 0.433.

The number of specifications proposed, which grows roughly linearly with app size, is very

manageable. It is usually a small multiple of the number of critical specifications. For points-to

specification inference, each app produced fewer than 20 proposals, each of which could be checked

in under a minute. Significantly more flow specifications are inferred, but these are even faster to

check. All but five of the apps required fewer than 100 proposals. In total, the tool helped discover

hundreds of new specifications and flows, a task that we estimate would have taken weeks without

the tool.

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 37

3.5.2 Specification Aggregation

Our second experiment demonstrates how our tool can be used to quickly build a useful collection

of library specifications. Consider analyzing the apps in some arbitrary order and aggregating

specifications along the way; that is, the ith app is analyzed using all of the correct specifications

discovered in analyzing the first i − 1 apps. Intuitively, the most frequently used methods should

have their specifications discovered relatively early in the process and we should subsequently benefit

from already having those specifications and not needing to infer them again.

Figure 3.14(e) shows the proportion of new specifications proposed by Algorithm 3 with aggre-

gation to the number of specifications proposed when Algorithm 3 starts from the baseline. The

red, triangle series shows, for each app, the percentage of new specifications that the analyst must

examine. After the 100th app, more than 2/3 of the needed specifications are already known, and

for many apps no new specifications are needed. The blue, diamond series shows the same effect

from processing the apps in a different random order. The black line shows the average number

of new specifications over 100 such runs (varying the order of the apps each time); as can be seen,

the analyst’s workload for a new app with aggregation approaches about 20% of that without ag-

gregation. The red and blue series give a sense of the considerable variance, but the overall trend

is clear: regardless of chosen order, the proportion of new specifications quickly becomes small and

the analystonly does a fraction of the work compared to starting from the baseline. The required

work would drop further after processing more apps.

Figure 3.14(f) shows the proportion of common specifications that are identified after analyzing

each number of apps. We say a specification is common if it is proposed by the tool for at least

c ∈ {2, 3, 4} apps. In this graph, the black, solid curve corresponds to c = 2; the blue, dashed curve

corresponds to c = 3; and the red, dotted curve corresponds to c = 4. Each line shows the average

proportion over 100 random permutations. The tool quickly picks up a large fraction of the common

specifications, reaching more than 82% after just a quarter of the apps have been analyzed in the

case c = 3.

3.5.3 Verification

We ran Algorithm 3 to termination, i.e., until no new specifications for missing parts of the program

could add any more information flows, which means that the remaining taint flows all occur in the

original graph Ĝ. In the case of points-to specification inference, this also proves that no additional

explicit information flows can occur. Figure 3.14(b) shows the number of specifications that had

to be checked by an analyst to completely verify the absence of explicit information flows in an

app. This number is very reasonable (at most 15), showing that the tool makes verification of large

apps practical. In the case of flow specification inference, information flows due to missing points-to

specifications can still occur, and verification requires that the analyst supply all relevant points-to

specifications. In practice, this analysis still discovers many framework methods that need points-to

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 38

specifications, since taint often flows forwards through these methods. Thus our tool finds many

taint flows even if points-to specifications are missing.

There are currently two primary limitations to our tool. One we have already discussed: inferring

both flow and points-to specifications simultaneously is too expensive for our tool on some apps. The

second is that while we can infer missing flow and points-to specifications, we still require a complete

list of the possible sources and sinks in the program to be able to find flows at all. While manually

annotating sources and sinks is a much easier problem (by orders of magnitude) than finding flows,

it would still be useful to consider how to provide automatic assistance in discovering sources and

sinks in large apps.

As can be seen from the total number of potential specifications shown in Figure 3.12, without

our tool an analyst would have to examine a huge number of potential specifications. Even if many of

these can be easily eliminated, our experience has been that without the aid of our tool, performing

verification on moderately sized apps can take hours or even days, and performing verification on

large apps is almost impossible.

3.6 Conclusion

We have developed a general framework that applies to any program analysis formulated as a

CFL reachability problem. Our framework allows us to perform a sound analysis by inferring

missing specifications, and furthermore allows an analyst to interactively refine the results. We have

demonstrated the quality of the specifications inferred by our tool on a corpus of 179 real-world

Android apps. Our results show that our tool can both help build large collections of specifications

very efficiently, and make it practical for an analyst to perform verification.

CHAPTER 3. INTERACTIVE SPECIFICATION INFERENCE 39

Algorithm 4 Algorithm for computing shortest-path CFL reachability.

function ShortestPath(G,C, e)
GC ←Graph(); I ←Map(); H ←Heap()

for all v
σ−→ v′ ∈ G do

H.Update(v
σ−→ v′,weight(σ))

I[v
σ−→ v′]← ∅

end for
while ¬H.Empty() do

[v
A−→ v′, Pcur]← H.DeleteMin()

GC ← GC ∪ {v A−→ v′}
for all D → AB ∈ C do

for all v′
B−→ v′′ ∈ GC do

Pnew ← Pcur +H.Priority(v′
B−→ v′′)

if Pnew < H.Priority(v
D−→ v′′) then

H.Update(v
D−→ v′′, Pnew)

I[v
D−→ v′′]← [v

A−→ v′, v′
B−→ v′′]

end if
end for

end for
for all D → BA ∈ C do

for all v′′
B−→ v ∈ GC do

Pnew ← H.Priority(v′′
B−→ v)+Pcur

if Pnew < H.Priority(v′′
D−→ v′) then

H.Update(v′′
D−→ v′, Pnew)

I[v′′
D−→ v′]← [v′′

B−→ v, v
A−→ v′]

end if
end for

end for
for all B → A ∈ C do

if Pcur < H.Priority(v
B−→ v′) then

H.Update(v
B−→ v′, Pcur)

I[v
B−→ v′]← [v

A−→ v′]
end if

end for
end while
if e ∈ I then

return GetPath(I, e)
end if
return ∅

end function
function GetPath(I, e)

if I[e] = ∅ then
return [e]

end if
[e1, ..., ek]← I[e]
return GetPath(e1)+...+GetPath(ek)

end function

Chapter 4

Specification Inference with

Untrusted Responses

In this chapter, we study the problem of interacting with a human user to infer specifications when

the responses of the user are untrusted. We focus on the case of reachability summaries, which are

used by the static reachability analysis to determine what code is reachable, which can be a major

problem for static analyses [15, 37]—in practice, many false positives are flows through unreachable

code. In our setting, this imprecision is caused both by an imprecise callgraph (due to virtual method

calls) and by the lack of path sensitivity. Using sound assumptions about possible entry points of

an Android app can also lead to imprecision. In our experiments, 92% of false positives were flows

through unreachable code. Oftentimes, the unreachable code is found in large third-party libraries

used by the app.

We are interested in the setting where the user of the static analysis (e.g., a security analyst at

Google trying to identify and remove Android malware from Google Play) differs from the developer

who wrote the program being analyzed (e.g., the developer of an Android app submitted to Google

Play). Currently, the burden of identifying and discharging false positives is placed entirely on

the analyst, despite the fact that the developer is most familiar with the app’s code. Our goal is

to shift some of this burden onto the developer. In particular, we want the developer to provide

reachability specifications to the static analysis describing which methods in the app are reachable.

These reachability specifications allow the static analysis to restrict its search space to reachable

code, thereby reducing the false positive rate.

In practice, we envision that the developer will provide reachability specifications by supplying

tests that exercise the app code—the specification we extract is that only tested code is reachable.

We use tests to avoid the senario where a developer insists (either maliciously or to avoid effort) that

everything is reachable, thereby wasting analyst time and eliminating the benefits of our approach.

40

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 41

Tests are executable, which means that the analyst can verify the correctness of the specifications.

Using tests as specifications has a number of additional advantages. First, developers routinely write

tests, so this approach both leverages existing tests and gives developers a familiar interface to the

specification process. Second, concrete test cases can benefit the analyst in case the app must be

manually examined. For our technical development, we assume that specifications are extracted

from tests, though any method for obtaining correct reachability specifications suffices.

Of course, a malware developer can attempt to evade detection by specifying that the malicious

code is unreachable. Our solution is simple: we enforce the developer-provided specifications by

instrumenting the app to terminate if code not specified to be reachable (e.g., not covered by any

of the developer-provided tests) is actually reached during runtime. The instrumented app is both

consistent with the developer’s specifications, and statically verified to be free of explicit information

flows.

In practice, it may be difficult for developers to provide tests covering all reachable code. There-

fore, we take an iterative approach to obtaining tests. To enforce the security policy, it is only

necessary to terminate the app if it reaches untested code that may also lead to a malicious explicit

information flow. Rather than instrument all untested program statements, we find a minimum

size set of untested statements (called a cut) such that instrumenting these statements to terminate

execution produces an app that is free of explicit information flows, and then propose this cut to the

developer. If the developer finds the cut unsatisfactory, then the developer can provide new tests

(or other reachability information) and repeat the process; otherwise, if the developer finds the cut

satisfactory, then the cut is enforced via instrumentation as before. This process repeats until either

a satisfactory cut is produced, or no satisfactory cut exists (in which case the analyst must manually

review the app).

If the developer allows (accidentally or maliciously) reachable code to be instrumented, then

it may be possible for the app to terminate during a benign execution. To make the process more

robust against such failures, we can produce multiple, disjoint cuts. We then instrument the program

to terminate only if at least one statement from every cut is reached during an execution of the app.

Our work has three main contributions:

• We formalize an interactive verification algorithm for producing verified apps using abductive

inference (Section 4.2).

• For properties formulated in terms of CFL reachability, we reduce the abductive inference

problem to an integer linear program (Section 4.3).

• We implement our framework (Section 4.4) for producing Android apps verified to be free of

explicit information flows, and show that our approach scales to large Android apps, some

with hundreds of thousands of lines of bytecode (Section 4.5).

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 42

1. void leak(boolean flag, String data) {

2. // @Sink("sendHTTP.param", HTTP)

3. if (flag) sendHTTP(data); }

4. @Entry("onCreate")

5. void onCreate() {

6. // @Source(LOC, "getLocation.return")

7. String loc = getLocation();

8. Runnable runMalice = new Runnable() {

9. void run() { leak(true, loc); }}

10. Runnable runBenign = new Runnable() {

11. void run() { leak(false, loc); }}

12. runBenign.run(); }

Figure 4.1: An app PonCreate for which the static analysis potentially finds a false positive information
flow. The comment in line 2 indicates that the first argument of sendHTTP is a sink, and the comment
in line 6 indicates that the return value of getLocation is a source.

4.1 Overview

Consider the Android app shown in Figure 4.1, which we call PonCreate. Suppose that a developer

submits PonCreate to the app store. The first step is to run an information flow analysis on PonCreate.

We assume that the information sources and sinks are given (or inferred, see [95]). For simplicity,

we assume that the goal is to prove that the user’s location does not flow to the Internet:

φflow = @(source-to-sink explicit information flow).

In Figure 4.2, the dashed edges are edges added when computing the transitive closure of the app

in Figure 4.2. For example, because we have edge rgetLocation
New−−−→ olocation, Rules 8 and 12 add the

edge rgetLocation
FlowsTo−−−−−→ olocation. Also, because we have path

olocation
New−−−→ rgetLocation

Assign−−−−→ loc
Assign−−−−→ data

Assign−−−−→ text,

Rules 8 and 9 add edge olocation
FlowsTo−−−−−→ text. Now we have path

LOC
SrcRef−−−−→ rgetLocation

FlowsTo−−−−−→ olocation
FlowsTo−−−−−→ text

RefSink−−−−−→ HTTP,

from which Rule 11 adds LOC
SrcSink−−−−−→ HTTP.

As discussed earlier, one major source of false positive information flows is unreachable code, so

we remove parts of the program that are statically proven to be unreachable. However, statically

computed reachability information can be very imprecise; we focus on imprecision due to the static

callgraph. For example, using a callgraph generated by class hierarchy analysis, the analysis cannot

determine that line 12 cannot call runMalice.run. Even with a more precise callgraph, the static

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 43

getLocation.return

onCreate.loc

leak.data

			𝑜#$%&'($)

sendHTTP.param

SrcSink

New

Assign

FlowsTo

Assign
Assign

SrcRef

LOC

HTTP

SrcRef

Figure 4.2: A part of the graph G for the code in Figure 4.1. Solid edges are edges extracted using
the rules in Figure 4.1. Dashed edges are edges added by the rules in Figure 2.4. Backwards edges
are omitted for clarity.

analysis may not be able to prove that flag is false in every execution. Hence, our information flow

analysis finds a flow from getLocation.return to sendHTTP.param—i.e., it fails to prove φflow.

Our approach is to search for a cut, which is a subset of statements that can be removed from

PonCreate so that the resulting app P ′onCreate satisfies φflow. More formally, let S∗ be the set of

reachable program statements. Because our static analysis is sound, the set of reachable statements

S computed by our static analysis overapproximates S∗ (i.e., S∗ ⊆ S). Let λ be a predicate of the

form

λ =
∧
s∈Eλ

(s 6∈ S∗),

where Eλ ⊆ S. In other words, λ asserts that the subset Eλ of program statements are unreachable.

Then, a cut is a predicate λ such that if λ holds (i.e., every statement in s ∈ Eλ is unreachable),

then the security policy φflow (i.e., lack of explicit information flows) holds. In our example, any of

the following choices for Eλ would allow the static analysis to prove φflow for PonCreate:

a. {3.sendHTTP(data)}

b. {7.getLocation()}

c. {9.leak(true,loc)}

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 44

We compute λ using abductive inference [43]: given facts χ (extracted from the app P) and security

policy φ, abductive inference computes a minimum size predicate λ such that (i) χ ∧ λ |= φ (i.e., λ

together with the known program facts χ suffice to prove the security policy φ) and (ii) SAT(χ∧ λ)

(i.e., λ is consistent with the known program facts χ). In our setting, we augment χ with facts

extracted from the tests.

We propose a novel algorithm for solving the abductive inference problem for properties formu-

lated in terms of context-free language (CFL) reachability. The security policy φ states that certain

vertices in a graph representation of the program are unreachable. Our key insight is to formulate

the CFL reachability problem as a constraint system, which we encode as an integer linear program.

Finding minimum cuts in turn corresponds to a minimum solution for the integer linear program.

Once the cut λ has been computed, the app P is instrumented to ensure that λ holds, producing

a verified app P ′:

P ′ = P − Eλ.

We can enforce λ by ensuring that the statements in Elambda are unreachable in P ′. To enforce

that a statement s ∈ Eλ is unreachable, we terminate PonCreate if execution reaches the program

point immediately before s (i.e., if s is about to be executed). For example, our analysis produces

P ′onCreate = PonCreate − Eλ by instrumenting PonCreate to enforce that 3.sendHTTP(data) is un-

reachable. By the definition of a cut, φflow provably holds for P ′onCreate, so this app can be safely

placed on the app store.

However, not all of the above choices for Eλ are desirable; for example, suppose our analysis

infers Eλ = (b)—then, Eλ ∩ S∗ 6= ∅, so removing Eλ from PonCreate would result in a program that

terminates during a valid execution. We call such a cut invalid (as opposed to a valid cut, which

only removes unreachable statements; i.e., Eλ ∩ S∗ = ∅).
Thus, before publishing P ′, we show λ to the developer for inspection; if they determine that λ is

invalid, then the developer returns a test that executes onCreate, showing that (b) is reachable. By

requiring the the developer provides a test where the cut is invalid, we obtain a proof of the invalidity,

which prevents the developer from automatically rejecting any cut. Upon executing onCreate, our

system observes that (b) is reachable. Our system runs the inference algorithm to compute a new

cut, this time prohibiting choice (b). The inference algorithm can return either (a) or (c). Suppose

that this time, Eλ = (a) is returned; then the developer accepts the cut Eλ because removing Eλ

from PonCreate does not remove any functionality.

Because (3.sendHTTP(data) 6∈ S∗) is true for PonCreate, we know P ′onCreate is semantically equiv-

alent to PonCreate. Furthermore, the instrumentation in P ′onCreate incurs no runtime overhead, since

it is unreachable.

There are three alternative scenarios:

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 45

• Our information flow analysis may prove φflow for PonCreate, so no instrumentation is needed.

• There may not exist a valid cut, in which case the analyst must manually inspect the app.

• Finally, the developer may incorrectly accept a cut that removes reachable code (i.e., an

invalid cut). In this case, the instrumented app P ′onCreate may abort during usage, but safety

is maintained.

Our experiments show that a valid cut exists for the majority of false positive information flows

that occur in our benchmark. Furthermore, the number of interactions required to find a valid cut

is typically small.

Finally, we extend this process to infer multiple disjoint cuts λ1, ..., λn, and instrument P to

terminate only if every λi fails. By using multiple cuts, we reduce the risk of incorrectly terminating

the app if reachable code is cut.

4.1.1 Analyzing Callbacks

In addition to imprecision in the callgraph, another source of imprecision is whether to treat

runMalice.run as a callback. Much of an Android app’s functionality is executed via callbacks

that are triggered when certain system events occur, so callbacks must be annotated as program

entry points. The Android framework provides thousands of callbacks; however, many of these call-

backs are poorly documented, which makes manually identifying and annotating callbacks a time

consuming and error prone task. If a callback annotation is missing, then reachable code may be

excluded from the analysis, introducing unsoundness.

On the other hand, every callback must override an Android framework method—we call any

such method a potential callback. Of course, not every potential callback is a true callback; for

example, any method overriding Object.equals is a potential callback but not a true callback. In

our analysis, we make the sound assumption that every potential callback is a callback—that is, we

conservatively overestimate the set of callbacks. We then infer a cut λ as before. For example, in

Figure 4.1, the static analysis treats runMalice.run as a potential callback, and thus reports the

flow of location data to the Internet. The abductive inference algorithm can return the cut

λ = (3.sendHTTP(data) 6∈ S∗)

which as before guarantees that the program is free of explicit information flows.

While more precise analyses such as [34] exist for soundly identifying callbacks, they are still

overapproximations, and furthermore may be prone to false negatives (e.g., failing to handle native

code). Our approach is both simple to implement and sound.

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 46

4.2 Interactive Verification

We model the imprecision of static analysis by categorizing program facts as may-facts and must-

facts. May-facts are facts that the static analysis cannot prove are false for all executions. For

example, (3.sendHTTP(data) ∈ S∗) is a may-fact for PonCreate. Conversely, must-facts χ are facts

that are shown to hold for at least one concrete execution of P. For example, since 7.getLocation()

is executed by running onCreate, this is a must-fact for PonCreate, i.e.

χ = (7.getLocation() ∈ S∗) ∧ (...).

Our static analysis takes as input a cut λ that asserts that some may-facts are false; e.g., the

predicate

λ9,11 =(9.leak(true,loc) 6∈ S∗) ∧ (11.leak(false,loc) 6∈ S∗)

is a cut with which the static analysis can verify φflow for PonCreate. These assumptions have a

(finite) lattice structure (Λ,≤,>,⊥), where λ ≤ µ means: if χ ∧ λ |= φ holds, then χ ∧ µ |= φ holds

as well (i.e., µ makes stronger assumptions than λ). For example, (9.leak(true,loc) 6∈ S∗) ≤ λ9,11
because λ9,11 makes stronger assumptions. The predicate ⊥ corresponds to no assumptions (and is

guaranteed to hold), and > corresponds to assuming that all may-facts are false.

We are interested in the setting where predicates correspond to sets of program statements:

• Predicates λ correspond to sets Eλ ⊆ S:

λ =
∧
s∈Eλ

(s 6∈ S∗),

where S is the set of program statements and S∗ is the set of reachable program statements.

In other words, λ asserts that statements s ∈ Eλ are not reachable.

• Conjunction of predicates corresponds to set union:

Eλ1∧λ2
= Eλ1

∪ Eλ2
,

i.e., two cuts hold simultaneously if all of the statements from both cuts are unreachable.

• Partial order corresponds to set inclusion:

λ ≤ µ if Eλ ⊆ Eµ.

In other words, smaller sets make fewer (therefore, weaker) assumptions.

• Top and bottom: E> = S and E⊥ = ∅.

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 47

Given λ ∈ Λ, our static analysis tries to prove χ ∧ λ |= φ (i.e., it tries to prove φ assuming λ).

When can we hope to find a valid cut λ that helps the static analysis prove φ? Consider three cases:

1. The static analysis proves χ∧ ⊥|= φ. Since ⊥ always holds, the static analysis has proven that

φ holds.

2. The static analysis cannot prove χ∧ ⊥|= φ, but proves χ ∧> |= φ. In this case, we can search

for a valid cut λ ∈ Λ with which the static analysis can prove φ.

3. The static analysis cannot prove χ ∧> |= φ. This means that even making best-case assump-

tions, the static analysis fails to prove φ, so no cut λ ∈ Λ can help the static analysis prove

φ.

In the first case, the app is already free of malicious information flows. In the third case, the app

must be sent to the analyst for manual analysis. The second case is our case of interest, which we

describe in more detail in the subsequent sections.

4.2.1 Abductive Inference

Our goal is to find a valid cut λ ∈ Λ with which the static analysis can verify that the policy φ holds.

Our central tool will be a variant of abductive inference where the known-facts χ are extracted from

tests:

Definition 4.2.1 Given must-facts χ extracted from dynamic executions, the abductive inference

problem is to find a cut λ ∈ Λ such that

χ ∧ λ |= φ and SAT(χ ∧ λ). (4.1)

Additionally, we constrain λ to be minimal, i.e. there does not exist µ ∈ Λ satisfying (4.1) such that

µ < λ.

Abductive inference essentially allows us to compute minimal specifications λ that are simultaneously

consistent with the must-facts χ and verify the policy φ. In our setting, the abductive inference

problem corresponds to finding a set Eλ such that:

• Removing Eλ from S suffices to prove φflow (i.e., removing Eλ from P guarantees that there

are no source-sink flows in the resulting app P ′).

• Eλ is consistent with must-facts χ (i.e., Eλ does not contain any statements observed during

a dynamic execution of P).

• Eλ has minimum size.

We assume access to an oracle we can query to obtain the tests used to extract must-facts χ:

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 48

Definition 4.2.2 An oracle O is a function that, on input cut λ and program P, returns a test

Tnew showing that λ does not hold for P, or returns ∅ if λ holds for P.

In our setting, the oracle is the developer and the inferred cut λ is shown to the developer as the

set of statements Eλ to be removed from the program. If the developer is not satisfied with Eλ,

then the developer can produce a new test case such that the extracted must-facts χnew satisfy

UNSAT(χnew∧λ)—i.e., χnew shows that Eλ contains reachable statements, so λ is invalid. The tool

updates the must-facts χ← χ∧χnew and reruns the inference procedure. This process repeats until

the developer is satisfied with Eλ, upon which verification is complete. This process is performed

by the refinement loop in function InteractiveCut(P, T) in Algorithm 5.

4.2.2 Instrumenting Cuts

Given cut λ, our framework produces

P ′ ← Instrument(P, λ),

where P ′ is instrumented to abort if λ is violated. The instrumentation guarantees that λ holds for

P ′, so φ holds for P ′ as well (as long as φ is not related to termination properties of P ′). Furthermore,

if λ holds for P, then P and P ′ are semantically equivalent. The procedure is summarized in

Algorithm 5, and an overview of the system (for callgraph specifications discussed in Section 4.3) is

shown in Figure 4.3.

The properties φ we have in mind are security policies, for example the policy φflow that no mali-

cious explicit information flow occurs, and abductive inference computes a cut Eλ such that removing

Eλ from P produces an app P ′ with no malicious flows. The instrumentation enforces Eλ simply by

terminating execution if s ∈ Eλ is reached. In our example in Figure 4.1, we instrument PonCreate to

ensure that the cut λ3 = (3.sendHTTP(data) 6∈ S∗) holds. Then Instrument(PonCreate, λ3) adds

instrumentation that terminates PonCreate if 3.sendHTTP(data) is reached.

4.2.3 Improving Precision Using Multiple Cuts

We can improve precision by computing multiple sufficient cuts, which must all fail before the

instrumentation terminates P ′. In other words, we want λ1, ..., λn such that

χ ∧ (λ1 ∨ ... ∨ λn) |= φ and ∀i, SAT(χ ∧ λi).

However, we need to avoid choosing λ1 = ... = λn (since then the predicates are correlated). To

do so, we assume that Λ comes with a meet operator u, where λ u µ should mean “intersection

of specifications λ and µ”. We require that the predicates be disjoint—i.e., λi u λj =⊥ for all

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 49

CFG 𝐶

Program 𝑃

Program Fact
Extraction

Graph 𝐺

CFL Abductive
Inference

Inferred Cut 𝜆 Oracle 𝒪

Tests 𝑇

Tests 𝑇'()

Figure 4.3: The interactive verification system. One iteration of the system proceeds as follows: (i)
The system produces an inferred cut λ that suffices to prove absence of source-sink flows. (ii) The
oracle O (which is the developer) either accepts λ, or generates a new test Tnew showing that λ is
invalid.

1 ≤ i < j ≤ n. This is stronger than requiring that the predicates λi are distinct, but maximizes

the independence of the predicates, thus making it more likely that at least one of them holds.

In our setting, where predicates λ correspond to sets Eλ ⊆ S, the meet operator is intersection:

Eλuµ = Eλ ∩ Eµ.

This satisfies the requirement λuµ ≤ λ because Eλ ∩Eµ ⊆ Eλ. Now, the condition λi uλj =⊥ says

that our cuts Eλi should be non-intersecting: Eλi ∩ Eλj = ∅.
We incrementally construct the predicates λi. Our first predicate is λ1 ←Cut(φ, χ,Λ). When

computing λ2, we need to ensure that λ1 u λ2 =⊥—i.e., we need to exclude every predicate in the

downward closure

(↓ {λ1}) = {µ ∈ Λ | µ ≤ λ1}

of λ1 from consideration. To exclude these predicates, we add them to χ:

χ1 ← χ ∧
∧

λ∈(↓{λ1}−{⊥})

(¬λ).

Now consider λ2 ←Cut(φ, χ1,Λ). Let ν = λ1 u λ2. Note that ν ∈ (↓ {λ1}), since ν ≤ λ1. However,

Cut returns λ2 such that SAT(χ1 ∧ λ2), and χ1 = (¬ν)∧ (...) unless ν 6∈ (↓ {λ1}− {⊥}), so it must

be the case that ν =⊥.

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 50

Algorithm 5 Algorithm for interactively verifying P. Here, the function Cut solves the abductive
inference problem (algorithm described in Section 4.3), and the function ExtractFacts constructs
the must-facts χ.

procedure InteractiveCut(P, φ)
T ← ∅
while true do

[χ,Λ]←ExtractFacts(P, T)
λ←Cut(φ, χ,Λ)
if λ = ∅ then

return ∅
end if
Tnew ← O(P, λ)
if Tnew = ∅ then

return λ
end if
T ← T ∪ Tnew

end while
end procedure
procedure InteractiveVerify(P, φ)

λ←InteractiveCut(P, φ)
return Instrument(P, λ)

end procedure

In general, after computing the first i− 1 predicates {λ1, ..., λi−1}, we compute

χi ← χi−1 ∧
∧

µ∈(↓{λi−1}−{⊥})

(¬µ),

and choose λi ←Cut(φ, χi,Λ). Algorithm 6 uses this procedure to compute α = λ1 ∨ ...∨ λn. Note

that at some point, the problem of computing Cut becomes infeasible, after which no new sufficient

cuts can be computed.

In our setting,

µ ∈↓ {λ} if Eµ ⊆ Eλ.

To compute multiple cuts, we need an efficient way to compute the conjunction over (↓ {λi}−{⊥}).
Note that

∧
µ∈(↓{λi}−{⊥})

(¬µ) =
∧

s∈Eλi

(¬µ{s}) =
∧

s∈Eλi

(s ∈ S∗).

To see the first equality, note that the conjunction on the right-hand side is over a subset of the

conjunction on the left-hand side, so the left-hand side implies the right-hand side. Conversely,

every µ ∈ (↓ {λi} − {⊥}) can be expressed as a (nonempty) conjunction µ{s1} ∧ ... ∧ µ{sm}, where

s1, ..., sm ∈ Eλi . Therefore ¬µ = (¬µ{s1}) ∨ ... ∨ (¬µ{sm}), which is implied by the right-hand side.

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 51

Algorithm 6 Algorithm for computing multiple cuts.

procedure MultipleCut(φ, χ,Λ, n)
α← false
for all 1 ≤ k ≤ n do

λi ←Cut(φ, χ,Λ)
if λi 6= ∅ then

α← α ∨ λi
χ← χ ∧

∧
µ∈(↓{λi}−{⊥})(¬µ)

end if
end for
return α

end procedure

The resulting update rule is

χi ← χi−1 ∧
∧

s∈Eλi−1

(s ∈ S∗).

In other words, the next call to Cut assumes that every statement s ∈ Eλ is in S∗. Since λiuλj =⊥
is equivalent to Eλi ∩ Eλj = ∅, this condition is correctly enforced because χ is updated so that

every statement that occurs in Eλi is prevented from occurring in Eλj (for j > i).

To instrument the program to enforce multiple cuts α = λ1 ∨ ... ∨ λn, we keep a global array of

Boolean variables [b1, ..., bn], all initialized to false. Whenever a predicate λi is violated, we update

bi ← true. If b1 ∧ ... ∧ bn ever becomes true, then all of the predicates λi have been violated and we

terminate P ′.

4.3 Cuts for CFL Reachability

In this section, we describe an algorithm for performing interactive verification in the case of context-

free language reachability. Let C be a context-free grammar, and let G = (V,E) be a labeled graph

constructed from a program P. We assume for convenience that there is a single source Vsource =

{vsource} and a single sink Vsink = {vsink}. We consider policies φ of the form φ = (e∗ 6∈ GC), where

e∗ = vsource
T−→ vsink. This question can be answered in polynomial time [99]. However, the graph

constructed by the static analysis in general is an approximation of the true graph G∗ = (V ∗, E∗),

i.e. G∗ ⊆ G, which potentially introduces false positive source-sink paths.

In Section 4.2, we discuss predicates Eλ ⊆ S corresponding to sets of program statements. In

this section, we slightly modify notation and consider predicates Eλ ⊆ E that correspond to sets

of edges. All of our cuts are eventually converted to sets of statements—recall from Figure 2.3

that edges correspond directly to statements, except for edges of the form vsource
SrcRef−−−−→ v and

v
RefSink−−−−−→ vsink that do not occur in our cuts.

The must-facts are predicates (e ∈ G∗) where e is an edge certain to be in G∗, whereas the

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 52

may-facts are predicates (e ∈ G∗) where it is uncertain whether e ∈ G∗. Let Ep ⊆ E be this set of

may-edges; then e ∈ Ep corresponds to may-fact (e ∈ G∗). Our goal is to infer specifications of the

form

λ =
∧
e∈Eλ

(e 6∈ G∗)

where Eλ ⊆ Ep. In other words, λ specifies that the edges in Eλ are not in G∗. The partial ordering

on the lattice Λ of specifications is λ ≤ µ if Eλ ⊆ Eµ; i.e., λ makes fewer assumptions about which

edges are not in G∗.

In this setting, the abductive inference problem is to find a minimal subset Eλ ⊆ Ep such that

λ |= φ holds for P. All else being equal, we prefer to find the smallest cuts possible, so we add the

stronger constraint that |Eλ| is minimized.

Definition 4.3.1 Let Gλ = (V,E − Eλ); i.e. the subgraph of G with edges e ∈ Eλ removed. A

predicate λ ∈ Λ is a sufficient cut if and only if e∗ 6∈ GCλ . The CFL reachability minimum cut

problem is to find a sufficient cut λ that minimizes |Eλ|—i.e., there does not exist any sufficient cut

µ such that |Eµ| < |Eλ|.

The CFL minimum cut problem is NP-hard—we give a proof in Appendix 4.6.

4.3.1 Algorithms for CFL Reachability Cuts

We describe a reduction of the minimum cut problem to an integer linear program (ILP). The

objective of the ILP is to minimize |Eλ| over the set of predicates {λ ∈ Λ | e∗ 6∈ GCλ }. We need

to translate the constraints on λ into linear inequalities. To do so, we first recast the problem by

introducing the Boolean variables δe = (e 6∈ GCλ) ∈ {0, 1} for every edge e ∈ GC—i.e., δe = 1 if

removing Eλ from E causes e to be removed from G. We can recover Eλ given the values δe, i.e.

Eλ = {e ∈ Ep | δe = 1}. In this formulation, the objective is to minimize |Eλ| =
∑
e∈Ep δe.

Recall that e = v
A−→ v′ ∈ GCλ if there exists e′ = v

B−→ v′′ and e′′ = v′′
D−→ v′ in GCλ such that

A→ BD ∈ C (we describe the case of binary productions—the case of unary productions is similar);

we denote such a triple as e → e′e′′. Then δe ⇒ (δe′ ∨ δe′′) must hold—i.e., e is removed from GCλ

only if either e′ or e′′ is removed from GCλ . Next, for the source-sink edge e∗, we add constraint

δe∗ = 1, which enforces (e∗ 6∈ GCλ). Finally, we require that δe = 0 for edges e ∈ E −Ep, since these

edges cannot be removed from the graph. These constraints translate into linear inequalities:

1. Productions: δe ≤ δe1 + ...+ δek for every production e→ e1...ek (k ∈ {1, 2}).

2. Remove the source-sink edge: δe∗ = 1.

3. Retain must-edges: δe = 0 for every e ∈ E − Ep

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 53

The first set of constraints follows because δe = 1 only if δei = 1 for some 1 ≤ i ≤ k.

The number of constraints generated by this approach is intractable for the typical ILP solver,

so we introduce two optimizations to reduce the number of constraints. First, we construct the

constraints in a top-down manner—i.e., we only include productions contained in some derivation

of e∗. If an edge e ∈ GC is not contained in any derivation of e∗, then the presence of e in GCλ

does not affect the presence of e∗ in GCλ , so e can be ignored. This optimization is implemented

by first processing all productions e∗ → e1...ek (k ∈ {1, 2}); for every input ei, we recursively add

productions for ei, which recursively adds every production in some derivation of e∗.

Second, any facts added to GC produced from only the must-edges (i.e., from edges e ∈ E−Ep)
are present in GCλ for every λ ∈ Λ. Note that the graph G> = (V,E−Ep) contains no edges e ∈ Ep,
so the edges e ∈ GC> are produced by must-facts alone. This means that we can first compute

GC>, and then only include variables δe for e ∈ (GC − GC>). More precisely, consider a production

e→ e′e′′:

1. If e′, e′′ ∈ GC>, then e ∈ GC>, so we do not add any constraints.

2. If e′ ∈ GC> but e′′ 6∈ GC>, then we treat this as the unary production e→ e′′.

3. If e′, e′′ 6∈ GC>, then we treat this as e→ e′e′′ as before.

Algorithm 7 summarizes the procedure. The above discussion shows that the set Ep returned by

Algorithm 7 solves CFL reachability minimum cut problem.

In practice, we include one additional constraint. For σ ∈ Σ, edges e1 = v
σ−→ v′ and e2 = v′

σ−→ v

are distinct edges, but they are derived from the same program fact. To account for this, we impose

the additional constraint δe1 = δe2 for such pairs of edges.

For example, consider the graph in Figure 4.2. The graph shown in Figure 4.4 summarizes the

possible derivations of the edge LOC
SrcSink−−−−−→ HTTP from the terminal edges; to distinguish this graph

from GC we refer to the edges of this graph as arrows and the vertices as nodes. There are two

types of nodes—nodes corresponding to productions e→ e1...ek (shown as black circles), and nodes

corresponding to edges in GC (shown as boxes containing the corresponding edge). Each production

e → e1...ek has one incoming arrow from e, and one outgoing arrow to each of the edges e1, ..., ek.

Let

Ep = {v Assign−−−−→ v′ | v formal return value} ∪ {v Assign−−−−→ v′ | v′ formal parameter}.

In other words, Ep is the set of edges corresponding to method invocations (recall that we treat each

method invocation x=foo(y) as an assignment from argument y to formal parameter foo.param

and an assignment from formal return value foo.return to the defined variable x).

Each production generates one constraint δe ≤ δe1 + ...+ δek in the ILP, though these constraints

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 54

Algorithm 7 This algorithm solves the CFL reachability minimum cut problem. Here, S maps
variables δe to their value in the solution to the ILP.

procedure CFLCut(C,G,Ep)
GC ←Closure(C,G); GC> ←Closure(C,G− Ep)
C ← {δe∗ = 1}
W ← [e∗]; X ← {e∗}
while ¬W .Empty() do

e←W .Pop()
for all e→ e1...ek do

F ← {ei | ei 6∈ GC>}
C ← C ∪ {δe ≤

∑
e∈F δe}

W ←W.Concat([e ∈ F | e 6∈ X])
X ← X ∪ {e ∈ F | e 6∈ X}

end for
end while
S ←SolveILP(min

∑
e∈Ep δe, C)

return {e ∈ Ep | S(δe) = 1}
end procedure

are simplified using the two optimizations described above. Figure 4.5 shows the constraints gener-

ated by Algorithm 7. Constraint 1 enforces that the SrcSink edge is in the cut. Constraint 2 enforces

the production

(LOC
SrcSink−−−−−→ HTTP)⇒ (LOC

SrcRef−−−−→ rgetLocation
FlowsTo−−−−−→ olocation

FlowsTo−−−−−→ param
RefSink−−−−−→ HTTP)

(where we used ⇒ to denote the production), but the first, second, and fourth edges on the right-

hand side of the production are in GC>, so they are not included in the constraint. The third edge

olocation
FlowsTo−−−−−→ param is produced from the three edges

rgetLocation
Assign−−−−→ loc

Assign−−−−→ data
Assign−−−−→ param,

which is captured by Contraints 3-5.

4.4 Implementation

We have implemented the interactive verification algorithm for our static information flow analysis

described in Chapter 2. We use the ILP solver SCIP [2]. For computing cuts, we use a variant

of our information flow analysis that is not context-sensitive, but we compute a 2-CFA points-to

analysis in BDDBDDB and use it to filter the points-to set we compute. More precisely, during the

computation of the transitive closure of G, whenever an edge e = o
FlowsTo−−−−−→ v is produced, we check

if the 2-CFA points-to set contains e. If not, we remove e from the graph and continue.

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 55

 LOC HTTPSrcSink

𝑟getLocation 𝑜)*+,+-./
FlowsTo 𝑜)*+,+-./ param

FlowsTo

param HTTPRefSink LOC 𝑟getLocationSrcRef

𝑜)*+,+-./ data
FlowsTo data param

Assign

𝑜)*+,+-./ loc
FlowsTo loc data

Assign

𝑜)*+,+-./ 𝑟getLocation
FlowsTo 𝑟getLocation locAssign

𝑜)*+,+-./ 𝑟getLocation
New

𝑟getLocation
New 𝑜)*+,+-./

Figure 4.4: The derivation tree for the edge rgetLocation
SrcSink−−−−−→ param in the graph in Figure 4.2.

max
{
δ(rgetLocation

Assign−−−−→ loc) + δ(data
Assign−−−−→ param)

}
subject to

1. δ(rgetLocation
SrcSink−−−−−→ param) = 1

2. δ(rgetLocation
SrcSink−−−−−→ param) ≤ δ(olatitude

FlowsTo−−−−−→ param)

3. δ(olatitude
FlowsTo−−−−−→ param) ≤ δ(olatitude

FlowsTo−−−−−→ data)

+δ(data
Assign−−−−→ param)

4. δ(olatitude
FlowsTo−−−−−→ data) ≤ δ(olatitude

FlowsTo−−−−−→ loc)

+δ(loc
Assign−−−−→ data)

5. δ(olatitude
FlowsTo−−−−−→ loc) ≤ δ(olatitude

FlowsTo−−−−−→ rgetLocation)

+δ(rgetLocation
Assign−−−−→ loc)

Figure 4.5: The integer linear program (ILP) corresponding to the productions shown in Figure 4.4.

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 56

App LOC Mal. F/TP Ep |{e∗}| |Ep| |V| |C| |Copt|
|Copt|
|C| Time |Eλ1 | |Eλ2 |

411524 389K Yes TP E
p+r
p 4 28K 144K 1982K 264K 0.13 64.4 6 7

0C2B78 322K Yes TP E
p
p 3 23K 491K 5076K 956K 0.19 29.5 8 10

f7d928 258K Yes TP E
p
p 4 48K 882K 18969K 1683K 0.089 663.2 11 25

tingshu 240K Yes TP E
p
p 5 27K 655K 7530K 1280K 0.17 101.3 26 36

16677 200K Yes TP E
p+r
p 4 40K 423K 6896K 809K 0.12 243.2 4 5

phone 198K Yes TP E
p
p 3 8K 83K 968K 156K 0.16 11.9 11 11

583cc9 195K Yes TP E
p
p 4 45K 792K 12575K 1526K 0.12 276.3 20 23

da8c48 190K Yes TP E
p
p 1 5K 6K 166K 8K 0.051 0.2 1 1

4292c1 155K Yes TP E
p+r
p 3 40K 1258K 10155K 2453K 0.24 92.5 1 1

5127eb 142K Yes TP E
p+r
p 2 43K 289K 4579K 548K 0.12 427.0 5 5

1c2514 100K Yes TP E
p+r
p 1 28K 347K 3182K 649K 0.20 181.7 3 4

wifi 98K Yes TP E
p+r
p 3 31K 579K 6568K 1129K 0.17 281.3 8 16

browser 346K No FP E
p
p 4 51K 669K 13718K 129K 0.094 32.1 7 19

00714C 248K Yes FP E
p
p 4 51K 986K 16784K 1922K 0.11 118.1 21 25

highrail 247K Yes FP E
p+r
p 3 39K 587K 9310K 1130K 0.12 451.5 9 9

flow 131K No FP E
p+r
p 4 31K 409K 4759K 792K 0.17 48.8 11 12

calendar 125K Yes FP E
p+r
p 4 31K 226K 3916K 430K 0.11 13.2 5 5

19780d 87K Yes FP E
p+r
p 4 28K 244K 3742K 467K 0.13 894.7 21 22

aab740 86K Yes FP E
p+r
p 4 28K 241K 3695K 461K 0.13 306.0 21 21

9d1da3 56K Yes FP E
p+r
p 5 20K 217K 4321K 420K 0.097 16.9 4 4

018ee7 53K Yes FP E
p+r
p 3 21K 148K 1952K 268K 0.098 9.8 5 5

ca70f4 44K Yes FP E
p+r
p 3 10K 57K 456K 106K 0.23 10.4 3 4

battery 33K Yes FP E
p+r
p 3 14K 98K 1076K 185K 0.17 377.1 12 13

7d43c8 27K Yes FP E
p+r
p 4 9K 33K 368K 60K 0.16 5.6 3 4

Avg. 83K – – – 2.32 12K 76K 2437K 338K 15.9 42.4 5.85 7.74

Figure 4.6: Statistics for some of the Android apps used in the experiments: the number of lines of
Jimple bytecode (“LOC”), whether the app is malware (“Mal.”), whether the app exhibited a true

or false positive information flow (“F/TP”), the number of source-sink edges |{e∗}| = |{vsource
T−→

vsink ∈ GC}|, the number of may-edges |Ep|, the number of variables |V| in the ILP, the unoptimized
number of constraints |C| and the optimized number of constraints |Copt|, the percentage |Copt|
compared to |C|, the running time of the ILP solver in seconds (“Time”), and the size of the first
cut |Eλ1

| and the second cut |Eλ2
| (both on the first iteration of our algorithm). Where relevant,

we give statistics for the largest ILP solved for the given app. Also, we include the average values
over the entire corpus of 77 apps (where Ep is taken to be Ep

p).

4.5 Evaluation

We demonstrate the effectiveness of our approach by interactively verifying a corpus of 77 Android

apps, including battery monitors, games, wallpaper apps, and contact managers. These apps are a

combination of malware samples and a few benign apps obtained from a major security company.

The malware in this corpus contain malicious functionalities that leak sensitive information (contact

data, GPS location, and the device ID) to the Internet. We have ground truth on what information

is leaked for each app. Our goal is to apply Algorithm 5 to produce apps proven not to leak sensitive

information. The security policy is

φflow = (vsource
SrcSink−−−−−→ vsink 6∈ GCflow

(with multiple source vertices vsource and sink vertices vsink), where Cflow is the context-free grammar

encoding the explicit information flow analysis described in Chapter 2.

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 57

100

1000

10000

100000

1000000

10000000

100000000

512 4096 32768 262144

C
on

st
ra

in
ts

Jimple Lines of Code

Unoptimized Constraints Optimized Constraints

0.01

0.1

1

10

100

1000

512 4096 32768 262144
IL

P
So

lv
e T

im
e (

s)

Jimple Lines of Code

(a) (b)

100

1000

10000

100000

512 4096 32768 262144

Si
ze

 o
f E

p

Jimple Lines of Code

1

2

4

8

16

32

64

512 4096 32768 262144

Ed
ge

s

Jimple Lines of Code

Cut 1 Cut 2

(c) (d)

Figure 4.7: Statistics of the constraint system and resulting cuts for the corpus of 77 Android apps,
plotted on a log-log scale: (a) number of unoptimized (black, circle) and optimized (red, triangle)
constraints, (b) ILP solve time in seconds, (c) size of the search space Ep, (d) size of the first cut
Eλ1 (red, triangle) and the second cut Eλ2 (black, circle).

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 58

As described in Section 4.1.1, we prune the program by removing provably unreachable state-

ments before computing information flows. Also, we make worst-case assumptions about program

entry points—i.e., we assume that every potential callback is an entry point (recall that a potential

callback is any method in the application that overrides a method in the Android framework).

We consider cuts consisting of method invocation statements and return statements, since these

statements determine interprocedural reachability. As described in Section 4.3, this corresponds to

choosing Ep = Ep+r
p , where

Ep
p = {v Assign−−−−→ v′ | v′ formal parameter}

Er
p = {v Assign−−−−→ v′ | v formal return value}

Ep+r
p = Ep

p ∪ Er
p.

The cut λ asserts that certain edges in Ep cannot happen. If an edge in Ep
p or Er

p is cut, then we add

a statement assert(false) immediately before the corresponding method invocation statement.

To scale to some of the largest apps in our corpus, we needed to restrict our search space of

cuts—for these apps we use Ep = Ep
p as the search space. Restricting the size of the search space

can increase the size of the cuts (since the search space is strictly smaller), but in our experiments

the cuts are still reasonably sized. For apps where our algorithm scaled using both Ep
p and Ep+r

p ,

using Ep
p led an increase in cut size by at most a factor of about two (typically less).

In our first experiment, we run our tool on the corpus of apps and give statistics for the cuts

we generate (Section 4.5.1). In our second experiment, we iteratively generate specifications that

describe reachable code using Algorithm 5 (Section 4.5.2).

4.5.1 Inferring Cuts

We ran our tool on all the apps in our corpus. The results for twelve of the largest apps, along with all

apps with false positives, are shown in Figure 4.6. We computed two cuts for each app, and include

the sizes of each of these cuts in Figure 4.6. In our experience, additional cuts progressively became

larger and less useful to examine (since the size of the search space reduces on every iteration),

though in principle this process can safely be repeated until no new cuts can be produced—φflow

continues to hold and having more cuts can only enlarge the set of allowed program behaviors.

We also include some statistics on the sizes of the constraint systems generated by Algorithm 7—

these statistics are for the constraint system used to compute the first cut (which is the largest

constraint system, though typically the size is similar for other runs). We have shown both the

number of unoptimized constraints generated along with the number of constraints after applying

the optimizations described in Section 4.3. Additionally, we include the average values over all 77

apps in the corpus (using Ep = Ep
p for consistency).

We have plotted some of these statistics in Figure 4.7 for all the apps in the corpus (again, using

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 59

Ep = Ep
p for consistency). In (a), we compare the size of the unoptimized constraint system to

the size after applying optimizations. As can be seen, the optimized constraint system typically

reduces the size by an order of magnitude (≈ 10×). The unoptimized constraint systems typically

proved to be intractable for the ILP solver to optimize, but with the optimizations the solver always

terminated and finished fairly quickly. We also show the running time for the ILP in (b). As can be

seen, our algorithm scales well to apps with hundreds of thousands of lines of Jimple bytecode.

In (c), we show the size of Ep
p—this gives a sense of the size of the search space of cuts, since

there are 2|E
p
p | possible cuts. In (d), we show the sizes of the first two cuts produced. Most of the

cuts have fewer than 16 edges, though the largest size for the first cut is 26 edges, and the largest

size for the second cut is 36 edges. All of these cuts are sufficiently small so that the developer can

easily verify whether the cut is valid. This suggests that the interactive verification process places

little work on the developer; we further evaluate this workload in our second experiment.

4.5.2 Interactive Verification

In our second experiment, we manually carried out the procedure described in Algorithm 5 to

produce verified apps P ′. Because the app developer is absent, we play the role of the developer.

However, we are disadvantaged compared to the app developer: we only have the app bytecode,

have superficial knowledge of the app’s intended functionality, and lack access to the testing tools

available to the developer. Furthermore, many of the apps crash when we try to run them due to

incompatibilities with the Android emulator.

Thus, we provide the reachability information to our tool manually, determining which statements

are reachable by reading the bytecode. The cuts are presented as a list of statements to be removed

from the app, and we mark each statement as reachable or unreachable based on our inspection.

For those apps that did not crash in the emulator (about half of the 12 apps) we also ran tests and

found that reachability information was consistent with our specifications. In practice, we expect

developers to write tests for Android apps using GUI testing frameworks such as Espresso [48].

We focused our efforts on producing cuts only for the false positives produced by our explicit

information flow analysis. If the flow is a true positive, then no cut exists, so the analyst must

necessarily inspect the app to determine whether it is malicious. As a consequence, in these cases

little can be done to reduce the analyst workload.

The apps with false positive flows are shown in the second half of Figure 4.6. For each of these

apps, we show the source of the false positive flow in Figure 4.8, and whether we determined that

the cause of the false positive is due to unreachable code. These apps typically have other true

positive flows—we include only sources that have false positive flows in φflow when performing the

verification process (or else φflow would be false for the app).

In Figure 4.8, we show the results of our interactive verification process. We show two iterations

of the process. For each iteration, we show the size of the cuts λ1 and λ2, along with the validity of

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 60

each cut. The inspection of the cuts proceeded until a valid cut was found, or it was determined that

no cut was possible. After just two iterations of Algorithm 5, we succeeded in producing valid cuts

for all apps with false positive explicit information flows, except for the app with a false positive not

due to unreachable code. This means that only two interactions with the developer were necessary.

The cuts remained small after the second iteration, which shows that the entire process is feasible for

the developer to carry out. In the case of the final application (browser), because the false positive

was not due to unreachable code, no valid cut can be produced by our method, which means that

the app would be flagged for manual review.

To demonstrate how each step of Algorithm 5 contributes to verifying each app, Figure 4.9 plots

the number of apps remaining to be verified at each step. As can be seen, the first cut on the first

iteration alone clears many of the apps (6 out of 12), and the second cut on the first iteration clears

an additional app. The first cut on the second iteration clears three of the remaining apps, and the

second cut clears an additional app, leaving only one app that our process failed to verify.

Whereas the analyst would initially have had to analyze all 12 false positives, our approach

reduces the analyst’s workload to a single false positive. In our setting, this may not seem like a

huge improvement, because the analyst still needs to analyze the true positive apps. However, our

corpus of apps is heavily biased towards apps with malicious behaviors. In practice, the overwhelming

majority of apps received by an app store are benign, which means that even a small false positive

rate leads to a huge ratio of false positives to true positives that the analyst must analyze. We

achieve a 92% reduction in the number of false positives that need to be discharged by the analyst,

which enables the analyst to better focus effort.

While we cannot evaluate the workload required of the developer, we describe our own experience

inspecting cuts. In 10 of the cases (including the invalid cut), the cuts were very easy to evaluate,

taking only a few minutes, and we are very confident of the results. The remaining 2 cases were

considerably more difficult, and took up to two hours each, leaving more room for error. This

difficulty was primarily a consequence of code obfuscation. We believe that it would be significantly

easier for the developer, who understands the app and has source code, to examine the cuts. While

most cuts were in third-party libraries, the developer has knowledge of which library features they

use, which should aid them in evaluating the correctness of the cut. Furthermore, developers often

maintain high-coverage test suites, which we believe would also aid the process.

We found two sources of imprecision that led to the false positives. The first was the presence

of a conditional to the following effect:

if (hasLocationPermission()) { leakLoc(); }

In cases where the app did not have permissions to access location, this caused the information flow

analysis to report a false positive. The second was due to our sound assumption that every potential

callback is an entry point, which caused unreachable code to be marked as reachable. In both cases,

our algorithm can find cuts removing the unreachable code. In the case of the app for which no

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 61

App vsource Cause
Iteration 1 Iteration 2

|Eλ1 | |Eλ2 | I1 I2 |Eλ1 | |Eλ2 | I1 I2

browser location u.k. 5 6 No No 5 None No No
00714C contacts u.r. 2 8 Yes - - - - -
highrail device ID u.r. 1 2 Yes - - - - -

flow contacts u.r. 2 3 Yes - - - - -
calendar location u.r. 3 3 Yes - - - - -
19780d contacts u.r. 1 1 No No 2 9 Yes -
aab740 contacts u.r. 1 1 No No 2 9 Yes -
9d1da3 location u.r. 4 4 No No 5 5 No Yes
018ee7 location u.r. 4 4 Yes - - - - -
battery location u.r. 8 8 No Yes - - - -
ca7b26 location u.r. 4 4 Yes - - - - -
7d43c8 location u.r. 3 4 No No 4 4 Yes -

Figure 4.8: Size and validity of cuts generated by Algorithm 7 for apps with false positive flows.
“None” means no cut could be generated. For “Cause”, “u.k.” means the cause is unknown, and
“u.r.” means the information flow is unreachable. The values Ii indicate whether the ith cut is

sufficient to prove the safety property φflow, i.e., Ii = χ ∧ λi
?

|= φflow.

0
1
2
3
4
5
6
7
8
9

10
11
12

Cut 1 Cut 2 Cut 1 Cut 2

U
nv

er
ifi

ed
 A

pp
s R

em
ai

ni
ng

Gen.
𝜆" ∨ 𝜆$

Query oracle 𝒪 (Iteration 1) Query oracle 𝒪 (Iteration 2) OutputInput Gen.
𝜆" ∨ 𝜆$

Figure 4.9: Visualization of how many apps are successfully verified at each step of the process.
Algorithm 5 is run on each of the 12 input apps that have a false positive explicit information flow.
The x-axis describes the various points in the process, and the y-axis describes the number of apps
remaining to be verified at each point.

cut could be found, we believe the false positive was due to insufficient context sensitivity, not flows

through unreachable code.

4.6 CFL Minimum Cut is NP-Hard

Theorem 4.6.1 The CFL minimum cut problem is NP-hard.

Proof: We prove the theorem by reducing the minimum vertex cover problem to the CFL min-

imum cut problem. Consider the minimum vertex cover problem for a given undirected graph

G = (V,E), where V = {v1, ..., vn}. We construct the following directed, labeled graph G = (V, E)

and context-free grammar C such that a CFL minimum cut for G and C corresponds to a minimum

vertex cover for G.

Context-free grammar C. The context-free grammar C is defined to be:

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 62

1. Alphabet Σ = {a, b, c, d}.

2. A single production T → abcbd, where T is the start symbol.

Graph G. The graph G is defined to be:

1. We have vertices x∗, y∗ ∈ G.

2. For each i ∈ {1, ..., n}, we have vertices xi, yi ∈ G.

3. For each i ∈ {1, ..., n}, E contains the edges

x∗
a−→ xi

b−→ yi
d−→ y∗.

4. For each edge (vi, vj) ∈ E, we have edges

yi
c−→ xj , yj

c−→ xi.

CFL minimum cut problem. Finally, the specification of the CFL minimum cut problem is as

follows:

1. The source vertex is x∗.

2. The sink vertex is y∗.

3. The edges labeled b have weight 1.

4. All other edges have weight ∞.

CFL minimum cut ⇒ vertex cover. First, we claim that given a cut Ecut = {xi
b−→ yi}, the

corresponding vertices

Vcover = {vi | xi
b−→ yi ∈ Ecut}

form a cover. To see this, note that for every edge (vi, vj) ∈ E, we have path

x∗
a−→ xi

b−→ yi
c−→ xj

b−→ yj
d−→ y∗

in E . By the definition of a cut, we know that

xi
b−→ yi ∈ Ecut or xj

b−→ yj ∈ Ecut.

As a consequence, by the definition of Vcover, we have

vi ∈ Vcover or vj ∈ Vcover,

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 63

so Vcover is a vertex cover as claimed.

Vertex cover ⇒ CFL minimum cut. Conversely, we claim that given a cover Vcover = {vi}, the

corresponding edges

Ecut = {xi
b−→ yi | vi ∈ Vcover}

form a cut. To see this, note that for every path

x∗
a−→ xi

b−→ yi
c−→ xj

b−→ yj
d−→ y∗,

we have (vi, vj) ∈ E, so by the definition of a cover, we have

vi ∈ Vcover or vj ∈ Vcover.

As a consequence, by the definition of Ecut, we have

xi
b−→ yi ∈ Ecut or xj

b−→ yj ∈ Ecut.

Furthermore, every CFL source-sink path in G has this form, so Ecut is a cut as claimed.

Finally, note that for both directions of the proof,

|Vcover| = |Ecut|,

so in particular, a minimum cut corresponds to a minimum cover (and vice versa). �

4.7 Conclusion

Given a program P and a policy φ, our framework minimally instruments P to ensure that φ holds.

This instrumentation is guaranteed to be consistent with given test cases, and furthermore the

developer can interact with the process to produce suitable cuts. Our approach to handling false

positives has the potential to make automated verification of the absence of explicit information

flows a more practical approach for security analysts to produce safe and usable programs. We have

applied this approach to verify the absence of malicious explicit information flows in a corpus of 77

Android apps. For 11 out of 12 false positives information flows we found, our tool produced valid

cuts to enforce φflow.

In our experience, Android malware to date does not rely on sophisticated techniques to hide

malicious behavior. We believe this is because such malware predominantly appears on third-

party app stores where sophisticated security auditing (either manual or automatic) is unavailable.

Android malware is likely to become more sophisticated over time, in which case the limitations

CHAPTER 4. SPECIFICATION INFERENCE WITH UNTRUSTED RESPONSES 64

in our static analysis may be exploited. In particular, it may be interesting to study the following

limitations to our current analysis:

• Implicit flows: While we do not take into account the possibility of implicit flows in the

application [123], we can easily extend our technique to do so—we can include “transfer”

edges in the analysis that pass taint from variables used in conditionals to variables used in

branches.

• Exception analysis: Our analysis does not currently track flows due to exceptional control flow.

There has been recent work on exception handling [27].

• Reflection: Our analysis cannot resolve method calls made using the Java reflection API, so

we treat such calls as no-ops. There has been recent work on handling reflective method

calls [23, 89].

• Missing models: Our information flow analysis depends on information flow models [18, 39,

161], which means that missing models can introduce unsoundness into our analysis. For the

apps in our experiments, we have carefully searched for potential missing models.

For each of these settings, a key challenge is handling the high false positive rate from a sound

analysis (implicit flows [80], exceptions [27], reflection [23], and missing models [18]). Our technique

may therefore be particularly applicable to these settings, though the search space of cuts may need

to be modified.

Chapter 5

Active Learning of Points-To

Specifications

In this chapter, we propose an algorithm that leverages observations from concrete executions to

infer points-to specifications. Two constraints make our problem substantially more challenging

than previous algorithms for inferring specifications from concrete executions:

• Points-to effects cannot be summarized for a library function in isolation, e.g., in Figure 5.1,

set, get, and clone all refer to the mutual field f.

• We may not be able to instrument library code, e.g., native code.

Now, suppose our algorithm proposes a candidate specification, and we want to check whether this

candidate is “correct”. More precisely, we want to ensure that the candidate is admissible, i.e., there

is no strictly better specification. The first constraint says that the candidate must simultaneously

summarize the points-to effects of set, get, and clone, and the second constraint says that we can

only use input-output examples to check the admissibility.

boolean test() {

Object in = new Object(); // o_in

Box box = new Box(); // o_box

box.set(in);

Object out = box.get();

return in == out; }

class Box { // specification

Object f;

void set(Object ob) { f = ob; }

Object get() { return f; }

Box clone() {

Box b = new Box(); // ~o_clone

b.f = f;

return b; }}

Figure 5.1: An example of a program using the Box class in the library (right), and the implemen-
tation of the library functions set, get, and clone in the Box class.

65

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 66

We introduce path specifications to describe points-to effects of library code. Each path specifi-

cation summarizes a single points-to effect of a combination of functions. An example is:

For two calls box.set(x) and box.get(0), the return value of get may alias x.

Path specifications have two desirable properties:

• We can check if a candidate path specification is admissible using input-output examples.

• A set of individually admissible path specifications is admissible as a whole.

These two properties imply that we can infer path specifications incrementally. In particular, we

formulate the problem of inferring path specifications as a language inference problem [110], and

we develop a language inference algorithm tailored to our problem instance. Our algorithm builds

the language incrementally in two phases—it first infers a finite language of path specifications that

it is certain are admissible (leveraging the two properties described above), and then inductively

generalizes this language while trying to retain admissibility.

We implement our algorithm in a tool called Atlas1, which infers path specifications for func-

tions in Java libraries. In particular, we evaluate Atlas by using it to infer specifications for the Java

Collections API, since this API contains many functions that exhibit complex points-to effects. At-

las infers the correct specifications for 97% of these functions. Previously, we had manually written

points-to specifications for the Java Collections API—Atlas inferred 10× as many specifications.

We compare our specifications to handwritten specifications on a benchmark of 46 Android apps.

Using these inferred specifications increases the precision of our static points-to analysis by 53%

compared to analyzing the library code, and increases recall by 20% compared to using handwritten

specifications. While the specifications synthesized by Atlas are incomplete, we show that using

the inferred specifications achieves 76% recall for nontrivial points-to edges, including 100% recall

for almost half the programs in our benchmark. Our contributions are:

• We introduce path specifications, and prove that they are sufficiently expressive to precisely

model the library code when using a standard flow-insensitive points-to analysis.

• We formulate the problem of inferring path specifications as a language inference problem, and

we design a language inference algorithm tailored to our problem instance.

• We implement our approach in Atlas, and use it to infer a large number of useful specifications

for the Java Collections API.

5.1 Background

For the purposes of this chapter, we introduce a modified version of the grammar shown in Figure 2.4;

in particular, we reformulate the points-to analysis to introduce a new intermediate relation. Our

1Atlas stands for AcTive Learning of Alias Specifications.

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 67

Transfer→ ε | Transfer Assign | Transfer Store[f] Alias Load[f]

Transfer→ ε | Assign Transfer | Load[f] Alias Store[f] Transfer

Alias→ Transfer New New Transfer

FlowsTo→ New Transfer

Figure 5.2: Productions for the context-free grammar Cpt. The start symbol of Cpt is FlowsTo.

oin in out

ob obox rget

thisset list thisget

New

FlowsTo

Assign

Transfer

Store[f]

Transfer

New

Assign

Alias

Assign Assign

Transfer Transfer Load[f]

oin in out

ob obox rget

thisset list thisget

New

FlowsTo

Assign

Transfer

Transfer

New

Assign

Alias

Assign Assign

Transfer Transfer

(thisset
Alias−−−→ thisget)⇒ (ob

Transfer−−−−−−→ rget)

Figure 5.3: The solid edges are the graph G extract for the program test shown in Figure 5.1. In
addition, the dashed edges are a few of the edges in G when computing the transitive closure. We
omit backward edges (i.e., with labels A) for clarity. Vertices and edges corresponding to library
code are highlighted in red.

modified production rules are shown in Figure 5.2. The first production in Figure 5.2 constructs

the transfer relation x
Transfer−−−−−→ y, which says that x may be “indirectly assigned” to y. The second

production constructs the “backwards” transfer relation. The third production constructs the alias

relation x
Alias−−−→ y, which says that x may alias y. The fourth production computes the points-to

relation, i.e., x ↪→ o whenever o
FlowsTo−−−−−→ x ∈ G. For example, Figure 5.3 shows the computation of

the transitive closure for the code shown in Figure 5.1.

5.2 Overview

Our algorithm infers a set of specifications that describe the behaviors of the library functions that

are relevant to our static points-to analysis. It requires two inputs:

• Library interface: The type signature of each function in the library.

• Blackbox access: The ability to execute a library function on a chosen input and obtain the

corresponding output.

Because we only have blackbox access to the library code, it is impossible to guarantee that

the inferred specifications are both sound and precise. Instead, any inference algorithm must make

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 68

tradeoffs between these two properties. Our algorithm aims to ensure that the inferred path speci-

fications S are admissible, which says that there are no “strictly better” path specifications S′, i.e.,

the precision and recall of S are as good as those of S′ and at least one is strictly better.

To this end, our algorithm infers specifications incrementally in two phases. In the first phase,

our algorithm only infers specifications it is certain are admissible. In the second phase, it induc-

tively generalizes this set of specifications, using a large number of tests to minimize the chance of

inadmissibility. In our experiments, this phase does not infer any inadmissible specifications.

We define precision for path specifications with respect to Andersen’s analysis [11], a context-

and flow-insensitive points-to analysis, and to context- or object-sensitive extensions of this analysis

based on cloning [152]. We show that path specifications can precisely model the library code when

using Andersen’s analysis; they are also compatible with other points-to analyses, but may be lose

precision. For example, the path specifications for the List class describe the same points-to effects

as the following code:

class List {

Object f;

void add(Object ob) { f = ob; }

Object get(int i) { return f; } }

Andersen’s analysis does not lose any precision by analyzing this code (or path specifications) instead

of the true implementation of List, but a more precise static analysis may lose precision.

5.2.1 Path specifications

Our algorithm infers path specifications that summarize the effects of library code. A path specifica-

tion is simply a sequence s ∈ V∗path, where V∗path are variables in the library interface. For example,

a path specification for the library functions set and get in Figure 5.1 is

ob 99K thisset → thisget 99K rget. (5.1)

Here, thism and rm denote the receiver and return value of library function m, respectively. The

arrows in the path specification are for clarity; we can equivalently write this path specification as

a sequence ob thisset thisget rget. Its meaning is the following logical formula:

(thisset
Alias−−−→ thisget ∈ G)⇒ (ob

Transfer−−−−−→ rget ∈ G). (5.2)

Intuitively, the notation x
A−→ y is an edge indicating that x and y satisfy relation A (e.g., they are

aliased), and the graph G is the set of all such edges. Then, this formula says that if the receivers

of set and get are aliased, then the parameter ob of set may be transfered to the return value of

get. The transfer relation x
Transfer−−−−−→ y essentially encodes that x may be “indirectly assigned” to

y. For example, in the code z = x; y = z;, x is transfered to y.

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 69

Path specifications have two key benefits. First, we can devise a test case P to check whether a

given path specification s is admissible. The premise of s holds for P , but its conclusion only holds

for P if the points-to effect specified by s is exhibited by the library code. Upon executing P , if

we observe that the conclusion of s holds for P , then we have proven that s is admissible. Second,

given a set S of path specifications, if we have determined that every path specification s ∈ S is

admissible, then we guarantee S is admissible as a whole—i.e., path specifications compose.

Continuing our example, the test case for the path specification (5.1) is the test function shown

in Figure 5.1. Essentially, if we ignore the implementation of the set and get functions, then the

premise of (5.2) holds for this program, but not the conclusion. Upon executing the program, if

we see that the conclusion of (5.2) holds during execution, then we know that the behavior of the

library functions specified by the path specification can occur, i.e., it is admissible.

5.2.2 Phase One: Sampling Positive Examples

Our algorithm initializes the set of inferred specifications to S ← ∅, and then repeats:

1. Propose a candidate path specification s.

2. Synthesize a test case that checks whether s is admissible.

3. Execute the test cases, and accept s (i.e., S ← S ∪ {s}) if the test case passes.

By design, the synthesized test case passes only if s is admissible; therefore, at the end of the first

phase, S remains admissible. However, the test cases may fail even if s is admissible—we cannot

guarantee that no missed corner cases exist in the library code. Thus, test cases are designed

heuristically to pass for the majority of admissible candidates.

5.2.3 Phase Two: Inductive Generalization

We show that path specifications can precisely model any library code with respect to Andersen’s

analysis (and its context- and object-sensitive extensions). However, the required set of path spec-

ifications may be infinitely large. Phase two inductively generalizes the finite set of specifications

inferred in phase one to a description of a potentially infinite set of path specifications.

Since a path specification s is a sequence of variables s ∈ V∗path (where Vpath are the variables

in the library interface), a set S of path specifications is a formal language over the alphabet Vpath.

Thus, we can frame the inductive generalization problem as a language inference problem: given

(i) the finite set of positive examples from phase one, and (ii) an oracle we can query to determine

whether a given path specification s is admissible (though this oracle is noisy, i.e., it may return

false even if s is admissible), the goal is to infer a (possibly infinite) language S ⊆ V∗path.

We devise a language inference algorithm based on RPNI [110]. Our algorithm proposes candidate

inductive generalizations of S, and then checks the admissibility of each candidate using a large

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 70

number of test cases. Unlike phase one, a generalization may be inadmissible even if all the test

cases pass; we show empirically that admissibility is maintained.

While our algorithm infers a regular set of path specifications, in general, the set of path spec-

ifications required to model the library code may not be regular. We find that regular sets of path

specifications suffice to model library code occurring in practice (see Section 5.9.1).

For example, the path specifications for set, get, and clone functions are

ob 99K thisset(→ thisclone 99K rclone)
∗ → thisget 99K rget. (5.3)

These specifications say that if we call set, then call clone n times in sequence, and finally call get

(all with the specified aliasing between receivers and return values), then the parameter ob of set

will be transfered to the return value of get. Then, phase one may infer

ob 99K thisset → thisclone 99K rclone → thisclone 99K rclone → thisget 99K rget.

Then, phase two would inductively generalize this specification to (5.3).

5.3 Path Specifications

In this section, we describe our specification language.

5.3.1 Motivation

Suppose that our static analysis could analyze the library implementation, and that by doing so,

the extracted graph G contains additional paths

z1
β1
99K w1, ..., zk

βk
999K wk

extracted from the library code, where the variables z1, w1, ..., zk, wk are parameters and return

values of library functions and β1, ..., βk ∈ Σ∗pt. Furthermore, let A1, ..., Ak−1 be nonterminals that

satisfy A
∗

=⇒ β1A1...βk−1Ak−1βk. In this case, while computing the transitive closure G, if

w1
A1−−→ z2, ..., wk−1

Ak−1−−−→ zk ∈ G,

then our static analysis would add edge z1
A−→ wk to G as well.

However, since we cannot analyze the library implementation, the paths zi
βi
99K wi are missing

from G (and thus from G), so the static analysis will not add the edge z1
A−→ wk to G. Therefore,

we need a specification telling the analysis to add z1
A−→ wk to G if all the edges wi

Ai−→ zi+1 are in

G.

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 71

Library Code Candidate Path Specifications Generated Test Cases

void set(Object ob) { f = ob; }

Object get() { return f; }
ob 99K thisset → thisget 99K rget

boolean test() {

Object in = new Object(); // o_in

Box box = new Box(); // o_box

box.set(in);

Object out = box.get();

return in == out; }

3

void set(Object ob) { f = ob; }

Object get() { return g; }
∅ ∅ 3

void set(Object ob) { f = ob; }

Object clone() { return f; }
ob 99K thisset → thisclone 99K rclone

boolean test() {

Object in = new Object(); // o_in

Box box = new Box(); // o_box

box.set(in);

Object out = box.clone();

return in == out; }

7

void set(Object ob) { f = ob; }

Object get() { return f; }

Box clone() {

Box b = new Box(); // ~o_clone

b.f = f;

return b; }}

ob 99K thisset (→ thisclone 99K rclone)
∗

→ thisget 99K rget

boolean test0() {

Object in = new Object(); // o_in

Box box0 = new Box(); // o_box

box0.set(in);

Object out = box0.get();

return in == out; }

boolean test1() {

Object in = new Object(); // o_in

Box box0 = new Box(); // o_box

box0.set(in);

Box box1 = box0.clone();

Object out = box1.get();

return in == out; }

boolean test2() {

Object in = new Object(); // o_in

Box box0 = new Box(); // o_box

box0.set(in);

Box box1 = box0.clone();

Box box2 = box1.clone();

Object out = box2.get();

return in == out; }

...

3

void set(Object ob) { f = ob; }

Object get() {

return f;

return g;

return h; }

Box clone() {

Box b = new Box(); // ~o_clone

b.g = f;

b.h = g;

return b; }}

ob 99K thisset → thisget 99K rget

+ ob 99K thisset → thisclone 99K rclone
→ thisget → rget

+ ob 99K thisset → thisclone 99K rclone
→ thisclone 99K rclone
→ thisget 99K rget

boolean test0() {

Object in = new Object(); // o_in

Box box0 = new Box(); // o_box

box0.set(in);

Object out = box0.get();

return in == out; }

boolean test1() {

Object in = new Object(); // o_in

Box box0 = new Box(); // o_box

box0.set(in);

Box box1 = box0.clone();

Object out = box1.get();

return in == out; }

boolean test2() {

Object in = new Object(); // o_in

Box box0 = new Box(); // o_box

box0.set(in);

Box box1 = box0.clone();

Box box2 = box1.clone();

Object out = box2.get();

return in == out; }

3

Figure 5.4: Examples of hypothesized library implementations (left column), an equivalent set of
path specifications (middle column), and the synthesized test cases to check the precision of these
specifications (right column), with a check mark 3 (indicating that the tests pass) or a cross mark
7 (indicating that the tests fail).

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 72

For example, consider the library code in Figure 5.1. When analyzing the program test in the

same figure with the library code available, the analysis includes the paths

ob
Store[f]−−−−−→ thisset, thisget

Load[f]−−−−→ rget.

In this case, we have

Transfer
∗

=⇒ Store[f] Transfer Load[f],

so we need a specification encoding the rule

(thisset
Alias−−−→ thisget)⇒ (ob

Transfer−−−−−→ rget).

This rule says that if the static analysis computes thisset
Alias−−−→ thisget ∈ G, then it also computes

ob
Transfer−−−−−→ rget ∈ G. For example, this rule is applied in Figure 5.3 (right) to compute ob

Transfer−−−−−→
rget.

Path specifications are a language for expressing such rules. The middle column of Figure 5.4

shows examples of path specifications. In the first column, we show a hypothetical implementation

of the library functions that has the same semantics as the corresponding path specification. In the

last column, we show test cases that check the admissibility of the path specifications.

5.3.2 Syntax and Semantics

Let Vprog be the set of variables in the program (i.e., excluding variables in the library), and let

Vpath =
⋃
m∈M{pm, rm} be the set of visible variables, i.e., variables in the program or at the library

interface. Then, a path specification is a sequence

z1w1z2w2...zkwk ∈ V∗path,

where zi, wi ∈ Vmi for library function mi ∈ M. We require that wi and zi+1 are not both return

values, and that wk is a return value. For clarity, we also use the syntax

z1 99K w1 → z2 99K ... 99K wk−1 → zk 99K wk. (5.4)

Given path specification (5.4), for each i ∈ [k], define the nonterminal Ai in the grammar Cpt to

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 73

be

Ai =


Transfer if wi = rmi and zi+1 = pmi+1

Alias if wi = pmi and zi+1 = pmi+1

Transfer if wi = pmi and zi+1 = rmi+1 .

Also, define the nonterminal A by

A =

Transfer if z1 = pm1

Alias if z1 = rm1 .

Then, the path specification corresponds to adding a rule(
k−1∧
i=1

wi
Ai−→ zi+1 ∈ G

)
⇒ (z1

A−→ wk ∈ G)

to the static points-to analysis. The corresponding rule also adds the backwards edge wk
A−→ z1

to G, but we omit it for clarity. We refer to the premise of this rule as the premise of the path

specification, and the conclusion of this rule as the conclusion of the path specification.

5.3.3 Admissibility

In this section, we formalize the notion of admissibility, which essentially says that a set S of path

specifications is Pareto optimal in terms of precision and recall, i.e., there does not exist a set S′ of

path specifications that is strictly preferable to S.

Let G∗(P) denote the true set of relations for a program P (i.e., relations that hold dynamically).

Furthermore, given path specifications S, let G(P, S) denote the points-to edges computed using

S for P , let G+(P, S) = G(P, S) \ G∗(P) be the false positive points-to edges computed, and

G−(P, S) = G∗(P) \G(P, S) be the false negative points-to edges computed. We say S is sound if

G−(P, S) = ∅ and completely precise if G+(P, S) = ∅.
Our notions of precision and recall are relative versions of the notions of complete precision

and soundness, respectively. More precisely, given sets S and S′ of path specifications, we say S

has higher or equal precision than S′ if for all programs P , G+(P, S) ⊆ G+(P, S′), i.e., S always

produces fewer false positives than S′. Similarly, we say S has higher or equal recall than S′ if for

all programs P , G−(P, S) ⊆ G−(P, S′), i.e., S always produces fewer false negatives than S′. If for

all programs P , S and S′ compute the same relations, i.e., G(P, S) = G(P, S′), then we say S and

S′ are equivalent.

We say a set S of path specifications is admissible if, for any other set S′ of path specifications,

either S′ does not have higher or equal precision than S or it does not have higher or equal recall

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 74

than S. In other words, there is no set of path specifications S′ that is strictly better than S.

5.3.4 Checking Admissibility

Our algorithm needs to generate test cases that check whether a candidate path specification s is

admissible. We describe sufficient conditions for a passing test case to prove admissibility, i.e., if

the test case passes, then we guarantee that s is admissible. However, the test case may fail even

if s is admissible. This property is inevitable since executions are underapproximations; we show

empirically that if s is admissible, then the synthesized test case typically passes.

Definition 5.3.1 Let s be a path specification. We say a program P is a potential witness for s if:

• The conclusion (e ∈ G) of s does not hold statically for P with empty specifications, i.e.,

e 6∈ G(P, ∅).

• The premise of s holds for P , i.e., e ∈ G(P, {s}).

• For every set S of path specifications, if e ∈ G(P, S), then S ∪ {s} is equivalent to S.

We say P is a witness for s if furthermore the conclusion of s is a true relation of P , i.e., e ∈ G∗(P).

In other words, s is the most precise path specification that can compute e for P—for any set S of

path specifications that can do so, adding s to S does not affect the semantics of S. In Figure 5.4,

the test cases shown in the last column witness the corresponding path specifications.

Intuitively, if program P is a potential witness for path specification s with premise ψ and

conclusion φ = (e ∈ G), then s is the only path specification that can be used by the static analysis

to compute relation e for P . Therefore, if P witnesses s, then s is guaranteed to be admissible.

More precisely, we have the following important result:

Theorem 5.3.2 For any set S of path specifications, if each s ∈ S has a witness, then S is admis-

sible.

Proof: Let S′ be a set of path specifications. We need to show that (i) if S′ has higher recall

than S, then S has higher precision than S′, and (ii) if S′ has recall equal to S, then S has higher

or equal precision than S′.

First, we claim that in either case, S′ is equivalent to S′ ∪ S. To this end, consider a path

specification s ∈ S with conclusion (e ∈ G) and witness P . We claim that if path specifications

S′ has higher or equal recall than S, then S′ ∪ {s} is equivalent to S′. Since the static analysis is

monotone, we have e ∈ G(P, {s}) ⊆ G(P, S), so since S′ has higher or equal recall than S, we have

e ∈ G(P, S′). By the definition of a witness, S′ ∪ {s} is equivalent to S′. Thus, by induction, S′ ∪ S
is equivalent to S′.

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 75

Note that (ii) follows immediately, since S clearly has higher or equal precision than S′ ∪ S,

so S has higher or equal precision than S′ as well. To show (i), it remains to show that using

S′ computes a false positive edge that using S does not. Since S′ has higher recall than S, there

exists some program P and some edge e such that e ∈ G(P, S′) but e 6∈ G(P, S). Let P ′ be the

program “if False then P”; since our static analysis is flow-insensitive, we have G(P ′, S) = G(P, S)

and G(P ′, S′) = G(P, S′), so e ∈ G(P ′, S′) and e 6∈ G(P ′, S). But clearly e is a false positive for P ′,

since P ′ does not exhibit any points-to edges. Thus, S′ is less precise than S, as claimed. �

By Theorem 5.3.2, we can check whether a candidate path specification s is admissible by synthe-

sizing a test case P that is a potential witness for s. If we execute the test case P and observe that

the conclusion of s holds during the execution, then P is a witness for s, so s is admissible (though

if P is not a witness of s, s may still be admissible). Finally, if S is the set of path specifications

inferred by our algorithm, as long as each s ∈ S has a witness, then S is admissible as well.

5.3.5 Equivalence to Library Implementations

It is not obvious that path specifications are sufficiently expressive to precisely model library code. In

this section, we show that path specifications are in fact sufficiently expressive to do so in the case of

Andersen’s analysis (and its cloning-based context- and object-sensitive extensions). More precisely,

for any implementation of the library, there exists a (possibly infinite) set of path specifications such

that the points-to sets computed using path specifications are both sound and at least as precise as

analyzing the library implementation. For convenience, we assume the following:

Assumption 5.3.3 Let Flib be fields accessed by the library and Fprog be fields accessed by the

program, and let the shared fields be Fshare = Flib ∩ Fprog. We assume Fshare = ∅.

We can remove this assumption by having the static analysis treat accesses to library fields in the

program as calls to getter and setter library functions. With this assumption, we have:

Theorem 5.3.4 Let G(P) be the points-to sets computed with the library code. Then, there exists

S such that G(P, S) is sound and G(P, S) ⊆ G(P).

We give a proof in Section 5.7. Note that the set S of path specifications may be infinite. This

infinite blowup is unavoidable since we want the ability to test the admissibility of an individual

path specification. In particular, the library implementation (e.g., the one shown on the fourth row

of Figure 5.4) may exhibit effects that require infinitely many test cases to check admissibility.

5.3.6 Regular Sets of Path Specifications

Since the library implementation may correspond to an infinite set of path specifications, we need a

mechanism for describing such sets. In particular, since a path specification is a sequence s ∈ V∗path,

we can think of a set S of path specifications as a formal language S ⊆ V∗path over the alphabet Vpath.

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 76

Library
Interface M

(Input)

Test Synthesis (§5.5)
for Noisy

Oracle O (§5.4.1)

Learned
Automaton

M̂ (§5.4.3)

Sampled Positive
Examples L0 (§5.4.2)

Generated Code
Fragments S (§5.6)

Figure 5.5: An overview of our specification inference system. The section describing each component
is in parentheses.

Then, we can express an infinite set of path specifications using standard representations such as

regular expressions or context-free grammars.

We make the empirical observation that the set of path specifications corresponding to the library

implementation is a regular language. There is no particular reason that this fact should be true, but

it holds empirically for all the Java library functions we have examined so far. For example, consider

the library implementation shown in the first column of line four of Figure 5.4. This specification

corresonds to the set of path specifications shown as a regular expression in the middle column of

the same line (tokens in the regular expression are highlighted in blue for clarity).

One challenge is how to run our static points-to analysis with an infinite set of path specifications;

we describe how to do so for the case of regular sets of path specifications in Section 5.6.

5.4 Specification Inference Algorithm

In this section, we describe our algorithm for inferring path specifications. Our system is summarized

in Figure 5.5, which also shows the section where each component is described in detail.

5.4.1 Overview

Let the target language S∗ ⊆ V∗path be the set of all path specifications that have a witness. By

Theorem 5.3.2, S∗ is admissible. The goal of our algorithm is to infer a set of path specifications

that approximates S∗ as closely as possible.

Inputs. Our algorithm is given two inputs:

• Library interface: The type signature of each function in the library.

• Blackbox access: The ability to execute library functions on a chosen input and obtain the

corresponding output.

Using these two inputs, we construct the following two data structures.

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 77

Noisy oracle. Given a path specification s, the noisy oracle O : V∗path → {0, 1} (i) always returns

0 if s is inadmissible, and (ii) ideally returns 1 if s is admissible (but may return 0). This oracle is

implemented by synthesizing a potential witness P for s—if the conclusion of the specification holds

upon executing P , then P is a witness for s so the oracle returns 1; otherwise, the oracle returns 0.

We describe how we synthesize a witness for s in Section 5.5.

Positive examples. Phase one of our algorithm constructs a set of positive examples: it randomly

samples candidate path specifications s ∼ V∗path, and then uses O to determine whether each s is

admissible. More precisely, given a set S = {s ∼ V∗path} of random samples, it constructs positive

examples S0 = {s ∈ L | O(s) = 1}. We describe how we sample s ∼ V∗path in Section 5.4.2.

Language inference problem. Phase two of our algorithm inductively generalizes S0 to a regular

set of path specifications. We formulate this inductive generalization problem as follows:

Definition 5.4.1 The language inference problem is to, given the noisy oracle O and the positive

examples S0 ⊆ S∗, infer a language Ŝ that approximates S∗ as closely as possible.

In Section 5.4.3, we describe our algorithm for solving this problem. Our algorithm outputs a regular

language Ŝ = S(M̂), where M̂ is a finite state automaton. For example, given

S0 = {ob thisset thisclone rclone thisget rget},

our language inference algorithm returns an automaton encoding the regular language

ob thisset (thisclone rclone)
∗ thisget rget.

5.4.2 Sampling Positive Examples

We sample a path specification s ∈ V∗path by building it one variable at a time, starting from s = ε.

At each step, we ensure that s satisfies the constraints on path specifications, i.e., (i) zi and wi

are parameters or return values of the same library function, (ii) wi and zi+1 are not both return

values, and (iii) the last variable wk is a return value. In particular, given current sequence s, the

set T (s) ⊆ Vpath ∪{∅} of choices for the next variable (where ∅ indicates to terminate and return s)

is:

• If s = z1w1z2...zi, then the choices for wi are T (s) = {pm, rm}, where zi ∈ {pm, rm}.

• If s = z1w1z2...ziwi, and wi is a parameter, then the choices for zi+1 are T (s) = Vpath.

• If s = z1w1z2...ziwi, and wi is a return value, then the choices for zi+1 are

T (s) = {z ∈ Vpath | z is a parameter} ∪ {∅}.

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 78

At each step, our algorithm samples x ∼ T (s), and either constructs s′ = sx and continues if x 6= ∅
or returns s if x = ∅. We consider two sampling strategies.

Random sampling. We uniformly randomly choose x ∼ T (s) at every step.

Monte Carlo tree search. We can exploit the fact that certain choices x ∈ T (s) are much more

likely to yield an admissible path specification than others. To do so, note that our search space is

structured as a tree, where each vertex corresponds to a prefix in V∗path, the root corresponds to the

prefix ε, edges are defined by T , and leaves correspond to candidate path specifications.

We can sample x ∼ T (s) using Monte Carlo tree search (MCTS) [28], a search algorithm that

learns over time which choices are more likely to succeed. In particular, MCTS keeps track of a score

Q(s, x) for every visited s ∈ V∗path and every x ∈ T (s). Then, the choices are sampled according to

the distribution

Pr[x | s] =
1

Z
eQ(s,x) where Z =

∑
x′∈T (s)

eQ(s,x′).

Whenever a candidate s = x1...xk is found, the score Q(x1...xi, xi+1) (for each 0 ≤ i < k) is increased

if s is a positive example (i.e., O(s) = 1) and decreased otherwise (i.e., O(s) = 0):

Q(x1...xi, xi+1)← (1− α)Q(x1...xi, xi+1) + αO(s).

We choose the learning rate α to be α = 1/2.

5.4.3 Language Inference Algorithm

We modify RPNI [110] to leverage access to the noisy oracle. In particular, whereas RPNI takes

as input a set of negative examples, we use the oracle to generate them on-the-fly. Our algorithm

learns a regular language Ŝ = L(M̂) represented by the (nondeterministic) finite state automaton

(FSA) M̂ = (Q,Vpath, δ, qinit, Qfin), where Q is the set of states, δ : Q×Vpath → 2Q is the transition

function, qinit ∈ Q is the start state, and Qfin ⊆ Q are the accept states. If there is a single accept

state, we denote it by qfin. We denote transitions q ∈ δ(p, σ) by p
σ−→ q.

Our algorithm initializes M̂ to be the FSA representing the finite language S0. In particular, it

initializes M̂ to be the prefix tree acceptor [110], which is the FSA where the underlying transition

graph is the prefix tree of S0, the start state is the root of this prefix tree, and the accept states are

the leaves of this prefix tree.

Then, our algorithm iteratively considers merging pairs of states of M̂ . More precisely, given two

states p, q ∈ Q (without loss of generality, assume q 6= qinit), Merge(M̂, p, q) is the FSA obtained by

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 79

(i) replacing transitions

(r
σ−→ q) 7→ (r

σ−→ p), (q
σ−→ r) 7→ (p

σ−→ r),

(ii) adding p to Qfin if q ∈ Qfin, and (iii) removing q from Q.

Our algorithm makes a single pass over all the states Q. We describe how a single step proceeds:

let q be the state being processed in the current step, let Q0 be the states that have been processed

so far but not removed from Q, and let M̂ be the current FSA. For each p ∈ Q0, our algorithm

checks whether merging q and p overgeneralizes the language, and if not, greedily performs the

merge. More precisely, for each p ∈ Qi, our algorithm constructs

Mdiff = Merge(M̂, qi, p) \ M̂,

which represents the set of strings that are added to L(M̂) if q and p are merged. Then, for each

s ∈Mdiff up to some maximum length N (we take N = 8), our algorithm queries O(s). If all queries

pass (i.e., O(s) = 1), then our algorithm greedily accepts the merge, i.e., M̂ ← Merge(M̂, q, p) and

continues to the next q ∈ Q. Otherwise, it considers merging q with the next p ∈ Q0. Finally, if q is

not merged with any state p ∈ Q0, then our algorithm does not modify M̂ . Once it has completed

a pass over all states in Q, our algorithm returns M̂ .

For example, suppose our language learning algorithm is given a single positive example

ob thisset thisclone rclone thisget rget.

Then, our algorithm constructs the finite state automaton

M̂0 = qinit
ob−→ q1

thisset−−−−→ q2
thisclone−−−−−→ q3

rclone−−−→ q4
thisget−−−−→ q5

rget−−→ qfin.

Our algorithm fails to merge qinit, q1, q2, or q3 with any previous states. It then tries to merge q4

with each state {qinit, q1, q2, q3}; the first two merges fail, but merging q4 with q2 produces

M̂1 =

qinit q1 q2 q4 qfin

n q3

ob thisset thisget

thisclone

rget

rclone

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 80

Then, the specifications of length at most N in Mdiff are

ob thisset (thisclone rclone)
0 thisget rget

ob thisset (thisclone rclone)
2 thisget rget

...

ob thisset (thisclone rclone)
N thisget rget,

all of which are accepted by our noisy oracle O. Therefore, our algorithm greedily accepts this merge

and continues. The remaining merges fail, so our algorithm returns an FSA that equals M̂1.

5.5 Test Case Synthesis Algorithm

In this section, we describe our algorithm for synthesizing a test case to check correctness of a

candidate path specification. For example, in Figure 5.6, the synthesized test case contains exactly

the external edges in the candidate’s premise:

thisadd
Alias−−−→ thisclone, rclone

Transfer−−−−−→ thisget.

Upon executing this test case, the candidate’s conclusion

in
Transfer−−−−−→ out

holds dynamically. Therefore, this test case witnesses the correctness of the given candidate.

Our algorithm first constructs a skeleton containing a call to each function in the specification.

Then, it (i) fills in holes with variable names, (ii) initializes variables, and (iii) orders (or schedules)

statements. The last step also adds a statement returning whether the candidate’s conclusion holds.

There are certain constraints on the choices that ensure that the synthesized test case is a valid

witness. Even with these constraints, a number of additional choices remain. Each choice produces

a valid test case, but some of these test cases may not pass even if the candidate specification is

correct. We describe the choices made by our algorithm, which empirically finds almost all correct

candidate specifications.

5.5.1 Skeleton Construction

To witness correctness of the candidate path specification, the synthesized test case must exhibit

exactly the external edges in its premise. In particular, the test case must include a call to each

function in the candidate. Our algorithm constructs a skeleton consisting of these calls, for example,

the skeleton on the second step of Figure 5.6. A symbol ??, called a hole, is included for each

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 81

parameter and return value of each function call, and must be filled in with a variable name.

5.5.2 Filling Holes

The external edges in the candidate specification impose constraints on the arguments that should

be used in each function call. In particular, the synthesized test case must exhibit every behavior

encoded by the external edges in the candidate specification:

• Alias: For an aliasing edge pmi
Alias−−−→ pmi+1 , the algorithm has to ensure that the arguments

pmi (passed to mi) and pmi+1
(passed to mi+1) are aliased.

• Transfer: For a transfer edge rmi
Transfer−−−−−→ pmi+1 , the algorithm has to use the return value of

mi as the argument passed to mi+1 (and similarly for backwards transfer edges pmi
Transfer−−−−−→

rmi+1
).

For example, the holes in the skeleton in Figure 5.6 are filled so that the following premises are

satisfied:

thisadd
Alias−−−→ thisclone, rclone

Transfer−−−−−→ thisget.

One issue is that internal edges may be self-loops, in which case more than two parameters may

need to be aliased. For example, consider the following candidate:

ob
∗−→ thisadd

Alias−−−→ thisclone
∗−→ thisid

Alias−−−→ thisget
∗−→ rget. (5.5)

For the test case for this candidate, the three calls to add, clone, and get must all share the same

receiver:

list.add(in);

List listClone = list.clone();

Object out = list.get(??);

Our algorithm partitions the holes into subsets that must be aliased—since aliasing is a transitive

relation, every hole in a subset has to be aliased with every other hole in that subset. To do so, the

algorithm constructs an undirected graph where the vertices are the holes, and an edge (h, h′) ∈ E
connects two holes h and h′ in the following cases:

• There is an external edge wmi
T−→ zmi+1

in the candidate specification, where h is the hole

corresponding to wmi and h′ is the hole corresponding to zmi+1 .

• There is an internal edge pmi
∗−→ pmi in the candidate specification, where h is the hole

corresponding to the pmi on the left-hand side and h′ is the hole corresponding to the pmi on

the right-hand side.

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 82

ob
∗−→ thisadd

Alias−−−→ thisclone
∗−→ rclone

Alias−−−→ thisget
∗−→ rget

skeleton
??.add(??);

?? = ??.clone();

?? = ??.get(??);

fill holes
list.add(in);

List listClone = list.clone();

Object out = listClone.get(??);

initialization
& scheduling

Object in = new Object();

List list = new List()

list.add(in);

List listClone = list.clone();

Object out = listClone.get(0);

return in == out;

Figure 5.6: Steps in the test synthesis algorithm (right) for a candidate path specification for List

(left). Code added at each step is highlighted in blue. Scheduling is shown in the same line as
initialization—it chooses the final order of the statements. This figure is a duplicate of Figure 5.6,
and is shown here for clarity.

Then, our algorithm computes the connected components in this graph. For each connected com-

ponent, the algorithm chooses a fresh variable name, and each hole in that connected component is

filled with this variable name.

For example, for the candidate in Figure 5.6, our algorithm computes the following partitions:

{ob}, {thisadd, thisclone}, {rclone, thisget}, {rget},

and fills the corresponding holes with the variables names

in, list, listClone, out,

respectively. Similarly, for (5.5), we compute partitions

{ob}, {thisadd, thisclone, thisget}, {rclone}, {rget}.

The variable names are the same as those chosen in Figure 5.6.

5.5.3 Variable Initialization

We describe primitive variables and reference variables separately. For the case of initializing refer-

ence variables, we describe two different strategies:

• Null: Whenever possible, initialize to null.

• Instantiation: Whenever possible, use constructor calls.

The first strategy ensures that the test case does not exhibit additional transfer and alias edges

beyond those in the candidate specification. The second strategy may produce a test case that does

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 83

not witness correctness, since it may include spurious edges not in the premise of the candidate.

However, certain functions require that some of their arguments are not null; for example, the put

function in the Hashtable class. We show empirically that the second variant identifies a number

of candidates missed by the first, and that these additional specifications are in fact correct.

Primitive initialization. We initialize all primitive variables with 0 (except characters, which

are initialized as ’a’). In our experience, the only important choice of primitive value is the index

parameter passed to functions such as get, which retrieve data from collections. Choosing the

index = 0 retrieves the single object the test case previously added to the collection. Testing more

primitive values is possible but has so far been unnecessary.

Reference initialization using null. Reference variables for which aliasing relations hold must

be instantiated (unless they have already been initialized as the return value of a function call). Any

other reference variable is initialized to null. For example, in Figure 5.6, the variables list and

out must be instantiated, but cloneList has already been initialized as the return value of clone.

In general, the test case we synthesize calls the constructor with the fewest number of arguments;

primitive arguments are initialized as before, and reference arguments are initialized using null.

Reference initialization using instantiation. In this approach, we have to synthesize construc-

tor calls when empty constructors are unavailable. For example, if the only constructor for the List

class was List(Object val), then we would have to initialize an object of type Object as well:

List list = new List(new Object());

We encode the problem of synthesizing a valid constructor call as a directed hypergraph reacha-

bility problem. A directed hypergraph is a pair G = (V,E), where V is a set of vertices, and edges

e ∈ E have the form e = (h,B), where h ∈ V is the head of the edge, and B ⊆ V is its body. For

our purposes, B is a list rather than a set, and may contain a single vertex multiple times.

We construct a hypergraph G = (V,E) where vertices correspond to classes, and edges to con-

structors:

• Vertices: A vertex v ∈ V is a library class.

• Edges: An edge e = (h,B) ∈ E is a constructor, where h is the class of the constructed object

and B is the list of classes of the constructor parameters.

For convenience, we also include primitive types as vertices in G, along with an edge representing

the “empty constructor”, which returns the initialization value described above.

Now, a path T in the hypergraph G = (V,E) is a finite tree with root vT ∈ V (called the

root of the path), such that for each vertex v ∈ T , v and its (ordered) children [v1, ..., vk] are an

edge eT,v = (v, [v1, ..., vk]) ∈ E. Note that for each leaf v of T , there must necessarily be an edge

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 84

(v, []) ∈ E, since v has no children. Also, we say a vertex v ∈ V is reachable is there exists a path

with root v.

In our setting, a path in our hypergraph G corresponds to a call to a constructor—for each vertex

X ∈ T with children X1, ..., Xk, we recursively define the constructor

CT (X) = new X(CT (X1), ..., CT (Xk)).

Therefore, devising a constructor call to instantiate an object of type X amounts to computing a

path in G with root X. Paths to every reachable vertex can be efficiently computed using a standard

dynamic programming algorithm. Furthermore, we can add a weight we to each edge in e ∈ E.

Then, the shortest path (i.e., the path minimizing the total weight
∑
v∈T eT,v) can similarly be

efficiently computed. We choose all weights we = 1 for each e ∈ E.

For example, suppose that the List class has a single constructor List(Object val). Then,

our algorithm constructs a hypergraph with two vertices and two edges:

V = {Object, List}

E = {(Object, []), (List, [Object])}.

Then, the path corresponding to List is the tree T = List
Object

, which corresponds to the constructor

call

new List(new Object())

used to instantiate variables of type List.

As with initializing primitive variables, multiple choices of constructor calls could be used, but

selecting a single constructor suffices has been sufficient so far.

5.5.4 Statement Scheduling

Note that the test case now contains both function call statements as well as variable initialization

statements added in the previous step. All the added variable initialization statements can be

executed first, so it suffices to schedule the function call statements.

There are two kinds of constraints on scheduling function calls. First, edges in the candidate

specification of the form

rmi
Transfer−−−−−→ pmi+1

impose hard constraints on the schedule, since mi must be called before mi+1 so its return value can

be transfered to pmi+1 (edges of the form pmi
Transfer−−−−−→ rmi+1 impose hard constraints as well). For

example, in Figure 5.6, the edge rclone
Transfer−−−−−→ thisget imposes the hard constraint that the call to

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 85

clone must be scheduled before the call to get. Then, any of the following orderings is permitted:

[add, clone, get], [clone, add, get], [clone, get, add].

We use soft constraints to choose among schedules satisfying the hard constraints. Empirically,

we observe that the order of the functions in the specification is typically the same as the order in

which they must be called for the conclusion to be exhibited dynamically. More precisely, function

mi should be called before function mj whenever i < j. In our example, the soft constraint says

that add should be scheduled before both clone and get.

Our algorithm iteratively constructs a schedule [i1, ..., ik] of the function calls F = {m1, ...,mk}.
At iteration t, it selects the tth function call mit from the remaining calls Ft ⊆ F . It does so greedily,

by identifying the choices Gt ⊆ Ft that satisfy the hard constraints, and then selecting mit ∈ Gt to

be optimal according to the soft constraints. These conditions uniquely specify mit , since our soft

constraints are a total ordering.

Our algorithm keeps track of the remaining statements Ft as a directed acyclic graph (DAG),

which includes an edge mi → mj for each hard constraint that mi should be scheduled before mj .

Then, Gt is the set of roots of Ft. Furthermore, our algorithm maintains Gt as a priority queue,

where the priority of mi is i (the highest priority element in Gt is the element with the smallest

index i).

We initialize F1 = F ; then, G1 is the subset of vertices in F1 without a parent. Updates are

computed as follows:

1. The highest priority function call mit in Gt is removed from both Gt and from Ft.

2. For each child mi of mit in Ft, we determine if mi is now a root of Ft (i.e., none of its parents

are in Ft).

3. For every child mi that is now a root of Ft, we add mi to Gt with priority i.

In Figure 5.6, F1 has three vertices add (priority 1), clone (priority 2), and get (priority 3),

and a single edge clone→ get, and G1 includes add and clone. Therefore, the selected schedule is

[add, clone, get].

5.5.5 Guarantees

First, we establish a general condition for P to be a potential witness:

Proposition 5.5.1 Let s be a path specification with premise (e1 ∈ G)∧ ...∧ (ek ∈ G). A program

P is a potential witness of s if the set of edges {e1, ..., ek} in the premise of s exactly equals{
w

A−→ z ∈ G(P, ∅)
∣∣ w, z ∈ Vlib and A ∈ {Transfer,Transfer,Alias}

}
.

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 86

Proof: Let P be a potential witness for s, and suppose that the conclusion of s is (e ∈ G). Let

S be a set of path specifications that computes e for P , i.e., e ∈ G(P, S). We need to show that

for any such S, S ∪ {s} is equivalent to S. Clearly, S ∪ {s} has higher or equal recall than S, so it

suffices to show that it also has higher or equal precision than S. Consider an arbitrary program

P ′. Then, if s is used during the computation G(P, S ∪ {s}), then at that point, the premise of s

holds for G, i.e., e1, ..., ek ∈ G. Since the graph for P is contained in the graph for P ′, and our

static analysis is monotone, we have e ∈ G(P, S) ⊆ G(P ′, S), i.e., e is computed without s. Thus,

G(P ′, S ∪ {s}) = G(P ′, S), so S ∪ {s} equivalent to S as claimed. �

Then, we have the following guarantee for the test case synthesis algorithm:

Proposition 5.5.2 The test case P synthesized for path specification s is a potential witness for s.

Proof: (sketch) Let s = z1 → w1 99K ...→ zk 99K wk. Since the function calls are treated as

no-ops by the static analysis (according to the definition of a potential witness), they do not add any

edges to the extracted graph G except for assignments to and from parameters and return values.

The only other edges in the graph G extracted from P are those corresponding to the allocation

statements added to P in the initialization step.

First, we show that the edges in the premise of s are contained in G(P, ∅). For an edge wi → zi+1,

there are three possibilities—either Ai = Transfer, Ai = Transfer, or Ai = Alias:

• Case Ai = Transfer: Then, wi is a return value and zi+1 is a parameter. Then, the test case

synthesis algorithm assigns the return value of mi to the argument of mi+1, i.e., the edges

wi
Assign−−−−→ x

Assign−−−−→ zi+1 ∈ G,

where G is the graph extracted from P . Therefore, we have (wi
Transfer−−−−−→ zi+1) ∈ G(P, ∅).

• Case Ai = Transfer: This case is analogous to the case A = Transfer.

• Case Ai = Alias: Then, wi and zi+1 are both parameters. Then, wi and zi+1 are both

parameters. Then, the test case synthesis algorithm allocates a new object and passes it as a

parameter to each mi and mi+1, i.e., the edges

o
New−−−→ x

Assign−−−−→ wi ∈ G and o
New−−−→ x

Assign−−−−→ zi+1 ∈ G.

Therefore, we have (wi
Alias−−−→ zi+1) ∈ G(P, ∅).

Second, consider all edges w
Ai−→ z, where w, z ∈ Vlib and Ai ∈ {Transfer,Transfer,Alias}, that

are contained in the premise of s. By inspection, of the edges in G as described above, the only

additional edges in G(P, ∅) of this form are:

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 87

• The self-loops zi
Transfer−−−−−→ zi and wi

Transfer−−−−−→ wi (since there is a production Transfer → ε in

the points-to grammar Cpt).

• The backward edges zi+1
Ai−→ wi (when Ai ∈ {Transfer,Transfer}).

If these edges were added to the premise of s for P , then by Proposition 5.5.1, we could conclude

that P is a potential witness of s. However, these edges are in G(P, S) for any program P and

any specifications S, so we can add them to the premise of s without affecting its semantics. From

Definition 5.3.1, it follows that if P is a witness for s′, and s′ is equivalent to s, then P is a witness

for s as well. Therefore, P is a witness for s as claimed. �

5.6 Static Points-To Analysis with Regular Sets of Path Spec-

ifications

In this section, we describe how to run our static points-to analysis in conjunction with a possibly

infinite regular set S of path specifications (assumed to be represented as an FSA, i.e., S = L(M̂)).

In particular, our static analysis converts S to a set S̃ of code fragment specifications, which are

replacements for the library code that have the same points-to effects as encoded by S.

Given path specifications S, our static analysis constructs equivalent code fragment specifications

S̃, i.e., G(P, S) = G(P, S̃). In other words, S̃ has the same semantics as S with respect to our static

points-to analysis. One detail in our definition of equivalence is that G(P, S̃) may contain additional

vertices corresponding to variables and abstract objects in the code fragment specifications; we omit

these extra vertices and their relations at the end of the static analysis.

5.6.1 Converting a Single Path Specification

For intuition, we begin by describing how to convert a single path specification

s = (z1 99K w1 → ...→ zk 99K wk)

into an equivalent set of code fragment specifications, where Ai = Alias for each i and z1 is a

parameter. Let the code fragment specifications S̃ corresponding to s be:

m1 = {w1.f1 ← z1}

m2 = {t2 ← z2.f1, w2.f2 ← t2}

...

mk = {wk ← zk.fk−1},

where f1, ...fk−1 ∈ F are fresh fields and t2, ..., tk−1 are fresh variables. Then:

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 88

(initial parameter)
qinit

z−→ q
w−−→ r ∈ M̂, z = pm, w ∈ {pm, rm}

w.fr ← z ∈ m
(initial return)

qinit
z−→ q

w−−→ r ∈ M̂, z = rm, w ∈ {pm, rm}

t ← X(), z ← t, w.fr ← t ∈ m

(final parameter)
p
z−→ q

w−−→ qfin ∈ M̂, z = pm, w = rm

w ← z.fp ∈ m
(final return)

p
z−→ q

w−−→ qfin ∈ M̂, z = rm, w = rm

t ← X(), z.fp ← t, w ← t ∈ m

(Ai = Alias)
p
z−→ q

w−−→ r ∈ M̂, z = pm, w = pm

t ← z.fp, w.fr ← t ∈ m
(Ai = Transfer)

p
z−→ q

w−−→ r ∈ M̂, z = pm, w = rm

wX(), t ← z.fp, w.fr ← t ∈ m

(Ai = Transfer)
p
z−→ q

w−−→ r ∈ M̂, {z, w} ⊆ {pm, rm}

z ← X(), t ← w.fr, z.fp ← t ∈ m
(initial final)

qinit
z−→ q

w−−→ qfin ∈ M̂, {z, w} ⊆ {pm, rm}

w ← z ∈ m

Figure 5.7: Rules for generating code fragment specifications from path specifications defined by a
finite state automaton M̂ = (Q,Vpath, δ, qinit, Qfin), where for simplicity we assume M̂ has a single
accept state qfin.

Proposition 5.6.1 We have G(P, S̃) = G(P, {s}) ∪ G′(P, S̃), where G
′
(P, S̃) consists of the edges

in G(P, S̃) that refer to vertices corresponding to variables and abstract objects in S̃.

Proof: (sketch) First, we show that G(P, {s} ⊆ G(P, S̃). Suppose that the premise of s holds,

i.e., zi
Ai−→ wi+1 ∈ G for each i. Then, the static analysis computes z1

Transfer−−−−−→ wk ∈ G(P, {s}); we

need to show that z1
Transfer−−−−−→ wk ∈ G(P, S̃) as well. Note that we have

z1
Store[f1]−−−−−→ w1

Alias−−−→ z2
Load[f1]−−−−−→ t2 ∈ G(P, S̃)

t2
Store[f2]−−−−−→ w2

Alias−−−→ z3
Load[f2]−−−−−→ t3 ∈ G(P, S̃)

...

tk−1
Store[fk−1]−−−−−−−→ wk−1

Alias−−−→ zk
Load[fk−1]−−−−−−−→ wk ∈ G(P, S̃).

By induction, the static analysis computes z1
Transfer−−−−−→ ti ∈ G(P, S̃) for each i ∈ [k − 1]. Thus, the

static analysis computes z1
Transfer−−−−−→ wk ∈ G(P, S̃), as claimed.

Next, we show the converse, i.e., that G(P, S̃) ⊆ G(P, S) ∪ G′(P, S̃). First, note that the only

production with Store[f] is

Transfer→ Transfer Store[f] Alias Load[f].

Since each fi is a fresh field, there is only one edge labeled Store[fi] and only one edge labeled

Load[fi]. Thus, this production can only be triggered if (i) zi
Alias−−−→ wi ∈ G(P, S̃), and (ii) for some

vertex x, x
Transfer−−−−−→ ti ∈ G(P, S̃). If triggered, the static analysis adds an edge x

Transfer−−−−−→ ti+1 to

G(P, S̃). For i = 1, the only vertices x satisfying the second condition are x = z1 and x = t1. By

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 89

Candidate (Regular Expression) Candidate (Finite State Automaton) Code Fragments

ob 99K thisset → thisget 99K rget qinit q1 qf q2 qfin
ob thisset thisget rget void set(Object ob) { f = ob; }

Object get() { return f; }

ob 99K thisset
(
→ thisclone 99K rclone

)∗
→ thisget 99K rget

qinit q1 qf q2 qfin

q3

ob thisset thisget

thisclone

rget

rclone

void set(Object ob) { f = ob; }

Object get() { return f; }

Box clone() {

Box b = new Box(); // ~o_clone

b.f = f;

return b; }}

ob 99K thisset → thisget 99K rget

+ ob 99K thisset → thisclone 99K rclone
→ thisget → rget

+ ob 99K thisset → thisclone 99K rclone
→ thisclone 99K rclone
→ thisget 99K rget

qinit q1 qf q2 qfin

q3

qg

q4

qh

ob thisset thisget

thisclone

rget

rclone thisget

thisclone

rclone

thisget

void set(Object ob) { f = ob; }

Object get() {

return f;

return g;

return h; }

Box clone() {

Box b = new Box(); // ~o_clone

b.g = f;

b.h = g;

return b; }}

Figure 5.8: Examples of candidate code fragment specifications (left column), and the equivalent
path specifications as a regular expression (middle column) and as a finite state automaton (right
column).

induction, if wi
Alias−−−→ zi+1 ∈ G(P, S̃) for each i, we have

z1
Transfer−−−−−→ ti ∈ G(P, S̃)

tj
Transfer−−−−−→ ti ∈ G(P, S̃)

for each j ≤ i. None of the ti are part of an Assign edge except t1 and tk; for the latter, the

production Transfer → Transfer Assign triggers and we get z1
Transfer−−−−−→ wk ∈ G(P, S̃). This edge is

the only one in G(P, S̃) that does not refer to vertices extracted from the code fragments, so the

claim follows. �

5.6.2 Converting a Regular Set of Path Specifications

Our construction generalizes straightforwardly to constructing code fragment specifications from M̂ .

For each state q ∈ Q, we introduce a fresh field fq ∈ F . Intuitively, transitions into q correspond to

stores into fq, and transitions coming out of q correspond to loads into fq. In particular, we include

statements in m according to the rules in Figure 5.7.

The following guarantee follows similarly to the proof of Proposition 5.6.1:

Proposition 5.6.2 We have G(P, S̃) = G(P, S) ∪G′(P, S̃), where G
′
(P, S̃) is defined as before.

In Figure 5.8, we show examples of path specifications (first column), the corresponding FSA

(middle column), and the generated code fragment specifications. For example, in the second line,

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 90

the transitions

qinit
ob−→ q1

thisset−−−−→ q2
thisget−−−−→ q3

rget−−→ qfin

generate the specifications for set (the first two transitions, with field f = fq2) and get (the last

two transitions), and the self-loop

q2
thisclone−−−−−→ q6

rclone−−−→ q2

generates the specification for clone.

5.7 Proof of Equivalence Theorem

We prove Theorem 5.3.4, relegating the proof of technical lemmas to Section 5.7.6.

5.7.1 Converting the Library Implementation to Path Specifications

First, we describe how to convert the library implementation into a set S of transfer and proxy

object specifications. A specification of the form

z1 99K w1 → ...→ zk 99K wk.

is included in S if there exist paths

z1
β1
99K w1, ..., zk

βk
999K wk

such that A
∗

=⇒ β1α̃1...α̃k−1βk in Cpt, where

A =

Transfer if z1 = pm1

Alias if z1 = rm1

and

α̃i =


Assign if wi = pmi and zi+1 = rmi+1

Assign if wi = rmi and zi+1 = pmi+1

New New if wi = pmi and zi+1 = pmi+1
.

Then, we prove that the conclusion of Theorem 5.3.4 holds for S constructed with this algorithm.

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 91

5.7.2 Proof Overview

Let G denote the points-to sets computed by running the static analysis with the library implemen-

tation available, and G(S) denote the points-to sets computed by running the static analysis with

the path specifications S. We have to prove that G = G(S); the direction G(S) ⊆ G follows easily,

since a path specification s is included in S exactly when the library implementation would imply

the same logical formula as the semantics of s.

The challenging direction is to show that S is sound, i.e., G ⊆ G(S). For simplicity, we focus

on points-to edges o
FlowsTo−−−−−→ x; the alias and transfer relations follow similarly. Suppose that

o
FlowsTo−−−−−→ y ∈ G(S); then, there must exist a path o

New−−−→ x
α
99K y, where Transfer

∗
=⇒ α. This path

passes into and out of library functions, leading to a decomposition

x
α0
999K z1

β1
99K w1

α1
999K ...

βk
999K wk

αk
999K y, (5.6)

where α = α0β1α1...βkαk. This decomposition suggests that the following path specification may

be applied to derive x
Transfer−−−−−→ y:

z1 99K w1 → ...→ zk 99K wk. (5.7)

At a high level, our proof has two parts. First, we prove the case where the segments of α in the

program do not contain field accesses, i.e., α ∈ (Σfree ∪ Σlib)∗, where

Σfree = {Assign,Assign,New,New}

Σprog = {Store[f],Load[f],Store[f],Load[f] | f ∈ Fprog}

Σlib = {Store[f],Load[f],Store[f],Load[f] | f ∈ Flib}.

Second, we show how “nesting” of fields allows us to reduce the general case to the case α ∈
(Σfree ∪ Σlib ∪ Σprog)∗. In particular, by Assumption 5.3.3, the library field accesses and program

field accesses do not match one another. As previously discussed, this assumption can be enforced

by a purely syntactic program transformation where accesses to library fields in the program are

converted into calls to getter and setter functions.

Consider a path of the form (5.6) such that α ∈ (Σfree ∪ Σlib)∗. We need to show that in this

case, we derive the edge x
Transfer−−−−−→ y ∈ G(S), where S is constructed as in Section 5.7.1. Our proof

of this claim relies on two results. The first result says that for such a path, the conclusion of (5.7)

holds when each wi is connected to zi+1 by αi:

Proposition 5.7.1 For any path of the form (5.6) such that α ∈ (Σfree∪Σlib)∗ we have (i) the case

wi = ri and zi+1 = ri+1 cannot happen, and (ii) Transfer
∗

=⇒ β1α1β2...αk−1βk.

As a consequence of this result, we know that the path specification (5.7) is contained in S. The

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 92

second result says that the premise of (5.7) holds for our case:

Proposition 5.7.2 For any path of the form (5.7) such that α ∈ (Σfree ∪ Σlib)∗, we have

Ai
∗

=⇒ αi (∀i ∈ [k − 1])

Ai
∗

=⇒ αi (∀i ∈ {0, k}).

Therefore, we can conclude that when running the static analysis using path specifications, we derive

the conclusion of the path specification (5.7), i.e., z1
Transfer−−−−−→ wk ∈ G(S). In summary, we have the

following result:

Theorem 5.7.3 Theorem 5.3.4 holds for any α ∈ (Σfree ∪ Σlib)∗.

Proof: Consider an edge x
Transfer−−−−−→ y ∈ G derived by the static analysis using the library imple-

mentation. We claim that this edge is derived by the static analysis when using path specifications,

i.e., x
Transfer−−−−−→ y ∈ G(S). By Proposition 5.7.1, we conclude that (5.7) is in S. Furthermore,

by Proposition 5.7.2, the premise of (5.7) holds, so the static analysis derives its conclusion, i.e.,

z1
Transfer−−−−−→ wk ∈ G(S). Therefore, we have

x
Transfer−−−−−→ z1

Transfer−−−−−→ wk
Transfer−−−−−→ y ∈ G(S),

so the static analysis derives x
Transfer−−−−−→ y ∈ G(S), as claimed.

Now, we know that any points-to edge o
FlowsTo−−−−−→ y ∈ G has the form o

New−−−→ x
Transfer−−−−−→ y. Since

we have shown that x
Transfer−−−−−→ y ∈ G(S), the static analysis also derives o

FlowsTo−−−−−→ y ∈ G(S), so the

result follows. �

In the remainder of the section, we introduce the technical machinery that enables us to reason

about “equivalence” of the semantics of different sequences of statements. Then, we describe how

we prove Propositions 5.7.1 & 5.7.2. Finally, we reduce Theorem 5.3.4 to Theorem 5.7.3.

5.7.3 Equivalent Semantics

Proving Propositions 5.7.1 & 5.7.2 requires reasoning about the equivalence of the semantics of

sequences of statements in P . For example, to prove Proposition 5.7.1, we show that each αi is

“equivalent” to α̃i. Intuitively, for α̃i = Assign, we show that the sequence of statements represented

by αi exhibits the same semantics as a single assignment. For example, y ← x, z ← y has the same

points-to effects as z ← x (assuming y is temporary). We leverage the correspondence established

by formulating points-to analysis as context-free language reachability:

sequence of statements = sequence α ∈ Σ∗.

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 93

For example, the first sequence of statements above corresponds to (Assign Assign), and the second

to Assign.

Using this correspondence, we can reduce reasoning about sequences of statements with equiva-

lent semantics to studying equivalence classes of strings α ∈ Σ∗:

equivalent sequences of statements = equivalence classes [α] ⊆ Σ∗ .

In particular, α, β ∈ Σ∗ are equivalent if

γαδ ∈ L(Cpt)⇔ γβδ ∈ L(Cpt) (∀γ, δ ∈ Σ∗). (5.8)

In other words, α can be used interchangeably with β in any string without affecting whether the

string is contained in L(Cpt). We use [α] = {β ∈ Σ∗ | α ∼ β} to denote the equivalence class of

α ∈ Σ∗. Then, [α] = [β] if for any two paths

o
γ
99K v

α
99K w

δ
99K x, o

γ
99K v

β
99K w

δ
99K x,

the first results in x ↪→ o if and only if the second does. For example, [Assign Assign] = [Assign].

Then, equivalence is compatible with sequencing:

Lemma 5.7.4 If [α] = [α′] and [β] = [β′], then [αβ] = [α′β′].

Proof: By definition, γαβδ ⇔ γα′βδ ⇔ γα′β′δ. �

In particular, Lemma 5.7.4 shows that sequencing is well-defined for equivalence classes:

[α] [β] = [αβ], (5.9)

since different choices α′ ∈ [α] and β′ ∈ [β] yield the same equivalence class, i.e., [αβ] = [α′β′].

Abstractly, Σ∗ is a semigroup, with sequencing as the semigroup operation; then, Lemma 5.7.4

shows the equivalence relation is compatible with the semigroup operation, so the quotient Σ/ ∼ is

a semigroup with semigroup operation (5.9).

For convenience, we let φ denote an element of the equivalence class of strings such that

for all γ, δ ∈ Σ∗, γφδ 6∈ L(Cpt). (5.10)

In other words, [φ] describes sequences of statements that can never be completed to a valid flows-to

path.

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 94

5.7.4 Proofs of Propositions 5.7.1 & 5.7.2

Now, we describe how to prove that under the conditions of Proposition 5.7.1, [αi] = [α̃i], which

suffices to prove the proposition. We focus on the case α̃i = Assign; the other cases are similar. We

need the following technical lemma (we give a proof in Section 5.7.6):

Lemma 5.7.5 For any α ∈ Σ∗free, we have

[Assign] [α] [Assign] ∈ {[Assign], [φ]}.

With this lemma, since α̃i = Assign, wmi = rmi and zmi+1 = pmi , so the path wmi
αi
99K zmi+1 has

form

wmi = rmi
Assign−−−−→ yi

α′i
99K xi+1

Assign−−−−→ pmi+1 = zmi+1 ,

where αi = Assign α′i Assign. By Lemma 5.7.5,

[αi] = [Assign] [α′i] [Assign] ∈ {[Assign], [φ]}.

Since (New α) ∈ L(Cpt), we cannot have [αi] = [φ], so

[αi] = [Assign] = [α̃i],

as claimed. We have also proven the claim in Proposition 5.7.2 that Ai
∗

=⇒ αi (with Ai = Transfer)

also follows. The other claims in Propositions 5.7.1 & 5.7.2 follow similarly. �

5.7.5 Reduction of Theorem 5.3.4 to Theorem 5.7.3

To handle field accesses, note that pairs of terminals (Store[f],Load[f]) and (Load[f],Store[f]) in

strings α ∈ L(Cpt) are matching. Therefore, can identify an inner-most nested pair (σ, τ) such

that the string β between σ and τ contains no field accesses, i.e., β ∈ Σfree. Furthermore, by

Assumption 5.3.3, library field accesses and program field accesses do not match one another. In

particular, the set of matching program field accesses is

∆prog =
⋃

f∈Fprog

{(Store[f],Load[f]), (Load[f],Store[f])}.

Lemma 5.7.6 For any α ∈ L(Cpt), either α ∈ (Σfree ∪ Σlib)∗, or there exists a pair of terminals

(σ, τ) ∈ ∆prog such that α = γσβτδ, where γ, δ ∈ Σ∗ and β ∈ (Σfree ∪ Σlib)∗.

The next step is to characterize [σβτ]:

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 95

Lemma 5.7.7 For any (σ, τ) ∈ ∆prog and β ∈ (Σfree ∪ Σlib)∗,

[σ] [β] [τ] ∈ {[Assign], [φ]}.

Finally, β must be an aliasing relation:

Lemma 5.7.8 For any β ∈ Σ∗,

[Store[f]] [β] [Load[f]] = [Assign]⇒ [β] = [New New]

[Load[f]] [β] [Store[f]] = [Assign]⇒ [β] = [New New].

Now, if α ∈ Σ∗free, we are done. Otherwise, putting the three lemmas together, we perform the

following procedure:

1. By Lemma 5.7.6, we can write α = γσβτδ, where (σ, τ) ∈ ∆prog and β ∈ (Σfree ∪ Σlib)∗, such

that

y
γ
99K v

σ−→ w
β
99K t

τ−→ u
δ
99K x.

2. By Lemma 5.7.7, [σ] [β] [τ] = [Assign].

3. By Lemma 5.7.8, [β] = [New New].

4. By Theorem 5.3.4, we have w
Alias−−−→ t ∈ G(S̃); therefore, v

Transfer
9999999K u ∈ G(S̃) as well.

5. Recursively apply the procedure to α′ = γ Assign δ.

This procedure must terminate, since α has finitely many pairs of store and load statements. The-

orem 5.3.4 follows. �

5.7.6 Proof of Technical Lemmas

We prove the technical lemmas used in Section 5.7.

Proof of Lemma 5.7.5 We first show the following lemma, which completely characterizes the

subgroupoid of elements Σ∗free ⊆ Σ∗:

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 96

Lemma 5.7.9 We have

[Assign] [Assign] = [Assign]

[Assign] [Assign] = [φ]

[Assign] [Assign] = [φ]

[Assign] [Assign] = [Assign]

[Assign] [New New] = [φ]

[New New] [Assign] = [New New]

[Assign] [New New] = [Assign]

[New New] [Assign] = [φ]

[New New] [New New] = [φ].

Proof: We show the first relation; the others follow similarly. First, we show that if γ Assign δ ∈
L(Cpt), then γ Assign Assignδ ∈ L(Cpt). There must exist a derivation

FlowsTo⇒ ...⇒ Transfer uδ

⇒ Transfer Assign uδ

⇒ ...

⇒ γ Assign δ

since the only production in Cpt containing the terminal symbol Assign is Transfer→ Transfer Assign.

Therefore, the following derivation also exists:

FlowsTo⇒ ...⇒ Transfer δ

⇒ Transfer Assign uδ

⇒ Transfer Assign Assign uδ

⇒ ...

⇒ γ Assign Assign δ,

i.e., γ Assign Assign δ ∈ L(Cpt). By a similar argument, it follows that if γ Assign Assign δ ∈ L(Cpt),

then γ Assign δ ∈ L(Cpt), so [Assign] [Assign] = [Assign]. �

It follows directly that if α ∈ Σ∗free, then

[α] ∈ {[φ], [ε], [Assign], [Assign], [New New]}.

In particular, for α′ ∈ Σ∗free, [Assign] [α′] ∈ {[Assign], [φ]}, so the lemma follows by taking α′ =

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 97

α Assign. �

Proof of Lemma 5.7.6 If we replace the terminal symbols σ ∈ Σfree with ε in Cpt, then Cpt

is a parentheses matching grammar where each “open parentheses” Store[f] (resp., Load[f]) must

be matched with a corresponding “closed parentheses” Load[f] (resp., Store[f]). Also, by Assump-

tion 5.3.3, Σlib ∩ Σprog = ∅.
Now, we prove by induction on the length of α. The base case α = ε is clear. If α ∈ Σ∗ does

not contain a pair of matched parentheses (Store[f],Load[f]) ∈ Σ2
prog, then α ∈ (Σfree ∪ Σlib)∗, so

we are done. Otherwise, for any such pair of matched parentheses, we can express α = γσα′τδ. By

induction, the lemma holds for α′, so we can write α = γ′σ′β′τ ′δ′ as in the lemma. Therefore, we

have

α = (γσγ′)σ′β′(τ ′δ′τδ),

so the claim follows. �

Proof of Lemma 5.7.7 We show the case (σ, τ) = (Store[f],Load[f]), where f ∈ Fprog; the case

(σ, τ) = (Load[f],Store[f]) is similar. First, suppose that γσβτδ ∈ L(Cpt). Then, there must exist

a derivation of form

FlowsTo⇒ ...⇒ uγ Transfer uδ

⇒ uγ Transfer σ Alias τ uδ

⇒ ...

⇒ γσβτδ,

so the following derivation exists:

FlowsTo⇒ ...⇒ uγ Transfer uδ

⇒ uγ Transfer Assign uδ

⇒ ...

⇒ γ Assign δ.

The converse follows similarly, so the claim follows. �

Proof of Lemma 5.7.8 We show two preliminary lemmas.

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 98

Lemma 5.7.10 We have

[Store[f]] [New New] [Load[f]] = [Assign]

[Load[f]] [New New] [Store[f]] = [Assign].

Proof: Suppose that γ Store[f] New New Load[f] δ ∈ L(Cpt). Then, we must have derivation

FlowsTo⇒ ...⇒ uγ Transfer uδ

⇒ uγ Store[f] Alias Load[f] uδ

⇒ ...

⇒ γ Store[f] α Load[f] δ,

so we also have derivation

FlowsTo⇒ ...⇒ uγ Transfer uδ

⇒ uγ Assign uδ

⇒ ...

⇒ γ Assign Load[f] δ.

Thus, γ Assign δ ∈ L(Cpt). The converse follows similarly, as does the second claim. �

Lemma 5.7.11 For any β ∈ Σ∗ \ {ε}, we have

[β] = [Assign]⇔ β ∈ L(Cpt,Transfer)

[β] = [Assign]⇔ β ∈ L(Cpt,Transfer)

[β] = [New New]⇔ β ∈ L(Cpt,Alias).

Proof: We first show the forward implication. If [β] = [Assign], then New Assign ∈ L(Cpt), so

New β ∈ L(Cpt). Therefore, there must exist a derivation

FlowsTo⇒ New Transfer ⇒ ... ⇒ New β,

so β ∈ L(Cpt,Transfer). The other two cases follow similarly. Now, we show the backward impli-

cation. Suppose that β ∈ L(Cpt,Transfer). We prove by structural induction on the derivation of

β from Transfer. Since β 6= ε, β cannot have been produced by Transfer ⇒ ε. If β is produced

by Transfer → Transfer Assign, then β = β′Assign, where β′ ∈ L(Cpt,Transfer). By induction,

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 99

[β′] = [Assign], so

[β] = [β′] [Assign] = [Assign] [Assign] = [Assign],

where the last step follows from Lemma 5.7.9. Next, if β is produced using the production

Transfer→ Transfer Store[f] Alias Load[f],

then β = β′ Store[f] β′′ Load[f], where β′ ∈ L(Cpt,Transfer) and β′′ ∈ L(Cpt,Alias). By induction,

[β′] = [Assign] and [β′′] = [New New], so

β = [β′] [Store[f]] [β′′] [Load[f]]

= [Assign] [Store[f]] [New New] [Load[f]]

= [Assign],

where the last step follows from Lemma 5.7.10 and Lemma 5.7.9. The remaining cases follow

similarly. �

Now, suppose that [Store[f]] [β] [Load[f]] = [Assign]. Since

New Store[f] New New Load[f] ∈ L(Cpt),

we have

New Store[f] β Load[f] ∈ L(Cpt),

so the following derivation must exist:

FlowsTo⇒ New Store[f] Alias Load[f]

⇒ ...

⇒ New Store[f] β Load[f],

i.e., β ∈ L(Cpt,Alias). By Lemma 5.7.11, we have [β] = [New New]. The second case follows

similarly. �

5.8 Implementation

We have implemented our specification inference algorithm as Atlas. We use Atlas to infer

specifications for our static analysis tool (a variant of Chord [103] modified to use Soot [147] as a

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 100

0

1

2

3

4

5

6
im

pl
em

en
ta

tio
n v

s.
tru

e (
po

in
ts

-to
)

programs 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

at
la

s v
s.

tru
e

(p
oi

nt
s-

to
)

programs 0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

at
la

s v
s.

ha
nd

w
rit

te
n

(p
oi

nt
s-

to
)

programs

(a) (b) (c)

Figure 5.9: The ratio of nontrivial program points-to edges discovered using (a) ground truth speci-
fications versus the Collections API implementation, (b) Atlas versus ground truth specifications,
and (c) Atlas versus existing specifications. The ratios are sorted from highest to lowest for the
46 benchmark programs with nontrivial points-to edges. In (a) and (c), some values exceeded the
graph scale.

backend) for Java and Android programs, which runs a 1-object-sensitive points-to analysis. Our

tool omits analyzing the Android framework and the Java standard library, and instead analyzes

user-provided code fragment specifications. Over two years, we have handwritten several hundred

code fragment specifications, including many written specifically for our benchmark of programs.

In our evaluation, we focus on specifications for the Java 1.7 Collections API, in particular, for

31 classes that implement the Collection and Map interfaces. We focus on the Java Collections API

since the functions it contains exhibit a variety of interesting points-to effects, which makes them a

challenging target for inferring specifications. Indeed, the most complex points-to specifications we

have written by hand for the entire Android framework are all for functions in this API. We can

easily use our approach to infer specifications for the entire Android framework, but limit ourselves

to these APIs to focus our evaluation—in particular, we provide ground truth specifications for a

large fraction of the Java Collections API.

In total, there are four sets of code fragments for the Java Collections API that our tool can use:

• Specifications inferred by Atlas for the Colletions API.

• The 58 existing, handwritten specifications for the Collections API added to our system over

the past two years (many written specifically for our benchmark).

• Ground truth specifications we wrote by hand for the 12 classes in the Collections API that

are most frequently used by our benchmark—98.5% of calls to the Collections API target a

function in one of these 12 classes.

• The class files comprising the actual implementation of the Collections API (developed by

Oracle).

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 101

5.9 Evaluation

First, we evaluate the precision and recall of Atlas compared to both ground truth specifications

and existing specifications. Second, we compare the points-to edges computed by our static points-to

analysis using different code fragment specifications on a benchmark of 78 Android programs.

5.9.1 Specification Inference

We sampled a total of four million candidate path specifications (two million using each random

sampling and MCTS), and run Atlas using the positive examples.

Positive examples: random sampling vs. MCTS. We sampled two million candidate path

specifications using each sampling algorithm. Random sampling found 3,124 positive examples,

whereas MCTS found 10,153. We aggregated all examples for a total of 11,613 positive examples.

Object initialization: null vs. instantiation. Each of the 11,613 positive examples passed the

test case constructed using instantiation, but only 7,721 passed when using null initialization, i.e.,

instantiation finds 50% more specifications.

Inferred specifications. We inferred code fragment specifications for 733 functions; 591 included

a non-proxy-object specification and 330 included a proxy-object specification.

Precision and recall. We examine the top 50 most frequently called functions in our benchmark

(in total, accounting for 95% of the function calls). We count a specification as admissible if it is

identical to the specification we would have written. For specifications with multiple statements, we

count each statement fractionally. The recall of our algorithm was 97% (i.e., we inferred the admis-

sible specification for 97% of the 50 functions) and the precision was 100% (i.e., each specification

was as precise as the true specification).

Handwritten specifications. We inferred 92% of the 58 handwritten specifications; in addition,

we infer an order of magnitude more new specifications (733 versus 58).

Discussion. Each of the 5 false negatives we examined was due to a false negative in our test case

synthesis. For example, the function subList(int,int) in the List class requires a call of the form

subList(0, 1) to retrieve the first object in the list. Similarly, the function set(int,Object)

in the List class requires an object to already be in the list or it raises an index out-of-bounds

exception.

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 102

5.9.2 Points-To Analysis

We evaluate different code fragment specifications using our 1-object-sensitive points-to analysis;

this analysis is particularly sensitive to missing code fragment specifications, since many points-to

edges depend on multiple specifications, and will not be computed if any of these specifications

are missing. Furthermore, oftentimes a given program makes significant use of a small number of

specifications, so a single missing specification can have a large effect. We show that nevertheless,

Atlas can recover a large fraction of points-to edges. Overall, we make the following comparisons:

• We demonstrate the effectiveness of using specifications by showing that using ground truth

specifications significantly decreases false positives compared to analyzing the actual imple-

mentation.

• We evaluate Atlas by comparing the specifications it infers to our ground truth specifications.

• We show that Atlas improves upon our existing, handwritten specifications, even though

many of these specifications were written specifically for our benchmark.

To compare two sets of code fragments S and S′, we replace the handwritten specifications for

the Collections API with each S and S′ and run our points-to analysis. We use Π(S) ⊆ V × O to

denote the points-to edges computed using code fragments S, restricting to points-to edges in the

program, i.e., x ↪→ o ∈ Π(S) only if x and o are in the program. Additionally, many points-to edges

can be discovered without specifications—we disregard such trivial points-to edges Π(∅), where ∅
denotes the code fragments where each function is a no-op. Then, we report the ratio of number of

nontrivial points-to edges discovered using S to the number discovered using S′, i.e.,

R(S, S′) =
|Π(S) \Π(∅)|
|Π(S′) \Π(∅)|

.

We omit the 46 programs for which there are no nontrivial points-to edges, i.e., Π(S) = Π(S′) = Π(∅).
Finally, we focus on points-to edges since results for alias edges x

Alias−−−→ y (where both x and y are

in the program) are very similar.

Benefit of specifications. We begin by showing the benefit of using specifications. In particular,

we study the ratio R(Simpl-12, Strue-12) of analyzing the library implementation Simpl to analyzing

the ground truth specifications Strue, both restricted to the 12 most frequently used classes. This

ratio measures the number of false positives due to analyzing the implementation instead of using

ground truth specifications, since every points-to edge computed using the implementation but not

the ground truth specifications is a false positive. Figure 5.9 (a) shows this ratio R(Simpl-12, Strue-12).

For a third of programs, the false positive rate is more than 100% (i.e., when R ≥ 2), and for four

programs, the false positive rate was more than 300% (i.e., R ≥ 4). The average false positive rate

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 103

was 115.2%, and the median was 62.1%. Furthermore, for two programs, there were actually false

negatives (i.e., R < 1) due to unanalyzable calls to native code.

Finally, running time decreased by an average of 7.5%, and by 12.4% when restricted to analyses

that ran for more than five minutes, even though we only analyzed 12 classes in the library imple-

mentation. In our experience, our points-to analysis is substantially more scalable than analyzing

the Java standard library implementation.

Comparison to ground truth specifications. To show the quality of the specifications inferred

by Atlas, we study the ratio R(Satlas-12, Strue-12) of using specifications inferred by Atlas to using

ground truth specifications, both restricted to the 12 most frequently used classes. We found that

using Atlas does not compute a single false positive points-to edge compared to using ground truth

specifications, i.e., the precision of Atlas is 100%. Then, the ratio R(Satlas-12, Strue−12) measures

the number of false negative points-to edges when using Atlas compared to ground truth. Figure 5.9

(b) shows R(Satlas-12, Strue-12). This number is almost one for more than half the programs, i.e., for

almost half the programs, there are no false negatives. The median recall is 99.0%, and the average

recall is 75.8%.

Improving upon handwritten specifications. To show how Atlas can improve upon our ex-

isting, handwritten specifications, we study the ratio R(Satlas, Shand) of using specifications inferred

by Atlas to using the 58 existing specifications (on all 31 classes in the Collections API). This

ratio compares the recall of Atlas to that of our existing specifications—a higher ratio says that

Atlas has better recall, and a lower ratio says that our existing specifications have better recall.

Figure 5.9 (c) shows R(Satlas, Shand). Atlas finds a number of new points-to edges compared to the

existing, handwritten specifications, despite the fact that many of the existing specifications were

written specifically for this benchmark. On average, Atlas discovers 20.1% new points-to edges.

The median is 100%, i.e., Atlas find the same number of points-to edges as our existing system.

Discussion. Our results show how the specifications inferred by Atlas substantially improve recall

compared to handwritten specifications. Oftentimes code is simply unavailable for analysis, e.g., due

to native code, dynamically loaded code, or significant use of reflection. For such code, specifications

are the only practical solution for precise and scalable static analysis. However, specifications are

expensive and error prone to write—writing ground truth specifications for just 12 classes took one

student more than a week of time, and bugs were discovered in the specifications during the course

of our evaluation.

Atlas is an automatic approach to generating specifications, and produces higher quality speci-

fications compared to writing them by hand. Production systems often already require handwritten

specifications to handle missing or hard-to-analyze code [49], but typically only provide specifica-

tions for the most frequently used functions. Tools like Atlas that infer specifications for missing

CHAPTER 5. ACTIVE LEARNING OF POINTS-TO SPECIFICATIONS 104

code are crucial for improving the usability of static analysis.

5.10 Conclusion

Specifications summarizing the points-to effects of library code can be used to increase precision,

recall, and scalability of running a static points-to analysis on any client code. By automatically

inferring such specifications, Atlas fully automatically automatically achieves all of these benefits

without the typical time-consuming and error-prone process of writing specifications. We believe

that Atlas is an important step towards improving the usability of static analysis in practice.

Chapter 6

Synthesizing Program Input

Grammars

In this chapter, we study the problem of automatically synthesizing grammars representing program

input languages. Our goal is to extend some of the ideas for active learning of points-to summaries

to infer more challenging specifications. We propose a grammar synthesis algorithm that is similar

to the active language learning algorithm described in Chapter 5—it iteratively proposes candidate

generalizations of the current language and then uses queries to an oracle to avoid choosing incorrect

generalizations. However, instead of operating on finite state automata, the grammar synthesis

algorithm we propose in this chapter operates on regular expressions and context-free grammars. In

particular, program input languages are often context-free, so an algorithm for synthesizing program

input languages must be able to learn recursive structure not present in points-to summaries.

Such a grammar synthesis algorithm has many potential applications. Our primary motiva-

tion is the possibility of using synthesized grammars with grammar-based fuzzers [97, 61, 75]. For

example, such inputs can be used to find bugs in real-world programs [115, 102, 64, 158], learn

abstractions [104], predict performance [77], and aid dynamic analysis [106]. Beyond fuzzing, a

grammar synthesis algorithm could be used to reverse engineer input formats [76], in particular,

network protocol message formats can help security analysts discover vulnerabilities in network pro-

grams [29, 154, 91, 92]. Synthesized grammars could also be used to whitelist program inputs,

thereby preventing exploits [120, 142, 121].

Approaches to synthesizing program input grammars typically examine executions of the pro-

gram, and then generalize these observations to a representation of valid inputs. These approaches

can be either whitebox or blackbox. Whitebox approaches assume that the program code is available

for analysis and instrumentation, for example, using dynamic taint analysis [76]. Such an approach

is difficult when only the program binaries are available or when parts of the code (e.g., libraries)

105

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 106

are missing. Furthermore, these techniques often require program-specific configuration or tuning,

and may be affected by the structure of the code. We consider the blackbox setting, where we only

require the ability to execute the program on a given input and observe its corresponding output.

Since the algorithm does not examine the program’s code, its performance depends only on the

language of valid inputs, and not on implementation details.

A number of existing language inference algorithms can be adapted to this setting [42]. However,

we found them to be unsuitable for synthesizing program input grammars. In particular, L-Star [12]

and RPNI [110], the most widely studied algorithms [148, 35, 58, 25, 36], were unable to learn or

approximate even simple input languages such as XML, and furthermore do not scale even to small

sets of seed inputs. Surprisingly, we found that L-Star and RPNI perform poorly even on the class

of regular languages they target.

The problem with these algorithms is that despite having theoretical guarantees, they depend on

assumptions that do not hold in the setting of learning program input grammars. For example, they

typically avoid overgeneralizing by relying on an “oracle” to provide negative examples that are used

by the algorithm to identify and remove overly general portions of the language. However, these or-

acles are not available in our setting—e.g., L-Star obtains such examples from an equivalence oracle,

and RPNI obtains them “in the limit”. They likewise assume that positive examples exercising all

interesting behaviors are provided by this oracle. In our setting, the needed positive and negative

examples are difficult to find, and existing algorithms consistently overgeneralize (e.g., return Σ∗) or

undergeneralize (e.g., return ∅). Additionally, despite having polynomial running time, they can be

very slow on our problem instances. To the best of our knowledge, other existing grammar inference

algorithms are either impractical [87, 42] or make assumptions similar to L-Star and RPNI [78].

This chapter presents the first practical algorithm for synthesizing program input grammars in

the blackbox setting. Our algorithm synthesizes a context-free grammar Ĉ encoding the language

L∗ of valid program inputs, given

• A small set of seed inputs Ein ⊆ L∗ (i.e., examples of valid inputs). Typically, seed inputs

are readily available—in our evaluation, we use small test suites that come with programs or

examples from documentation.

• Blackbox access to the program executable to answer membership queries (i.e., whether a given

input is valid).

Our algorithm adopts a high-level design commonly used by language learning algorithms (e.g.,

RPNI)—it starts with the language containing exactly the given positive examples, and then incre-

mentally generalizes this language, using negative examples to avoid overgeneralizing. Our algorithm

avoids the shortcomings of existing algorithms in two ways:

• It considers a much richer set of potential generalizations, which addresses the issue of omitted

positive examples.

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 107

• It generates negative examples on the fly to avoid overgeneralizing, which addresses the issue

of omitted negative examples.

In particular, our algorithm constructs a series of increasingly general languages using general-

ization steps. Each step first proposes a number of candidate languages that generalize the current

language, and then uses carefully crafted membership queries to reject candidates that overgeneralize.

Our algorithm considers candidates that (i) add repetition and alternation constructs characteristic

of regular expressions, (ii) induce recursive productions characteristic of context-free grammars, in

particular, parentheses matching grammars, and (iii) generalize constants in the grammar.

We implement our approach in a tool called Glade,1. We conduct an extensive empirical

evaluation of Glade (Section 6.7), and show that Glade substantially outperforms both L-Star

and RPNI, even when restricted to synthesizing regular expressions. Furthermore, we show that

Glade successfully synthesizes input grammars for real programs, which can be used to fuzz test

those programs. In particular, Glade automatically synthesizes a program input grammar, and

then uses the synthesized grammar in conjunction with a standard grammar-based fuzzer (described

in Section 6.7.3) to generate new test inputs. Many fuzzing applications require valid inputs, for

example, differential testing [158]. We show that when restricted to generating valid inputs, Glade

increases line coverage compared to both a näıve fuzzer and a production fuzzer afl-fuzz [159]. Our

contributions are:

• We introduce an algorithm for synthesizing program input grammars from seed inputs and

blackbox program access (Section 6.2). Our algorithm first learns regular properties such as

repetitions and alternations (Section 6.3), and then learns recursive productions characteristic

of matching parentheses grammars (Section 6.4).

• We implement our grammar synthesis algorithm in a tool called Glade, and show that Glade

outperforms two widely studied language learning algorithms, L-Star and RPNI, in our appli-

cation domain (Section 6.7.2).

• We use Glade to fuzz test programs, showing that it increases the number of newly covered

lines of code using valid inputs by up to 6× compared to two baseline fuzzers (Section 6.7.3).

6.1 Problem Formulation

Suppose we are given a program that takes inputs in Σ∗, where Σ is the input alphabet (e.g., ASCII

characters). We let L∗ ⊆ Σ∗ denote the target language of valid program inputs; typically, L∗ is

a highly structured subset of Σ∗. Our goal is to synthesize a language L̂ approximating L∗ from

blackbox program access and seed inputs Ein ⊆ L∗. We represent blackbox program access as an

1Glade stands for Grammar Learning for AutomateD Execution.

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 108

• Target language L(CXML), where the context-free grammar CXML has terminals ΣXML =
{a, ..., z, <, >, /}, start symbol AXML, and production

AXML → (a + ...+ z + <a>AXML)∗

• Oracle OXML(α) = I[α ∈ L(CXML)]

• Seed inputs EXML = {αXML}, where αXML = <a>hi

Figure 6.1: A context-free language L(CXML) of XML-like strings, along with an oracle OXML for
this language and a seed input αXML.

oracle O such that O(α) = I[α ∈ L∗] (here, I is the indicator function, so I[C] is 1 if C is true and

0 otherwise). In particular, we run the program on input α ∈ Σ∗, and conclude that α is a valid

input (i.e., α ∈ L∗) if the program does not print an error message. Access to the oracle is crucial

to avoid overgeneralizing, e.g., rejecting L̂ = Σ∗, whereas the seed inputs give a starting point from

which to generalize.

As a running example, suppose the program input language is the XML-like grammar CXML

shown in Figure 6.1. We use + to denote alternations and ∗ (the Kleene star) to denote repetitions.

Terminals that are part of regular expressions or context-free grammars are highlighted in blue.

Given seed input αXML and oracle OXML, our goal is to synthesize a language L̂ approximating

L∗ = L(CXML).

Ideally, we would learn L∗ exactly, i.e., L̂ = L∗, but it is impossible to guarantee exact learn-

ing [66]. Instead, we want L̂ to be a good approximation of L∗. To measure the approximation

quality, we require probability distributions over L∗ and L̂. In Section 6.7.1, we define the distribu-

tions we use in detail. Briefly, we convert the context-free grammar into a probabilistic context-free

grammar, and use the distribution induced by sampling strings in this probabilistic grammar. Then,

we measure the quality of L̂ as follows:

Definition 6.1.1 Let PL∗ and PL̂ be probability distributions over L∗ and L̂, respectively. The

precision of L̂ is Prα∼PL̂ [α ∈ L∗] and the recall of L̂ is Prα∼PL∗ [α ∈ L̂] (here, α ∼ P denotes a

random sample from P).

For high precision, a randomly sampled string α ∼ PL̂ must be valid with high probability, i.e.,

α ∈ L∗. For high recall, L̂ must contain a randomly sampled valid string α ∼ PL∗ with high

probability. Both are desirable: L̂ = {αin} has perfect precision but typically low recall, whereas

L̂ = Σ∗ has perfect recall but typically low precision. Finally, while the synthesized language L̂ is

context-free, it is often possible for L̂ to approximate L∗ with high precision and recall even if L∗ is

not context-free (e.g., L∗ is context-sensitive).

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 109

Algorithm 8 Our grammar synthesis algorithm. Given seed input αin ∈ L∗ and oracle O for L∗, it returns
an approximation of L∗.

procedure LearnLanguage(αin,O)

L̂current ← {αin}
while true do

M ← ConstructCandidates(L̂current)
L̃chosen ← ∅
for all L̃ ∈M do

S ← ConstructChecks(L̂current, L̃)
if CheckCandidate(S,O) then

L̃chosen ← L̃
break

end if
end for
if L̃chosen = ∅ then

return L̂current

end if
L̂current ← L̃chosen

end while
end procedure
procedure CheckCandidate(S,O)

for all α ∈ S do
if O(α) = 0 then

return false
end if

end for
return true

end procedure

6.2 Overview

In this section, we give an overview of our grammar synthesis algorithm (summarized in Algorithm 8).

We consider the case where Ein consists of a single seed input αin ∈ L∗; an extension to multiple

seed inputs is given in Section 6.5.1. Our algorithm starts with the language L̂1 = {αin} containing

only the seed input, and constructs a series of languages

{αin} = L̂1 ⇒ L̂2 ⇒ ...,

where L̂i+1 results from applying a generalization step to L̂i. On one hand, we want the languages

to become successively larger (i.e., L̂i ⊆ L̂i+1); on the other hand, we want to avoid overgeneralizing

(ideally, the newly added strings L̂i+1 \ L̂i should be contained in L∗). Our framework returns

the current language L̂i if it is unable to generalize L̂i in any way. Figure 6.2 shows the series of

languages constructed by our algorithm for the example in Figure 6.1. Steps R1-R9 (detailed in

Section 6.3) generalize the initial language L̂1 = {αXML} by adding repetitions and alternations.

Steps C1-C2 (detailed in Section 6.4) add recursive productions.

We now describe generalization steps at a high level.

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 110

Step Language Candidates Checks

R1 [<a>hi]rep

? ([<a>hi]alt)
∗

? ([<a>hi</a]alt)
∗[>]rep

? ...
? <a>([hi]alt)

∗[]rep
? ...

{ε 3, <a>hi<a>hi 3}
{<a>hi</a 7, <a>hi</a<a>hi 7}
...
{<a> 3, <a>hihi 3}
...

R2 ([<a>hi]alt)
∗

? ([<]rep + [a>hi]alt)
∗

? ...
? ([<a>hi]rep)∗

{< 7, a>hi 7}
...
∅

R3 ([<a>hi]rep)∗
? (([<a>hi</a]alt)

∗[>]rep)∗
? ...
? (<a>([hi]alt)

∗[]rep)∗
? ...

{<a>hi</a 7, <a>hi</a<a>hi 7}
...
{<a> 3, <a>hihi 3}
...

R4 (<a>([hi]alt)
∗[]rep)∗

? (<a>([hi]alt)
∗([]alt)

∗)∗
? ...
? (<a>([hi]alt)

∗</a([>]alt)
∗)∗

? (<a>([hi]alt)
∗)∗

{<a>hi 7, <a>hi 7}
...
{<a>hi</a 7, <a>hi> 7}
∅

R5 (<a>([hi]alt)
∗)∗ ? (<a>([h]rep + [i]alt)

∗)∗
? (<a>([hi]rep)∗)∗

{<a>h 3, <a>i 3}
∅

R6 (<a>([h]rep + [i]alt)
∗)∗ ? (<a>([h]rep + [i]rep)∗)∗ ∅

R7 (<a>([h]rep + [i]rep)∗)∗ ? (<a>([h]rep + i)∗)∗ ∅
R8 (<a>([h]rep + i)∗)∗ ? (<a>(h + i)∗)∗ ∅
R9 (<a>(h + i)∗)∗ – –

C1

(
A′R1 → (<a>A′R3)

∗

A′R3 → (h + i)∗
, {(A′R1, A

′
R3)}

) ?

(
A → (<a>A)∗
A → (h + i)∗ , ∅

)
?

(
A′R1 → (<a>A′R3)

∗

A′R3 → (h + i)∗
, ∅

) {hihi 3, <a><a>hi<a>hi 3}

∅

C2

(
A → (<a>A)∗
A → (h + i)∗ , ∅

)
– –

Figure 6.2: The generalization steps taken by our algorithm given seed input αXML and oracle
OXML. The initial language {αXML} is generalized to a regular expression in steps R1-R9. The
resulting regular expression is translated to a context-free grammar, which is further generalized in
steps C1-C2. The candidates at each step are shown in order of preference, with the most preferable
on top (ellipses indicate omitted candidates). Checks for each candidate are shown; a green check
mark 3 indicates that the check passes and a red cross 7 indicates that it fails. A star ? is shown
next to the selected candidate.

Candidates. The ith generalization step first constructs candidate languages L̃1, ..., L̃n, with the

goal of choosing L̂i+1 to be the candidate that increases recall the most without sacrificing precision.

To ensure candidates can only increase recall, we consider monotone candidates L̃ ⊇ L̂i. Further-

more, the candidates are ranked from most preferable (L̃1) to least preferable (L̃n). Figure 6.2

shows the candidates considered for our running example. They are listed in order of preference,

with the top candidate being the most preferred. In steps R1-R9, the candidates add a single repe-

tition or alternation to the current regular expression; in steps C1-C2, the candidates try to equate

nonterminals in the current context-free grammar.

Checks. To ensure high precision, we want to avoid overgeneralizing. Ideally, we want to select

a candidate that is precision-preserving, i.e., L̃ \ L̂i ⊆ L∗. In other words, all strings added to

the candidate L̃ (compared to the current language L̂i) are contained in the target language L∗.

However, we only have access to a membership oracle for L∗, so it is typically impossible to prove that

a given candidate L̃ is precision-preserving—we would have to check O(α) = 1 for every α ∈ L̃ \ L̂i,
but this set is often infinite.

Instead, we carefully choose a finite number of heuristic checks S ⊆ L̃ \ L̂i. Then, our algorithm

rejects L̃ if O(α) = 0 for any α ∈ S. Alternatively, if all checks pass (i.e., O(α) = 1), then L̃ is

potentially precision-preserving. Since the candidates are ranked in order of preference, we choose the

first potentially precision-preserving candidate. Figure 6.2 shows examples of checks our algorithm

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 111

constructs.

6.3 Phase One: Regular Expression Synthesis

We describe the first phase of generalization steps, which generalize the seed input into a regular

expression.

6.3.1 Candidates

In phase one, the current language is represented by a regular expression annotated with extra

data: substrings of terminals α = σ1...σk may be enclosed in square brackets, i.e., [α]τ , where

τ ∈ {rep, alt}. These annotations indicate that the bracketed substring in the current regular

expression can be generalized by adding either a repetition (if τ = rep) or an alternation (if τ = alt).

The seed input αin is automatically annotated as [αin]rep. Then, each generalization step selects

a single bracketed substring [α]τ and generates candidates based on decompositions of α (i.e., an

expression of α as a sequence of substrings α = α1...αk):

• Repetitions: If generalizing P [α]repQ, for each decomposition α = α1α2α3 such that α2 6= ε,

generate

Pα1([α2]alt)
∗[α3]repQ.

• Alternations: If generalizing P [α]altQ, for each decomposition α = α1α2, where α1 6= ε and

α2 6= ε, generate

P ([α1]rep + [α2]alt)Q.

In both cases, the candidate PαQ is also generated. For example, in Figure 6.2, step R1 selects

[<a>hi]rep and applies the repetition rule.

The candidates are monotonic:

Proposition 6.3.1 Each candidate constructed in phase one of our algorithm is monotone.

Proof: There are two cases:

• Repetitions: Every candidate has form (omitting bracketed substrings) R′ = Pα1α
∗
2α3Q,

where the current language is R = PαQ and α = α1α2α3. Since α ∈ L(α1α
∗
2α3), it is clear

that

L(R) = L(PαQ) ⊆ L(Pα1α
∗
2α3Q) = L(R′).

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 112

• Alternations: Every candidate has form (omitting bracketed substrings) R′ = P (α1 +α2)Q,

where the current language is R = PαQ and α = α1α2. Note that an bracketed expression

[α]alt always occurs within a repetition, so the candidate has form

R′ = ...(...+ (α1 + α2) + ...)∗...

= ...(...+ (α1 + α2)∗ + ...)∗...,

so since α ∈ (α1 + α2)∗, we have

L(R) = L(PαQ) ⊆ L(P (α1 + α2)∗Q) = L(R′).

The result follows. �

We briefly describe the intuition behind these rules. In particular, we define a meta-grammar2

Cregex, which is a context-free grammar whose members R ∈ L(Cregex) are regular expressions. The

terminals of Cregex are Σregex = Σ ∪ {+, ∗}, where + denotes alternations and ∗ denotes repetitions.

The nonterminals are Vregex = {Trep, Talt}, where Trep corresponds to repetitions (and is also the

start symbol) and Talt corresponds to alternations. The productions are

Trep ::= β | T ∗alt | βT ∗alt | T ∗altTrep | βT ∗altTrep

Talt ::= Trep | Trep + Talt

where β ∈ Σ∗ − {ε} ranges over nonempty substrings of αin.

Consider the series of regular expressions R1 ⇒ ...⇒ Rn in phase one. For each regular expres-

sion, we can replace each bracketed substring [α]τ with the nonterminal Tτ . Doing so produces a

derivation in Cregex, for example, steps R1-R9 in Figure 6.2 correspond to the derivation:

[<a>hi]rep Trep

⇒ ([<a>hi]alt)
∗ ⇒ T ∗alt

⇒ ([<a>hi]rep)∗ ⇒ T ∗rep

⇒ (<a>([hi]alt)
∗[]rep)∗ ⇒ (<a>T ∗altTrep)∗

⇒ (<a>([hi]alt)
∗
)∗ ⇒ (<a>T ∗alt)∗

⇒ (<a>([h]rep + [i]alt)
∗
)∗ ⇒ (<a>(Trep + Talt)

∗
)∗

⇒ (<a>([h]rep + [i]rep)∗)∗ ⇒ (<a>(Trep + Trep)∗)∗

⇒ (<a>([h]rep + i)∗)∗ ⇒ (<a>(Trep + i)∗)∗

⇒ (<a>(h + i)∗)∗ ⇒ (<a>(h + i)∗)∗

In fact, this correspondence goes backwards as well:

2We use the term meta-grammar to distinguish Cregex from the context-free grammars we synthesize.

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 113

Proposition 6.3.2 For any derivation Trep
∗

=⇒ R in Cregex (where R ∈ L(Cregex)), there exists

αin ∈ L(R) such that R can be derived from αin via a series of generalization steps

{αin} = R1 ⇒ ...⇒ Rn = R

Proof: Consider the derivation of a regular expression R ∈ L(Cregex):

Trep = η1 ⇒ ...⇒ ηn = R.

We prove that for each i, there is a series of generalization steps

Ri ⇒ Ri+1 ⇒ ...⇒ Rn = R

such that each Rj (for i ≤ j ≤ n) maps to ηj in the way defined in Section 6.3.1 (i.e., by replacing

[α]τ with Tτ); we express this mapping as ηj = Rj . The result follows since for i = 1, we get

[α]rep = R1 ⇒ ...⇒ Rn = R, so we can take αin = α.

We prove by (backward) induction on the derivation. The base case i = n is trivial, since

ηn ∈ L(Cregex), so we can take Rn = ηn since Rn = Rn = ηn. Now, suppose that we have a series

of generalization steps Ri+1 ⇒ ...⇒ Rn = R that satisfies the claimed property. It suffices to show

that we can construct Ri such that Ri ⇒ Ri+1 is a generalization step and Ri = ηi. Consider the

following cases for the step ηi ⇒ ηi+1 in the derivation:

• Step µTrepν ⇒ µβT ∗altTrepν: Then, we must have

Ri+1 = Pα1[α2]alt[α3]repQ,

where P = µ, Q = ν, and α1 = β. Also, since Ri+1 is valid, we have α1, α2, α3 6= ε. Therefore,

we can take

Ri = P [α]repQ,

where α = α1α2α3 6= ε. The remaining productions for Trep are similar. In particular, the

assumption that β 6= ε in these derivations is needed to ensure that α 6= ε.

• Step µTaltν ⇒ µ(Trep + Talt)ν: Then, we must have

Ri+1 = P ([α1]rep + [α2]alt)Q,

where P = µ and Q = ν. Also, since Ri+1 is valid, we have α1, α2 6= ε. Therefore, we can take

Ri = P [α]altQ,

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 114

where α = α1α2 6= ε. The remaining production for Talt is similar.

The result follows. �

Furthermore, L(Cregex) almost contains every regular expression:

Proposition 6.3.3 For any regular language L∗, there exist R1, ..., Rm ∈ L(Cregex) such that L∗ =

L(R1 + ...+Rm).

Proof: We slightly modify Cregex, by introducing a new nonterminal Tregex, taking Tregex to

be the start symbol, and adding productions

Tregex ::= ε̄ | Talt | ε̄+ Talt,

where ε̄ ∈ Σregex is a newly introduced terminal denoting the regular expression for the empty

language. This modification has two effects:

• Now, regular expressions R ∈ L(Cregex) can have top-level alternations.

• Furthermore, the top-level alternation can explicitly include the empty string ε̄ (e.g., R = ε̄+a).

As described in Section 6.3.1, the first modification can be addressed by using multiple inputs (see

Section 6.5.1), which allows our algorithm to learn top-level alternations. The second modification

can be addressed by including a seed input ε̄ ∈ Ein, in which case phase one of our algorithm

synthesizes ε̄ (since there is nothing for it to generalize).

Now, let the context-free grammar C̃regex be a standard grammar for regular expressions:

T ::= β | TT | T + T | T ∗. (6.1)

It suffices to show that for any R ∈ L(Cregex), there exists R′ ∈ L(C̃regex) such that L(R) = L(R′)

(which we express as R ≡ R′).
First, we prove the result for Cεregex, which is identical to Cregex except that we allow β = ε. Let

R ∈ L(C̃regex). Suppose that either R = S1 + S2, R = S1S2, or R = β. We claim that we can

express R as

R ≡ X1 + ...+Xn (6.2)

Xi = Yi,1...Yi,ki (1 ≤ i ≤ n)

where either Yi,j = β or Yi,j = W ∗i,j for each i and j. Consider two possibilities:

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 115

• Suppose R can be expressed in the form (6.2), but Yi,j = Z1 + Z2. Then

Xi = Yi,1...Yi,j ...Yi,ki

= Yi,1...(Z1 + Z2)...Yi,ki

≡ Yi,1...Z1...Yi,ki + Yi,1...Z2...Yi,ki

which is again in the form (6.2).

• Suppose R has the form (6.2), but Yi,j = Z1Z2. Then

Xi = Yi,1...Yi,j ...Yi,ki = Yi,1...Z1Z2...Yi,ki

which is again in the form (6.2).

Note that either R = S1 + S2 or R = S1S2, so R starts in the form (6.2). Therefore, we can

repeatedly apply the above two transformations until Yi,j = β or Yi,j = W ∗i,j for every i and j. This

process must terminate because the parse tree for R is finite, so the claim follows.

Now, we construct R′ ∈ L(Cεregex, Talt) such that R ≡ R′ by structural induction. First, suppose

that either R = S1 + S2, R = S1S2, or R = β. Then we can express R in the form (6.2). By

induction, Wi,j ≡W ′i,j for some W ′i,j ∈ L(Cεregex, Talt) for every i and j. By the definition of Trep, we

have Xi ∈ L(Cεregex, Trep), so by the definition of Talt, we have R ∈ L(Cεregex, Talt), so the inductive

step follows.

Alternatively, suppose R = S∗. If S = S∗1 , then R ≡ S∗1 , so without loss of generality assume

S = S1 + S2, S = S1S2, or S = β, so by the previous argument, we have S ∈ L(Cεregex, Talt). Since

Talt ::= Trep and Trep ::= T ∗alt, we have R ∈ L(Cεregex, Talt), so again the inductive step follows.

Finally, since T ::= Talt, we have R ∈ L(Cεregex).

Now, we modify the above proof to show that as long as ε 6∈ L(R), we have R ∈ L(Cregex, Talt).

As before, we proceed by structural induction. Suppose that either R = S1 + S2, R = S1S2, or

R = β, so we can express R in the form (6.2). First, consider the case Yi,j = β; if β = ε, we can

remove Yi,j from Xi unless ki = 1. However, if Yi,j = β = ε and ki = 1, whence Xi = ε so ε ∈ L(R),

a contradiction; hence, we can always drop Yi,j such that Yi,j = ε. For the remaining Yi,j = β, we

have Yi,j ∈ L(Cregex, Trep) by the definition of Cregex.

Second, consider the case Yi,j = Z∗i,j . Let Z ′i,j be a regular expression such that L(Z ′i,j) =

L(Zi,j)− {ε}, and note that

Yi,j = Z∗i,j ≡ (Z ′i,j)
∗.

By induction, we know that Zi,j ∈ L(Cregex, Talt), so Y ′i,j = (Z ′i,j)
∗ ∈ L(Cregex, Trep) by the definition

of Cregex.

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 116

For each Xi, we remove every Yi,j = β = ε and replace every Yi,j = Z∗i,j with Y ′i,j = (Z ′i,j)
∗ to

produce X ′i ≡ Xi. By definition of Cregex, we have Xi ∈ L(Cregex, Trep), so R ∈ L(Cregex, Talt) as

claimed; now, the case R = S∗ follows by the same argument as before.

For any R such that ε ∈ L(R), we can write R = ε + S where ε 6∈ L(S) and apply the above

argument to S. Since T ::= ε+ Talt is a production in Cregex, we have shown that R ∈ L(Cregex) for

any regular expression R. �

This proposition says that phase one can synthesize almost any regular language L∗, assuming the

“right” sequence of generalization steps is taken. Our extension to multiple inputs in Section 6.5.1

extends this result to any regular language. However, the space of all regular expressions is too large

to search exhaustively. We sacrifice completeness for efficiency—our algorithm greedily chooses the

first candidate according to the candidate ordering described in Section 6.3.2.

The productions in Cregex are unambiguous, so each regular expression R ∈ L(Cregex) has a single

valid parse tree. This disambiguation allows our algorithm to avoid considering candidate regular

expressions multiple times.

6.3.2 Candidate Ordering

The candidate ordering is a heuristic designed to maximize the generality of the regular expression

synthesized at the end of phase one. We use the following ordering for candidates constructed by

phase one generalization steps:

• Repetitions: If generalizing P [α]repQ, among

Pα1([α2]alt)
∗[α3]repQ,

we first prioritize shorter α1, since α1 is not further generalized. Second, we prioritize longer

α2—for example, in step R3 of Figure 6.2, if we instead chose candidate <a>([h]alt)
∗[i]rep,

then we would synthesize (<a>h∗i∗)∗, which is less general than step R9.

• Alternations: If generalizing P [α]altQ, among

P ([α1]rep + [α2]alt)Q,

we prioritize shorter α1—for example, in step R5 of Figure 6.2, if we instead chose candidate

(<a>([hi]rep)∗)∗, then step R6 would instead be (<a>([hi]rep)∗)∗, which is less general

than the one we obtain.

In either case, the final candidate PαQ is ranked last. Note that candidate repetitions and candidate

alternations can be ordered independently—each generalization step considers only repetitions (if

the chosen bracketed string has form [α]rep) or only alternations (if it has form [α]alt).

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 117

6.3.3 Check Construction

We describe how phase one of our algorithm constructs checks S ⊆ L̃ \ L̂i. Each check α ∈ S has

form α = γρδ, where ρ is a residual capturing the portion of L̃ that is generalized compared to

L̂i, and (γ, δ) is a context capturing the portion of L̃ which is in common with L̂i. More precisely,

suppose the current language is P [α]τQ, where [α]τ is chosen to be generalized, and the candidate

language is PRαQ, i.e., α is generalized to Rα. Then, a residual ρ ∈ L(Rα) \ {α} captures how

Rα is generalized compared to the substring α, and a context (γ, δ) captures the semantics of the

expressions (P,Q).

We may want to choose γ ∈ L(P) and δ ∈ L(Q). However, P and Q may not be regular

expressions. For example, on step R5 in Figure 6.2, P = “(<a>”, α = “hi”, and Q = “)∗”

(the expressions are quoted to emphasize the placement of parentheses). Instead, P and Q form a

regular expression when sequenced together, possibly with a string α′ in between, i.e., Pα′Q. We

want contexts (γ, δ) such that

γα′δ ∈ L(Pα′Q) (∀α′ ∈ Σ∗). (6.3)

Then, the constructed check α = γρδ satisfies

γρδ ∈ L(PρQ) ⊆ L(PRαQ),

where the first inclusion follows from (6.3) and the second inclusion follows since ρ ∈ L(Rα). We

discard α such that α ∈ L(L̂i) to obtain valid checks α ∈ L̃ \ L̂i.
Next, we explain the construction of residuals and contexts. Our algorithm generates residuals

as follows:

• Repetitions: For current language P [α]repQ and candidate Pα1([α2]alt)
∗[α3]repQ, generate

residuals α1α3 and α1α2α2α3.

• Alternations: For current language P [α]altQ and candidate P (α1 +α2)Q, generate residuals

α1 and α2.

Next, our algorithm associates a context (γ, δ) with each bracketed string [α]τ . The context

for the initial bracketed string [αin]rep is (ε, ε). After each generalization step, contexts for new

bracketed substrings are generated:

• Repetitions: For current language P [α]repQ, where [α]rep has context (γ, δ), and candi-

date Pα1([α2]alt)
∗[α3]repQ, the context generated for the new bracketed substring [α2]alt is

(γα1, α3δ), and for [α3]rep is (γα1α2, δ).

• Alternations: For current language P [α]altQ, where [α]alt has context (γ, δ), and candidate

P ([α1]rep + [α2]alt)Q, the context generated for the new bracketed substring [α1]rep is (γ, α2δ),

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 118

and for [α2]alt is (γα1, δ).

For example, on step R3, the context for [<a>hi]rep is (ε, ε). The residuals for candidate

(([<a>hi</a]alt)
∗[>]rep)∗ are <a>hi</a and <a>hi>; since the context is empty, these residuals

are also the checks, and they are rejected by the oracle, so the candidate is rejected. On the other

hand, the residuals (and checks) for the chosen candidate (<a>([hi]alt)
∗[]rep)∗ are <a> and

<a>hihi, which are accepted by the oracle. For the new bracketed string [hi]alt, the algo-

rithm constructs the context (<a>,), and for the new bracketed string []rep, the algorithm

constructs the context (<a>hi, ε).

Similarly, on step R5, the context for [hi]alt is (<a>,). The residuals constructed for the

chosen candidate (<a>([h]rep + [i]alt)
∗)∗ are h and i, so the constructed checks are <a>h

and <a>i. Our algorithm constructs the context (<a>, i) for the new bracketed string [h]rep

and the context (<a>h,) for the new bracketed string [i]alt.

We have the following result, which ensures that the constructed checks are valid (i.e., belong to

L̃ \ L̂i):

Proposition 6.3.4 The contexts constructed by phase one generalization steps satisfy (6.3).

Proof: We prove by induction. The initial context (ε, ε) for [αin]rep clearly satisfies (6.3).

Next, assume that the context (γ, δ) for the current language satisfies (6.3). There are two cases:

• Repetitions: Suppose that the current language is R = P [α]repQ and the candidate is R′ =

Pα1([α2]alt)
∗[α3]alt. Then, the context constructed for [α2]alt is (γ′, δ′) = (γα1, α3δ). Also, let

P ′ = “Pα1(” and Q′ = “)∗α3Q”, so R′ = P ′α2Q
′. Then, for any α′ ∈ Σ∗, we have

γ′α′δ′ = γα1α
′α3δ ∈ L(Pα1α

′α3Q)

⊆ L(Pα1(α′)∗α3Q)

= L(P ′α′Q′),

where the first inclusion follows by applying (6.3) to the context (γ, δ) with α1α
′α3 ∈ Σ∗.

Therefore, the context (γ′, δ′) satisfies (6.3). Similarly, the context constructed for [α3]rep is

(γ′, δ′) = (γα1α2, δ). Also, let P ′ = Pα1α
∗
2 and Q′ = Q, so R′ = P ′α3Q

′. Then, for any

α′ ∈ Σ∗, we have

γ′α′δ′ = γα1α2α
′ ∈ L(Pα1α2α

′Q)

⊆ L(Pα1α
∗
2α
′Q)

= L(P ′α′Q′),

where the first inclusion follows by applying (6.3) to the context (γ, δ) with α1α2α
′ ∈ Σ∗.

Therefore, the context (γ′, δ′) satisfies (6.3).

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 119

Step Chosen Generalization Productions Language L(Ĉ, Ai)
R1 [<a>hi]R1

rep ⇒ ([<a>hi]R2
alt)
∗ {AR1 → A′R1, A′R1 → ε + A′R1AR2} (<a>(h + i)∗)∗

R2 [<a>hi]R2
alt ⇒ [<a>hi]R3

rep {AR2 → AR3} <a>(h + i)∗
R3 [<a>hi]R3

rep ⇒ <a>([hi]R5
alt)
∗[]R4

rep {AR3 → <a>A′R3AR4, A′R3 → ε + A′R3AR5} <a>(h + i)∗
R4 []R4

rep ⇒ {AR4 → } <a>

R5 [hi]R5
alt ⇒ [h]R8

rep + [i]R6
alt {AR5 → AR8 + AR6} h + i

R6 [i]R6
alt ⇒ [i]R7

rep {AR6 → AR7} i

R7 [i]R7
rep ⇒ i {AR7 → i} i

R8 [h]R8
alt ⇒ h {AR8 → h} h

R9 – – –

Figure 6.3: The productions added to ĈXML corresponding to each generalization step are shown.
The derivation shows the bracketed subexpression [α]iτ (annotated with the step number i) selected
to be generalized at step i, as well as the subexpression to which [α]iτ is generalized. The language
L(Ĉ, Ai) (i.e., strings derivable from Ai) equals the subexpression in R̂ that eventually replaces [α]iτ .
As before, steps that select a candidate that strictly generalizes the language are bolded (in the first
column).

• Alterations: Suppose that the current language is R = P [α]altQ and the candidate is R′ =

P ([α1rep + [α2]alt)Q. Then, the context constructed for [α1]rep is (γ′, δ′) = (γ, α2δ). Also, let

P ′ = “P (” and Q′ = “+α2)Q”, so R′ = P ′α2Q
′. Then, for any α′ ∈ Σ∗, we have

γ′α′δ′ = γα′α2δ ∈ L(Pα′α2Q)

= L(P (α′ + α2)∗Q)

= L(P (α′ + α2)Q)

= L(P ′α′Q′),

where the inclusion follows by applying (6.3) to the context (γ, δ) with α′α2 ∈ Σ∗, and the

equality on the third line follows as in the proof of Proposition 6.3.1.

The claim follows. �

6.3.4 Computational Complexity

Let n be the length of the seed input αin. In phase one, our algorithm considers at most O(n2)

repetition candidates (since each of the n2 substrings of αin is considered at most once), and O(n3)

alternation candidates (since at most O(n) alternation candidates are considered per discovered

repetition). Examining each candidate takes constant time (assuming each query to O takes constant

time), so the complexity of phase one is O(n3). In our evaluation, we show that our algorithm is

quite scalable.

6.4 Phase Two: Recursive Properties

The second phase of generalization steps learn recursive properties of program input languages that

cannot be represented using regular expressions. Consider the regular expression (<a>(h+i)∗)∗

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 120

obtained at the end of phase one in Figure 6.2, which can be written as R̂XML = (<a>Rhi)∗,

where Rhi = (h+ i)∗. Since every regular language is also context-free, we can begin by translating

R̂XML to the context-free grammar

{AXML → (<a>Ahi)∗, Ahi → (h + i)∗}.

Then, we can equate the nonterminals AXML and Ahi to obtain the context-free grammar ĈXML:

{A→ (<a>A)∗, A→ (h + i)∗},

which does not overgeneralize, since L(ĈXML) ⊆ L(CXML). Furthermore, L(ĈXML) is not regular,

as it contains the language of matching tags <a> and .

In general, phase two of algorithm first translates the synthesized regular expression R̂ into a

context-free grammar Ĉ. Then, each generalization step considers equating a pair (A,B) of nonter-

minals in Ĉ, where A and B correspond to repetition subexpressions of R̂, which are subexpressions

R of R̂ of the form R = R∗1. The restriction to equating repetition subexpressions is empirically

motivated—in practice, recursive constructs can typically also be repeated, e.g., in matching paren-

theses grammars, so constraining the search space reduces the potential for imprecision without

sacrificing recall. In our example, AXML corresponds to repetition subexpression R̂XML, and Ahi

corresponds to repetition subexpression Rhi, so our algorithm considers equating AXML and Ahi.

In the remainder of this section, we first describe how we translate regular expressions to context-

free grammars, and then describe phase two candidates and checks.

6.4.1 Translating R̂ to a Context-Free Grammar

Our algorithm translates the regular expression R̂ to a context-free grammar Ĉ = (V,Σ, P, T)

such that L(R̂) = L(Ĉ) and subexpressions in R̂ correspond to nonterminals in Ĉ. Intuitively, the

translation follows the derivation of R̂ in the meta-grammar Cregex (described in Section 6.3.1). First,

the terminals in Ĉ are the program input alphabet Σ. Next, the nonterminals V of Ĉ correspond

to generalization steps, additionally including an auxiliary nonterminal for steps that generalize

repetition nodes:

V = {Ai | step i} ∪ {A′i | step i generalizes P [α]repQ}.

The start symbol is A1. Finally, the productions are generated according to the following rules:

• Repetition: If step i generalizes current language P [α]repQ to Pα1([α2]alt)
∗[α3]repQ, we

generate productions

Ai → α1A
′
iAk, A′i → ε+A′iAj ,

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 121

where j is the step that generalizes [α2]alt and k is the step that generalizes [α3]rep. Intuitively,

these productions are equivalent to the “production” Ai → α1A
∗
jAk.

• Alternation: If step i generalizes P [α]altQ to P ([α1]rep + [α2]alt)Q, we include production

Ai → Aj + Ak, where j is the step that generalizes [α1]rep and k is the step that generalizes

[α2]alt.

For example, Figure 6.3 shows the result of the translation algorithm applied to the generalization

steps in the first phase of Figure 6.2 to produce a context-free grammar ĈXML equivalent to R̂XML.

Here, steps R1 and R3 handle the semantics of repetitions, step R5 handles the semantics of the

alternation, steps R2 and R6 only affect brackets so they are identities, and steps R4, R7, and R8 are

constant expressions. Furthermore, L(Ĉ, Ai) is the language of strings matched by the subexpression

that eventually replaces the bracketed substring [α]τ generalized on step i; this language is shown

in the last column of Figure 6.3.

The auxiliary nonterminals A′i correspond to repetition subexpressions in R̂—if step i generalizes

[α]rep to α1([α2]alt)
∗[α3]rep, then L(Ĉ, A′i) = L(R∗), where R is the subexpression to which [α2]alt is

eventually generalized. In our example, A′R1 corresponds to R̂XML = (<a>(h + i)∗)∗, and A′R3

corresponds to Rhi = (h + i)∗.

For conciseness, we redefine ĈXML to be the equivalent context-free grammar with start symbol

A′R1 and productions

A′R1 → (<a>A′R3)∗, A′R3 → (h + i)∗

where the Kleene star implicitly expands to the productions described in the repetition case.

6.4.2 Candidates and Ordering

The candidates considered in phase two of our algorithm are merges, which are (unordered) pairs of

nonterminals (A′i, A
′
j) in Ĉ, where i and j are generalization steps of phase one. Recall that these

nonterminals correspond to repetition subexpressions in R̂. In particular, associated to Ĉ is the

set M of all such pairs of nonterminals. In Figure 6.2, the regular expression R̂XML on step R9 is

translated into the context-free grammar ĈXML on step C1, with its corresponding set of merges

MXML containing just (A′R1, A
′
R3).

Each phase two generalization step selects a pair (A′i, A
′
j) ∈M and considers two candidates (in

order of preference):

• The first candidate C̃ equates A′i and A′j by introducing a fresh nonterminal A and replacing

all occurrences of A′i and A′j in Ĉ with A.

• The second candidate equals the current language Ĉ.

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 122

In either case, the selected pair is removed from M . The candidates are monotone since equating

two nonterminals can only enlarge the generated language.

For example, in step C1 of Figure 6.2, the candidate (A′R1, A
′
R3) is removed from MXML; the first

candidate is constructed by equating A′R1 and A′R3 in ĈXML to obtain

C̃XML = {A→ (<a>A)∗, A→ (h + i)∗},

where L(C̃XML) is not regular. The chosen candidate is Ĉ ′XML = C̃XML, since the checks (described

in Section 6.4.3) pass. On step C2, M is empty, so our algorithm returns Ĉ ′XML. In particular,

Ĉ ′XML equals L(CXML), except the characters a+ ...+ z are restricted to h+ i. In Section 6.5.2, we

describe an extension that generalizes characters in Ĉ ′XML.

Finally, we formalize the intuition that equating (A′i, A
′
j) ∈M corresponds to merging repetition

subexpressions, which says that equating (A′i, A
′
j) ∈M merges R and R′ in R̂:

Proposition 6.4.1 Let regular expression R̂ translate to context-free grammar Ĉ. Suppose that

nonterminal Ai in Ĉ corresponds to repetition subexpression R, so R̂ = PRQ, and Aj to R′, so

R̂ = P ′R′Q′. Let C̃ be obtained by equating Ai and Aj in Ĉ. Then, L(PR′Q) ⊆ L(C̃) (and

symmetrically, L(P ′RQ′) ⊆ L(C̃)).

Proof: (sketch) We show that if we merge two nonterminals (A′i, A
′
j) ∈M by equating them

in the context-free grammar Ĉ (translated from R̂) to obtain C̃, then the repetition subexpressions

R in R̂ = PRQ (corresponding to A′i) and R′ in R̂ = P ′R′Q′ (corresponding to A′j) are merged;

i.e., L(PR′Q) ⊆ L(C̃) and L(P ′RQ′) ⊆ L(C̃). While we prove the result for the translation Ĉ of

R̂, note that (i) subsequent merges can only enlarge the generated language, and (ii) the order in

which merges are performed does not affect the final context-free grammar, so the result holds for

any step of phase two of our algorithm.

Note that equating two nonterminals (A′i, A
′
j) ∈ M in Ĉ is equivalent to adding productions

A′i → A′j and A′j → A′i to Ĉ. Therefore, Proposition 6.4.1 shows that both L(PR′Q) ⊆ L(C̃) and

L(P ′RQ′) ⊆ L(C̃). It suffices to show that adding A′i → A′j to Ĉ results in the context-free grammar

C̃ satisfying L(PR′Q) ⊆ L(C̃) (intuitively, this is a one-sided merge that only merges R̂′ into R̂, not

vice versa).

We use the fact that our algorithm for translating a regular expression to a context-free grammars

works more generally for any regular expression R ∈ L(Cregex) derived from Trep in according to the

meta-grammar Cregex. In particular, if we consider the series of generalization steps

αin = R1 ⇒ ...⇒ Rn = R̂,

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 123

we get a corresponding derivation

T (1)
rep = η1 ⇒ ...⇒ ηn = R̂

in Cregex as described in Section 6.3.1. Similarly to the labels on bracketed strings in the series

of generalization steps, we label each nonterminal in the derivation with the index at which it is

expanded. For example, for the derivation corresponding to the the series of generalization steps in

Figure 6.3 is

T (1)
rep

⇒ (T
(2)
alt)∗

⇒ (T (3)
rep)∗

⇒ (<a>(T
(5)
alt)∗T (4)

rep)∗

⇒ (<a>(T
(5)
alt)∗)∗

⇒ (<a>(T (8)
rep + T

(6)
alt)∗)∗

⇒ (<a>(T (8)
rep + T (7)

rep)∗)∗

⇒ (<a>(T (8)
rep + i)∗)∗

⇒ (<a>(h + i)∗)∗

Now, each nonterminal Ai is associated to step i in the derivation, and we add productions for

Ai depending on step i in the derivation (and auxiliary nonterminals A′i if step i in the derivation

expands nonterminal Trep in the meta-grammar):

• Step µT
(i)
repν ⇒ µβ(T

(j)
alt)∗T

(k)
repν: We add productions Ai → βA′iAk and A′i → ε | A′iAj .

• Step µT
(i)
alt ν ⇒ µ(T

(j)
rep + T

(k)
alt)ν: We add production Ai → Aj | Ak.

Now, consider step i in the derivation, where productions for Ai and A′i were added to Ĉ. Then,

step i of the derivation has form

µT (i)
repν ⇒ µβ(T

(j)
alt)∗T (k)

repν.

We can assume without loss of generality that we expand T
(i)
rep last; i.e., µ = µ = P and ν = ν = Q

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 124

do not contain any nonterminals. Therefore, the derivation has form

(η1 = T (1)
rep)⇒ ...

⇒ (ηi = PT (i)
repQ)

⇒ (ηi+1 = Pβ(T
(j)
alt)∗T (k)

repQ)

⇒ ...

⇒ (ηn = PRQ).

Now, note that the following derivation is also in Cregex:

(η1 = T (1)
rep)⇒ ...

⇒ (ηi = PT (i)
repQ)

⇒ (η′i+1 = Pβ′(T
(j′)
alt)∗T (k′)

rep Q)

⇒ ...

⇒ η′n′ = PR′Q

since R′ can be derived from Trep. Note that R̂′ = PR′Q is exactly the regular expression produced

by this derivation. Then, let Ĉ ′ be the context-free grammar obtained by applying our translation

algorithm to R̂′ using this derivation.

Note that Ĉ ′ has the same productions as Ĉ, except the productions for Ai in Ĉ (i.e., all

productions added on step i of the derivation and after) have been replaced with productions Ai

in Ĉ ′ such that L(Ĉ ′, Ai) = L(R′). Since L(R′) ⊆ L(C̃, Ai), and the nonterminals involved in the

productions for Ai do not occur in C̃, it is clear that adding the productions for Ai in Ĉ ′ to C̃ does

not modify L(C̃). By construction, the other productions in Ĉ ′ are in Ĉ, so they are also in C̃.

Therefore, L(Ĉ ′) ⊆ L(C̃). The result follows, since L(Ĉ ′) = L(R̂′) = L(PR′Q). �

6.4.3 Check Construction

Consider the candidate C̃ obtained by merging (A′i, A
′
j) ∈ M in the current language Ĉ, where A′i

corresponds to repetition subexpression R and A′j to R′. Suppose that step i generalizes P [α]repQ

to α1([α2]alt)
∗[α3]rep, and step j generalizes [α′]rep to α′1([α′2]alt)

∗[α′3]rep. Note that ([α2]alt)
∗ is

eventually generalized to the repetition subexpression R in R̂, and ([α′2]alt)
∗ is eventually generalized

to R′ in R̂.

Our algorithm constructs the check γρ′δ, where ρ′ = α′α′ ∈ L(R′) is a residual for R′, and (γ, δ)

is the context for ([α2]alt)
∗. This check satisfies

γρ′δ ∈ L(PR′Q) ⊆ L(C̃),

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 125

where the first inclusion follows by the property (6.3) for contexts described in Section 6.3.3, and

the second inclusion follows from Proposition 6.4.1. A similar argument to Proposition 6.3.4 shows

that this context satisfies property (6.3).

The check γρ′δ tries to ensure that R′ can be substituted for R without overgeneralizing, i.e.,

L(PR′Q) ⊆ L∗. Our algorithm similarly generates a second check trying to ensure that R can be

substituted for R′, i.e., L(P ′RQ) ⊆ L∗.
For example, in Figure 6.2, the context for the repetition subexpression R̂XML = (<a>(h +

i)∗)∗ is (ε, ε), and the residual for Rhi is hihi, so the constructed check is hihi. Similarly, the

context for Rhi is (<a>,) and the residual for R̂XML is <a>hi<a>hi, so the constructed

check is <a><a>hi<a>hi.

6.4.4 Learning Matching Parentheses Grammars

To demonstrate the expressive power of merges, we show that they can represent the following class

of generalized matching parentheses grammars:

Definition 6.4.2 A generalized matching parentheses grammar is a context-free grammar C =

(V,Σ, P, S1), with

V = {S1, ..., Sn, R1, ..., Rn, R
′
1, ..., R

′
n}

and productions

Si → (Ri(Si1 + ...+ Siki)
∗R′i)

∗,

where for 1 ≤ i ≤ n, Ri, R
′
i are regular expressions over Σ.

In other words, Ri and R′i are pairs of matching parentheses, except that they are allowed to

be regular expressions, e.g., XML tags. They may also match the empty string ε, e.g., to permit

unmatched open parentheses. Then, the valid matched parentheses strings matched by the grammars

Si1 , ..., Siki can occur between Ri and R′i. In particular, the XML-like grammar shown in Figure 6.1

is a generalized matching parentheses grammar, where the “parentheses” are <a> and . We

have the following result, which says that phase two of our algorithm at least allows us to learn the

common class of generalized matching parentheses grammars:

Proposition 6.4.3 For any generalized matching parentheses grammar C, there exists a regular

expression R and merges M over R such that letting C ′ be the grammar obtained by transforming

R into a context-free grammar and performing the merges in M , we have L(C) = L(C ′).

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 126

Proof: (sketch) Let C be a generalized matching parentheses grammar. Suppose that non-

terminal Si (1 ≤ i ≤ n) corresponds to production

Si → Ri(Si1 + ...+ Siki)
∗R′i.

First, we need to identify a context such that Si can occur in a derivation in C; in particular, we

want to construct a derivation of the form

S0 = Si,1 ⇒ Ri,1Si,2R
′
i,1

⇒ Ri,1Ri,2Si,3R
′
i,2R

′
i,1

⇒ ...

⇒ Ri,1...Ri,hiSiR
′
i,hi ...R

′
i,1.

To do so, we construct a directed graph G with vertices {S1, ..., Sn} and edges Si → Sj whenever

the production for Si has form

Si → Ri(...+ Sj + ...)∗R′i.

In other words, an edge indicates that Sj is contained in a derivation of Si. Then, we can constructed

the desired derivation using a spanning tree rooted at S1, in particular, by examining the path

S1 = Si,1 → ...→ Shi → Si

from S1 to Si in this spanning tree. Note that if no path exists, then Si cannot occur in any

derivation of S1.

Now, for each pair of regular expressions Ri and R′i (1 ≤ i ≤ n), let αi ∈ L(RiR
′
i) ⊆ L(C, Si).

Then, let

Xi = Ri,1...Ri,hiYiR
′
i,hi ...R

′
i,1

Yi = (Ri(α
∗
i1 + ...+ α∗iki

)R′i)
∗.

Intuitively, Xi is constructed according to the derivation of S1 containing Si, and Yi is constructed

using the production for Si. In paricular, by construction, L(Xi) ⊆ L(C).

Consider the following regular expression:

X = X1 + ...+Xn

M = {(Yi, α∗jk) | i = jk}.

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 127

We claim that translating X and M into a context-free grammar yields a grammar C ′ such

that L(C) = L(C ′). First, we show that each production in C is also in C ′, which implies that

L(C) ⊆ L(C ′). In particular, note that the translation algorithm introduces exactly one nonterminal

for each Yi, since two repetition nodes Yi and Yj are never merged together, and every other repetition

node in X is merged with a Yi node. Let S′i be the nonterminal introduced for Yi; since each αij is

merged with Yij , the production added to C ′ is

S′i → (Ri(S
′
i1 + ...+ S′iki

)∗R′i)
∗,

which is equivalent to the production for Si in C.

Next, we show that L(X) ⊆ L(C). First, note that by construction, L(Xi) ⊆ L(C) for each

1 ≤ i ≤ n, so L(X) ⊆ L(C). Second, applying each merge in M does not affect this invariant, since

Yi and α∗jk can both be replaced with Si = Sjk . Therefore, L(C) = L(C ′). �

6.4.5 Computational Complexity

The complexity of phase two is O(n4), where n is the length of the seed input αin, since each pair

of repetition subexpressions is a merge candidate, and as shown in Section 6.3.4, there are at most

O(n2) repetition candidates. Therefore, the overall complexity is O(n4).

6.5 Extensions

In this section, we discuss two extensions to our algorithm.

6.5.1 Multiple Seed Inputs

Given multiple seed inputs Ein = {α1, ..., αn}, our algorithm first applies phase one separately to each

αi to synthesize a corresponding regular expression R̂i. Then, it combines these into a single regular

expression R̂ = R̂1 + ... + R̂n and applies phase two to R̂. Repetition subexpressions in different

components R̂i of R̂ may be merged. A useful optimization is to construct R̂ incrementally—if we

have αi ∈ L(R̂1 + ...+ R̂i−1), then αi can be skipped.

6.5.2 Character Generalization

After phase one, we include a character generalization phase that generalizes terminals in the syn-

thesized regular expression R̂. At each generalization step, the algorithm selects a terminal string

α = σ1...σk in R̂, i.e., R̂ = PαQ, and a terminal σi in α, and a different terminal σ ∈ Σ such that

σ 6= σi, and considers two candidates. First, R̃ = Pσ1...σi−1(σ + σi)σi+1...σkQ replaces σi with

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 128

(σi + σ). Second, the current language R̂. Each such generalization is considered exactly once in

this phase.

For the first candidate, we construct residual ρ = σ. Every terminal string α in R̂ was added

by generalizing [α′rep] to α1([α2]alt)
∗[α3]rep, where α = α1. Supposing that the context for [α′rep] is

(γ, δ), we construct context (γσ1...σi−1, σi+1...σkα3δ). The generated checks are γρδ.

For example, in the regular expression R̂XML output by phase one in Figure 6.2, our algorithm

considers generalizing each terminal in <a>, h, i, and to every (different) terminal σ ∈ Σ.

Generalizing < to a is ruled out by the check aa>hi. Alternatively, h is generalized to a since

the generated checks <a>ai and <a>a pass. Eventually, R̂XML generalizes to

R̂′XML = (<a>((a + ...+ z) + (a + ...+ z))∗)∗,

which phase two generalizes to the grammar Ĉ ′XML:{
A→ (<a>A)∗,

A→ ((a + ...+ z) + (a + ...+ z))∗

}
.

In particular, L(Ĉ ′XML) = L(CXML).

6.6 Discussion

Phases of Glade. We have described Glade as proceeding in three phases, but the distinction is

primarily for purposes of clarity. More precisely, the character generalization phase can equivalently

be performed at any time. Phase two (the merging phase) depends on phase one to identify candidate

repetition subexpressions to merge, but these phases could be interleaved if desired.

Limitations. The greedy search strategy is necessary for Glade to efficiently search the space of

languages. However, the cost of greediness is that suboptimal grammars may be synthesized (i.e.,

only generating a subset of the target language), even if all selected candidates are precise. For

example, consider extending the XML grammar shown in Figure 6.1 with the production

AXML → <a/>.

Given the seed input

αin = <a><a/>,

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 129

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

url grep lisp xml

F1
-s
co
re

0

50

100

150

200

250

300

url grep lisp xml

tim
e (

se
c)

0

10

20

30

40

50

60

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

5 15 25 35 45

tim
e (

s)

pr
ec

is
io

n/
re

ca
ll

seed inputs

(a) (b) (c)

Figure 6.4: We show (a) the F1 score, and (b) the running time of L-Star (white), RPNI (light grey),
Glade omitting phase two (dark grey), and Glade (black) for each of the four test grammars C.
The algorithms are trained on 50 random samples from the target language L∗ = L(C). In (c), for
the XML grammar, we show how the precision (solid line), recall (dashed line), and running time
(dotted line) of Glade vary with the number of seed inputs |Ein| (between 0 and 50). The y-axis
for precision and recall is on the left-hand side, whereas the y-axis for the running time (in seconds)
is on the right-hand side.

phase one of Glade synthesizes the regular expression

(<a(><a/)∗>)∗,

which is a valid subset of LXML. However, in phase two of Glade, the two repetition nodes

(><a/)∗ and (<a(><a/)∗>)∗

cannot be merged, since the check ><a/ is invalid. Ideally, Glade would instead synthesize the

regular expression

(<a>(<a/>)∗)∗,

in phase one, in which case the two repetition nodes

(<a/>)∗ and (<a>(<a/>)∗)∗

are successfully merged in phase two. Glade fails to do so because of the greedy nature of phase

one. If Glade is instead provided with the seed inputs

{<a/>, <a>hi},

then it would successfully recover the target language.

Intuitively, the greedy strategy employed by Glade works best when the target language has

fewer nondeterministic constructs (as is the case with many program input languages in practice, e.g.,

to ensure efficient parsing). Such grammars are less likely to have multiple incompatible candidates

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 130

at each generalization step, ensuring that Glade rarely makes suboptimal choices.

6.7 Evaluation

We implement our grammar synthesis algorithm in a tool called Glade, which synthesizes a context-

free grammar Ĉ given an oracle O and seed inputs Ein ⊆ L∗. In our first experiment, we compare

Glade to widely studied language inference algorithms, and in our second experiment, we evaluate

the ability of Glade to learn useful approximations of real program input grammars for a fuzzing

client. We note that the only grammar used to guide the design our algorithm is the XML grammar,

and no other grammar was used for this purpose. Glade is implemented in Java, and all experiments

are run on a 2.5 GHz Intel Core i7 CPU.

6.7.1 Sampling Context-Free Grammars

We describe how we randomly sample a string α from a context-free grammar C. The ability

to sample implicitly defines a probability distribution PL(C) over L(C), which we use to measure

precision and recall as in Definition 6.1.1. We also use random samples in our grammar-based fuzzer

in Section 6.7.3. To describe our approach, we more generally describe how to sample α ∼ PL(C,A)

(which is the language of strings that can be derived from nonterminal A using productions in C). To

do so, we convert the context-free grammar C = (V,Σ, P, S) to a probabilistic context-free grammar.

For each nonterminal A ∈ V , we construct a discrete distribution DA of size |PA| (where PA ⊆ P is

the set of productions in C for A). Then, we randomly sample α ∼ PL(C,A) as follows:

• Randomly sample production (A→ A1...Ak) ∼ DA.

• If Ai is a nonterminal, recursively sample αi ∼ PL(C,Ai); otherwise, if Ai is a terminal, let

αi = Ai.

• Return α = α1...αk.

For simplicity, we choose DA to be uniform.

6.7.2 Comparison to Language Inference

In our first experiment, we show that Glade can synthesize simple input grammars with much better

precision and recall compared to two widely studied language inference algorithms, L-Star [12] and

RPNI [110], both implemented using libalf [24]. We also compare to a variant of Glade with phase

two omitted, which restricts Glade to learning regular languages, which shows that the benefit of

Glade is not just its ability to synthesize non-regular properties.

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 131

Grammar Target Language L∗ Synthesized Grammar L̂

URL A → http(ε + s)://(ε + www.)[...]∗.[...]∗
A → http://B∗.C∗ + https://B∗.C∗

+http://www.B∗.C∗ + https://www.B∗.C∗
B → [...]∗
C → [...]∗

Grep A → ([...] + \(A\))∗ A → ([...]∗ + ((\((A∗)∗\)∗))∗)∗

Lisp A → ([...][...]∗(∗([...][...]∗ + A))∗) A → (([...]∗[...]((∗ A)∗ ∗)∗)∗[...]∗[...])

XML A → <a(∗[...][...]∗="[...]∗")∗>(A + [...])∗
A → <a(∗ [...]∗[...]="[...]∗")∗B∗>[...]∗
B → >[...]∗<a(∗ [...]∗[...]="[...]∗")∗B∗>[...]∗</a

+>[...]∗<a>[...]∗</a

Figure 6.5: Examples of context-free grammars that are synthesized by Glade for the given target
languages. The symbol denotes a space. For clarity, character ranges with large numbers of
characters are denoted by [...].

Grammars. We manually wrote four grammars encoding valid inputs for various programs:

• A regular expression for matching URLs [138].

• A grammar for the regular expression accepted as input by GNU Grep [60]

• A grammar for a simple Lisp parser [109], including support for quoted strings and comments.

• A grammar for XML parsers [150], including all XML constructs (attributes, comments,

CDATA sections, etc.), except that only a fixed number of tags are included (to ensure that

the grammar is context-free).

Methods. For each grammar C, we sampled 50 seed inputs Ein ⊆ L∗ = L(C) using the technique

in Section 6.7.1, and implemented an oracle O for L∗. Then, we use each algorithm to learn L∗

from Ein and O. Since the algorithms sometimes cannot scale to all 50 inputs, we incrementally give

the seed inputs to the algorithms until they time out (after 300 seconds), and use the last language

successfully learned without timing out.

L-Star. Angluin’s L-Star algorithm learns a regular language R̂ approximating the target lan-

guage L∗. It takes as input a membership oracle and an equivalence oracle OE ; given a candidate

regular language R̂, OE accepts R̂ if L(R̂) = L∗, and returns a counterexample otherwise. In our

experiments, there is no way to check equivalence with the target language (i.e., the program input

language). Instead, we use the variant in [12] where the equivalence oracle OE is implemented by

randomly sampling strings to search for counter-examples; we accept R̂ if none are found after 50

samples.

RPNI. RPNI learns a regular language R̂ given both positive examples Ein and negative examples

E−in. As negative examples, we sample 50 random strings not in L∗.

Results. We estimate the precision of Ĉ by
|Eprec∩L∗|
|Eprec| , where Eprec consists of 1000 random samples

from L(Ĉ), and estimate the recall of Ĉ by |Erec∩L(Ĉ)|
|Erec| , where Erec consists of 1000 random samples

from L∗, and report the F1-score 2·precision·recall
precision+recall . The F1 score is a standard metric combining

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 132

precision and recall—achieving high F1 score requires both high precision and high recall. We also

report the running time of each algorithm, which is timed out at 300 seconds. We average all results

over five runs. Figure 6.4 shows (a) the F1-score and (b) the running time of each algorithm; (c)

shows how the precision, recall, and running time of Glade vary with the number of samples in

Ein.

Performance of Glade. With just the 50 given training examples, Glade was able to learn

each grammar with an F1-score of nearly 1.0, meaning that both precision and recall were nearly

100%. These results strongly suggest that Glade learns most of the true structure of L∗. Finally,

as can be seen from Figure 6.4 (c), Glade performs well even with few samples, and its running

time likewise scales well with the number of samples. The performance of Glade with phase two

omitted (i.e., P1 in Figure 6.4) continues to substantially outperform L-Star and RPNI.

Phases of Glade. As can be seen in Figure 6.4 (a), Glade consistently performs 5-10% better

than P1—i.e., the majority of the improvement of Glade over existing algorithms is due to the

active learning strategy, and the remainder is due to the ability to induce context-free grammars.

Furthermore, a consequence of our optimization when using multiple inputs (see Section 6.5.1),

Glade is actually faster than P1—because Glade generalizes better than P1, it uses fewer samples

in Ein, thereby reducing the running time. We performed the same experiment using Glade with

the character generalization phase removed (but including both phases one and two). This variant

of Glade consistently performed similar but slightly worse than P1 both in terms of F1-score and

running time, so we omit results.

Comparison to L-Star and RPNI. L-Star performs well for the Grep grammar, but essentially

fails to learn the other grammars, achieving either very small precision or very small recall. RPNI

performs even worse, failing to learn any of the languages. L-Star guarantees exact learning only

when a true equivalence oracle is available. Similarly, RPNI has an “in the limit” learning guarantee,

i.e., for any enumeration of all strings α1, α2, ... ∈ Σ∗, it eventually learns the correct language. Both

of these learning guarantees require following examples:

• Positive: Exercise all transitions in the minimal DFA.

• Negative: Reject all incorrect generalizations.

These examples are assumed to be provided either by the equivalence oracle (for L-Star) or in the

given examples Ein and E−in (for RPNI).

However, in our setting, the equivalence oracle is unavailable to the L-Star algorithm and must be

approximated using random sampling, so its theoretical guarantees may not hold. Indeed, random

sampling rarely provides the needed examples—for example, in most runs of L-Star, at most two

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 133

Program Lines of Code Lines in Ein Time (min.)

sed 2K 3 0.25
flex 6K 15 1.83
grep 12K 4 0.17
bison 13K 14 4.91
xml 123K 7 2.30
ruby 120K 80 229.00

python 128K 267 269.00
javascript 156K 118 113.00

Figure 6.6: For each program, we show lines of program code, the lines of seed inputs Ein, and
running time of Glade.

calls to the equivalence oracle found counterexamples. Similarly, for RPNI, the given examples are

typically incomplete, so its theoretical guarantees likewise may not hold.

Furthermore, because these algorithms are designed to learn when the guarantees hold, they

do not provide any mechanisms for recovering from failure of the assumptions, and instead fail

dramatically. For example, if a terminal appears in L∗ but not in any seed input in Ein, then

the language learned by RPNI does not contain any strings with this terminal. In contrast, Glade

incorporates generalization steps that enable it to generalize beyond behaviors in the given examples,

and its carefully selected checks often provide the counterexamples needed to avoid overgeneralizing.

Additionally, while polynomial, the running times of L-Star and RPNI are very long. The long

running time of L-Star is not because L∗ is non-regular, instead, we observe that L-Star algorithm

issues a large number of membership queries on each of its iterations. In our setting, L-Star often

could not even learn a four state automaton.

Examples. Figure 6.5 shows examples of grammars synthesized by Glade for the target language

shown and a small set of representative seed inputs. The target languages are substantially simplified

fragments of the grammars used in this experiment (to ensure clarity); the synthesized grammars

are correspondingly simplified.

The structure of a synthesized grammar sometimes differs from the structure of the grammar

defining the target language, even if they generate the same language. Such discrepancies occur

because Glade obtains no information about the internal representation of the target language.

For example, consider the synthesized XML grammar. In a more natural grammar, the character

> at the front of the production for B would instead appear in the production for A, and the

corresponding > in the production for A would instead appear at the end of the production for B;

however, this modification does not affect the generated language.

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 134

0

1

2

3

4

5

6

7

8

sed flex grep bison xml ruby python js

va
lid

 n
or

m
al

iz
ed

 in
cr

em
en

ta
l c

ov
er

ag
e

0

2

4

6

8

10

12

14

16

18

grep xml ruby python js

va
lid

 n
or

m
al

iz
ed

 in
cr

em
en

ta
l c

ov
er

ag
e

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 10000 20000 30000 40000 50000

va
lid

 n
or

m
al

iz
ed

 in
cr

em
en

ta
l c

ov
er

ag
e

samples

(a) (b) (c)

Figure 6.7: In (a) we show the normalized incremental coverage restricted to valid samples for the
näıve fuzzer (black dotted line), afl-fuzz (white), and Glade (black). In (b), we show the same metric
for the näıve fuzzer (black dotted line) and Glade (black); grey represents either a handwritten
fuzzer (for Grep and the XML parser) or a large test suite (for Python, Ruby, and Javascript). In
(c), we compare the valid normalized incremental coverage of Glade (solid) to the näıve fuzzer
(dashed) and afl-fuzz (dotted) as the number of seed inputs varies (all values are normalized by the
final coverage of the näıve fuzzer).

6.7.3 Comparison to Fuzzers

For fuzzing applications such as differential testing [158], it is useful to obtain a large number of

grammatically valid samples that exercise different functionalities of the given program. Glade is

perfectly suited to automatically generating such inputs. Given blackbox access O to a program

with input language L∗ and seed inputs Ein ⊆ L∗, Glade automatically synthesizes a context-free

grammar Ĉ approximating L∗. Then, Glade uses a standard grammar-based fuzzer that takes

as input the synthesized grammar Ĉ and the seed inputs Ein, and randomly generates new inputs

α ∈ L(Ĉ) that can be used to test the program; we give details below.

In our application to fuzzing, it is acceptable for Ĉ to be an approximation—high precision

suffices to ensure that most generated inputs are valid, and high recall ensures that most program

behaviors have a chance of being executed.

We compare Glade to two baseline fuzzers (described below) on the task of generating valid

test inputs, and show that Glade consistently performs significantly better.

Grammar-based fuzzer. Glade first synthesizes a context-free grammar Ĉ approximating the

target language L∗ of valid program inputs. Our grammar-based fuzzer, based on standard tech-

niques [75], takes as input the synthesized context-free grammar Ĉ and the seed inputs Ein. To gen-

erate a single random input, our grammar-based fuzzer first uniformly selects a seed input α ∈ Ein

and constructs the parse tree for α according to Ĉ. Second, it performs a series of n modifications

to α, where n is chosen uniformly between 0 and 50. A single modification is performed as follows:

• Randomly choose a node N of the parse tree of α.

• Decompose α = α1α2α3 where α2 is represented by the subtree with root N .

• Letting A be the nonterminal labeling N , randomly sample α′ ∼ PL(C,A), and return α1α
′α3.

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 135

Afl-fuzz. Our first baseline fuzzer is a production fuzzer developed at Google [159], and is widely

used due to its minimal setup requirements and state-of-the-art quality. It systematically modifies

the input example (e.g., bit flips, copies, deletions, etc.). Unlike Glade, afl-fuzz requires that the

program be instrumented to obtain branch coverage for each execution—it uses this information to

identify when an input α causes the program to execute new paths. It adds such inputs α to a

worklist, and iteratively applies its fuzzing strategy to each input in the worklist. This monitoring

allows it to incrementally discover deeper code paths. To run afl-fuzz on multiple inputs Ein, we

fuzz each input α ∈ Ein in a round-robin fashion.

Näıve fuzzer. We implement a second baseline fuzzer, which is not grammar aware. It randomly

selects a seed input α ∈ Ein and performs n random modifications to α, where n is chosen randomly

between 0 and 50. A single modification of α consists of randomly choosing an index i in α = σ1...σk,

and either deleting the terminal σi or inserting a randomly chosen terminal σ ∈ Σ before σi.

Programs. We set up each fuzzer on eight programs that include front-ends of language inter-

preters (Python, Ruby, and Mozilla’s Javascript engine SpiderMonkey), Unix utilities that take

structured inputs (Grep, Sed, Flex, and Bison), and an XML parser. We were unable to setup

afl-fuzz for Javascript, showing that even production fuzzers can have setup difficulties when they

require code instrumentation. For interpreters (e.g., the Python interpreter), we focus on fuzzing

just the parser (e.g., the Python parser) since the input grammar of the interpreter contains ele-

ments such as variable and function names, use-before-define errors, etc., that are out of scope for

our grammar synthesis algorithm. To fuzz the parser, we “wrap” the input inside a conditional

statement, which ensures that the input is never executed. For example, we convert the Python

input (print ‘hi’) to the input (if False: print ‘hi’). Then, syntactically incorrect inputs

are rejected, but inputs that are syntactically correct but possibly have runtime errors are accepted.

Seed inputs. To fuzz a program, we use a small number of seed inputs Ein ⊆ L∗ that cap-

ture interesting semantics of the target language L∗. These seed inputs were obtained either from

documentation and tutorials or from small test suites that came with the program.

Methods. Coverage is difficult to interpret because a large amount of code in each program is

unreachable due to configuration, test code that cannot be executed, and other unused functionality.

Therefore, we use a relative measure of coverage to evaluate performance. As before, all results are

averaged over five runs.

For each program and fuzzer, we generate 50,000 samples E ⊆ Σ∗ by running the fuzzer on the

program. First, we restrict E to valid inputs, i.e., E ∩ L∗. In particular, the valid coverage of E,

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 136

computed using gcov, is

#(lines covered by E ∩ L∗)
#(lines coverable)

.

Next, the valid incremental coverage of E is the percentage of code covered by valid inputs in E,

ignoring those already covered by the seed inputs Ein (thereby measuring the ability to discover

inputs that execute new code paths):

#(lines covered by E ∩ L∗ but not covered by Ein)

#(lines coverable but not covered by Ein)
.

Finally, to enable comparison across programs, the valid normalized incremental coverage normalizes

the incremental coverage by a baseline Ebase:

valid incremental coverage of E

valid incremental coverage of Ebase
.

In particular, we use samples from the näıve fuzzer as Ebase.

Results. In Figure 6.6, we show various statistics for the eight programs we use and for the

corresponding seed inputs Ein. We also show the time Glade needed to synthesize an approximation

of the program input grammar. In Figure 6.7 (a), we show the valid normalized incremental coverages

of the various fuzzers. In (b), for five of our programs, we show a proxy for the “upper bound” in

coverage that is achievable—for Grep and the XML parser, we show the valid normalized incremental

coverage achieved by our handwritten grammars, and for Python, Ruby, and Javascript, we show the

valid normalized incremental coverage of a large test suite (each more than 100,000 lines of code).

In (c), we show how coverage varies with the number of samples for Python.

Comparison to baselines. As can be seen from Figure 6.7 (a), Glade (black) is effective at

generating valid inputs that exercise new code paths, significantly outperforming both the näıve

fuzzer (black dotted line) and afl-fuzz (white) except on Grep (where it only performs slightly better)

and Sed (where it actually performs slightly worse). Since these programs have a relatively simple

input format, using a grammar-based fuzzer is understandably less effective. For the remaining six

programs, our grammar-based fuzzer performs between 1.3 and 7 times better than the näıve fuzzer.

Comparison to proxy for the upper bound. Figure 6.7 (b) compares Glade (black bars) to

a proxy for the upper bound of coverage, i.e., handwritten grammars or large test suites (grey bars).

For Grep, both Glade and the näıve fuzzer achieve coverage close to the handwritten grammar.

For the XML parser, Glade significantly outperforms the näıve fuzzer, achieving coverage close

to the handwritten grammar. For Python and Javascript, Glade is able to recover a significantly

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 137

<a>

\%

_">

C

<a _="#">

">q(+_[s:?>^0+

<a _eD="{@">

:"<a>. q1+%

y<!-- y-->y

_<a>xy

xy<?q xy?>xy<?xV <?By_![?>x

Figure 6.8: An example of a valid sample from the grammar synthesized by Glade for the XML
parser. For clarity, the string has been formatted with additional whitespace.

larger fraction of the upper bound compared to the näıve fuzzer. However, a sizable gap remains,

which is expected since the test suites are very large (each having at least 100,000 lines of code) and

are specifically designed to test the respective programs. We provided fewer seed inputs for Ruby,

which explains why Glade outperformed the näıve fuzzer by a smaller amount (about 30%).

Coverage over time. Figure 6.7 (c) shows how the valid normalized incremental coverage varies

with the number of samples. Glade (solid) quickly finds a number of high-coverage inputs that the

other fuzzers cannot, and continues to find more inputs that execute new lines of code.

Examples. The synthesized grammars are too large to show. Instead, as an example, a fragment

of the synthesized XML grammar is

A→ <a ∗ [...]∗[...]="[...]∗"B∗>[...]∗

B → >[...]∗<a ∗ [...]∗[...]="[...]∗"B∗>[...]∗</a

+ >[...]∗<a>[...]∗</a.

This grammar is identical to the synthesized XML grammar shown in Figure 6.5, except that at-

tributes cannot be repeated. In particular, Glade learns that attributes cannot be repeated since

XML semantics requires that different attributes have different names—for example, the input string

 is invalid. Therefore, repeating the attribute would lead to overgeneralization,

so this construct is rejected by Glade. Indeed, this constraint on attribute names is not a context-

free property, so as expected, Glade learns a subset of the XML input language.

Figure 6.8 shows an example of a valid sample from the grammar synthesized by Glade for the

CHAPTER 6. SYNTHESIZING PROGRAM INPUT GRAMMARS 138

XML parser. As can be seen, the sample contains many XML constructs, including nested tags,

attributes, comments, and processing instructions.

Synthesis. Finally, our approach uses machinery related to some of the recent work on program-

ming by example—in particular, a systematic search guided by a meta-grammar. This approach has

been used to synthesize string [68], number [132], and table [70] transformations (and combinations

thereof [113, 114]), as well as recursive programs [53, 6] and parsers [88]. Unlike these approaches,

our approach exploits an oracle to reject invalid candidates.

6.8 Conclusion

We have presented Glade, the first practical algorithm for inferring program input grammars, and

demonstrated its value in an application to fuzz testing. We believe Glade may be valuable beyond

fuzzing, e.g., to generate whitelists of inputs or to reverse engineer input formats.

Chapter 7

Related Work

7.1 Specification Inference for Static Analysis

Interactive specification inference. There has been previous work on interacting with a human

analyst to infer specifications [43, 161]. [43] proposes an algorithm for inferring program invariantes

by interacting with the analyst. In particular, they use abductive inference to infer a minimal-sized

invariant that is sufficient to verify a postcondition; they propose this invariant to the analyst, who

can either accept it (in which case the program is verified) or reject it (in which case the process is

repeated).

The work closest to our own is [161], which uses abductive inference to interactively infer speci-

fications for library code [161]. There are several differences in the two approaches. First, we handle

the general class of CFL reachability problems, whereas [161] addresses standard graph reachability

problems. Second, abductive inference is a very general tool and solving abductive inference prob-

lems is NP-hard. Our algorithm, which is tailored to specification inference, runs in polynomial

time. As a result, our system appears to scale considerably better, and we are able to conduct a

much larger experiment on many more apps than [161].

There has also been work on interacting with the analyst to refine the results of a static analy-

sis [98]. In particular, the analyst can mark certain outputs of the static analysis as false positives.

Then, they use a probabilistic model equivalent to a Markov logic network to generalize this data to

remove additional false positives. Unlike our approach, they do not guarantee soundness at the end

of the interactive process, and they furthermore do not generalize the learned information beyond a

single program.

Inferring specifications from executions. There has been working on mining executions for

specifications [9, 107, 8, 157, 128, 104, 108, 57, 126, 162, 39, 74, 112, 163, 73, 79]. These techniques

have been used to infer both kinds of specifications described in Chapter 2, namely, (i) specifications

139

CHAPTER 7. RELATED WORK 140

that describe desired behavior and (ii) specifications that describe behavior assumed to hold.

For the first kind of specifications, [9, 8] study the problem of inferring specifications that should

hold for clients of an API interface, such as “the exception E should not be raised”. These specifi-

cations take the form of state machines, e.g., a file should be opened and then closed. [157] extends

these ideas to the case where the execution traces are imperfect and may exhibit bugs.

For the second kind of specifications, [107] leverages the idea that statically checking the correct-

ness of specifications is easier than devising them to begin with. For example, in general, checking

the correctness of loop invariants is decideable, but inferring a loop invariant is undecideable. Thus,

they first use test cases to exercise the code and use data mining techniques to find specifications (in

particular, program invariants) that are consistent with the behaviors observed during execution.

Then, they use a static checker to check which specifications are correct. There has been work

extending these ideas by using machine learning to infer invariants [129, 127, 126, 112]; these ap-

proaches can additionally use counterexamples provided by the static checker to refine the inferred

specifications. These ideas have also been applied to learn other kinds of specifications, including

refinement types [162] and shape invariants [163]. Similar approaches have also been used to prove

program termination properties [108].

The work most closely related to our own uses dynamic executions to infer specifications that sum-

marizes properties of library functions, including information flow specifications [39], specifications

for x86 instructions [73], specifications for callback control flow [79], and even full implementations

of the library functions [74]. To the best of our knowledge, we are the first to study the use of active

learning strategies to infer specifications in the blackbox setting, as well as the first to incorporate

ideas from program synthesis by examples to infer program properties.

Finally, [65] uses must-facts extracted from guided dynamic executions to avoid spending effort

trying to discharge true positives. In contrast, we use must-facts extracted from tests as specifications

for may-facts—i.e., we enforce that may-facts not observed in tests are invalid using instrumentation,

and use abductive inference to minimize the amount of instrumentation required.

Inferring specifications from static information. There has been work on mining specifica-

tions from static information using machine learning, both of the first kind of specification described

above [86, 116, 131, 95, 20, 117] and of the second [44, 160, 5, 22]. For the first kind of specifications,

there has been work on using probabilistic graphical models to mine interface specifications [86],

sources, sinks, and sanitizers for taint analysis [95], and type-state specifications [20], and type

annotations [117]. Finally, [5] uses abductive inference to infer function preconditions.

For the second kind of specifications, there has been work on using abductive inference to infer

program invariants [44] and abstractions [160], and on using extensions of decision tree learning

algorithms to infer transfer functions for static analysis [22]. A approach related to abductive

inference has been proposed for choosing sanitizer placement [94].

CHAPTER 7. RELATED WORK 141

7.2 Program Analysis

Dynamic safety. Instrumenting programs to ensure safety properties is well-studied, for example

to enforce type safety [72, 105] and to ensure control-flow integrity [1]. Our work applies similar

principles to ensure the integrity of information flows, which is more challenging because information

flows are global properties. In [23], instrumentation is guided by testing: only reflective calls observed

during execution are permitted. Their instrumentation issues warnings to the user for potential

unsoundness in the static analysis. Finally, there has been work on modifying programs to coerce

potentially problematic inputs into acceptable forms manually specified by the user [120, 121].

Dynamic taint tracking has been applied to produce programs that terminate execution upon

violation of the security policy, for example, for Android apps [46] and for a web browser [41]. To the

best of our knowledge, existing approaches to enforce information flow policies require instrumenting

the entire program (or modifying the runtime environment). In contrast, our approach uses very

minimal instrumentation, and often places that instrumentation in unreachable code where it will

have zero runtime cost. Other approaches for restricting app behaviors have been proposed, for

example [122], but the policies enforced are local (e.g., disallowing calls to certain library methods).

Callgraph analysis. There has been prior work on generating sound callgraphs for library code

without analyzing the library code [7], which is related to our problem of inferring reachability

specifications. Their work constructs a placeholder library that exhibits every possible behavior

that can affect the call graph. Our technique for inferring reachability specifications, in addition to

being more general, actually proposes library specifications and allows an auditor to interactively

refine analysis results. Similar work has inferred callback specifications by analyzing the code [34];

however, this approach exhibits both false positives and false negatives.

CFL reachability. A large number of program analyses have been expressed as CFL reachability

problems, for example points-to analysis [137, 136], various interprocedural analyses [119, 118], and

type qualifier inference [67]. Our work makes these techniques more applicable for whole-program

analysis by providing a practical and sound approach to dealing with missing or hard-to-analyze

portions of the program. Our work makes use of ideas for combining CFL reachability with additional

regular language properties such as [84].

The set constraints formalism, which has very efficient and scalable solutions [85], can also encode

most popular CFL reachability problems [99, 83]. Because of the formulation as constraints, in this

formalism it is possible to analyze partial programs or modules separately and then combine the

solutions [85]. Andersen-style flow-insensitive points-to analysis has been one of the most studied

applications for set constraints [50, 141, 71, 4, 84]. However, none of these works address the issue

of analyzing missing code.

CHAPTER 7. RELATED WORK 142

Applications to security. Work on information flow analysis for Android includes SCanDroid [55],

which statically tracks taint flows between applications, TaintDroid [46], which is a dynamic sys-

tem that performs real time monitoring, and FlowDroid [14], which uses static analysis to find

information leaks. Information flow properties have been used to find real examples of Android mal-

ware [51, 47, 52]. Static analysis has also been applied to finding vulnerabilities in web applications

[96, 155, 146, 135].

The approach in [47] shares our goal of moving the burden of verification to the (possibly ad-

versarial) developer; they require the developer to annotate the source code with information types

to guide the auditing process. Compared to [47], our approach does not require source code (com-

mercial app stores typically do not have access to source code) and leverages existing test suites to

produce specifications rather than requiring annotations specific to information flow.

Static points-to analysis. There is a large literature on static points-to analysis [130, 11, 153,

50, 100], including formulations based on CFL reachability [118, 137]. Recent work has focused on

improving context-sensitivity [152, 136, 90, 160, 133]. Using specifications in conjunction with these

analyses can improve precision, scalability, and even soundness.

One alternative is to use demand driven static analyses to avoid analyzing the entire library

code [137]; however, these approaches are not designed to work with missing code, and furthermore

do not provide much benefit for demanding clients that require analyzing a substantial fraction of

the library code.

7.3 Language Learning

Mining input formats. The work most closely related to our own is [76], which uses dynamic

taint analysis to trace the flow of each input character, and uses this information to reconstruct the

input grammar. More broadly, there has been work on reverse engineering network protocol message

formats [29, 154, 91, 92], though these papers focus on learning and understanding the structure of

given inputs rather than learning a grammar; for example, [29] looks for variables representing the

internal parser state to determine the protocol, and [91] constructs syntax trees for given inputs.

All of these techniques rely on static and dynamic analysis methods intended to reverse engineer

parsers of specific designs.

In contrast, our approach is fully blackbox and depends only on the language accepted by the

program, not the specific design of the program’s parser. In addition, our approach can be used

when the program cannot be instrumented, for instance, to learn the input format for a remote

program. Finally, the programs we consider have more complex input formats than most previously

examined programs.

CHAPTER 7. RELATED WORK 143

Learning theory. There has been a line of work in learning theory (often referred to as grammar

induction or grammar inference) aiming to learn a grammar from either examples or oracles (or

both); see [42] for a survey. The most well known algorithms are L-Star [12] and RPNI [110]. These

algorithms have a number of applications including model checking [58], model-assisted fuzzing [35,

36], verification [148], and specification inference [25]. To the best of our knowledge, our work is the

first to focus on the application of learning common program input languages from positive examples

and membership oracles.

Additionally, [87] discusses approaches to learning context-free grammars, including from positive

examples and a membership oracle. As they discuss, these algorithms are often either slow [134] or

do not generalize well [81].

Bayesian language learning. A related line of work aims to learn probabilistic grammars from

examples alone [140, 139]. These algorithms study a different setting than ours, in particular,

they are given access to positive (and sometimes negative) examples, but do not assume access to

a membership oracle. These algorithms typically identify frequently occurring patterns that are

likely to correspond to nonterminals in the grammar. More precisely, these algorithms are typically

Bayesian learning algorithms that operate by putting a prior over the space of grammars, and then

computing the most likely grammar conditioned on the given examples. To achieve statistically

significant results, these algorithms require a large number of input examples.

In contrast, our algorithm leverages access to the membership oracle, enabling it to use actively

generated examples to determine which patterns are actually in the grammar. Therefore, our algo-

rithm works well even when only a few seed inputs are available. While it may be possible to modify

existing Bayesian language learning algorithms to fit this setting, to the best of our knowledge, no

such active learning variants of these algorithms have been proposed.

Additionally, whereas this literature aims to learn a probabilistic grammar, our grammar syn-

thesis algorithm learns a deterministic grammar. The difference is how we measure approximation

quality—in particular, even though our definitions of precision and recall require distributions over

L∗ and L̂, they still measure the approximation quality of L̂ deterministically, i.e., the predicates

α ∈ L∗ and α ∈ L̂ are binary rather than probabilistic.

Blackbox fuzzing. Numerous approaches to automated test generation have been proposed; we

refer to [10] for a survey. Approaches to fuzzing (i.e., random test case generation) broadly fall into

two categories: whitebox (i.e., statically inspect the program to guide test generation) and blackbox

(i.e., rely only on concrete program executions). Blackbox fuzzing has been used to test software for

several decades; for example, [124] randomly tests COBOL compilers and [115] generated random

inputs to test parsers. An early application of blackbox fuzzing to find bugs in real-world programs

was [102], who executed Unix utilities on random byte sequences to discover crashing inputs. Sub-

sequently, there have been many approaches using blackbox fuzzing with dynamic analysis to find

CHAPTER 7. RELATED WORK 144

bugs and security vulnerabilities [54, 143, 101]; see [144] for a survey. Finally, afl-fuzz [159] is almost

blackbox, requiring only simple instrumentation to guide the search.

Whitebox fuzzing. Approaches to whitebox fuzzing [64, 13] typically build on dynamic symbolic

execution [62, 125, 31, 30, 32]; given a concrete input example, these approaches use a combination

of symbolic execution and dynamic execution to construct a constraint system whose solutions are

inputs that execute new program branches compared to the given input. It can be challenging to

scale these approaches to large programs [56]. Therefore, approaches relying on more imprecise

input have been studied; for example, taint analysis [56], or extracting specific information such as

a checksum computation [151].

Grammar-based fuzzing. Many fuzzing approaches leverage a user-defined grammar to generate

valid inputs, which can greatly increase coverage. For example, blackbox fuzzing has been combined

with manually written grammars to test compilers [93, 158]; see [26] for a survey. Such techniques

have also been used to fuzz interpreters; for example, [75] develops a framework for grammar-based

testing and applies it to find bugs in both Javascript and PHP interpreters.

Grammar-based approaches have also been used in conjunction with whitebox techniques. For

example, [61] fuzzes a just-in-time compiler for Javascript using a handwritten Javascript grammar

in conjunction with a technique for solving constraints over grammars, and [97] combines exhaustive

enumeration of valid inputs with symbolic execution techniques to improve coverage. In [144],

Chapter 21 gives a case study developing a grammar for the Adobe Flash file format. Our approach

can complement existing grammar-based fuzzers by automatically generating a grammar.

Finally, there has been some work on inferring grammars for fuzzing [149], but focusing on simple

languages such as compression formats. To the best of our knowledge, our work is the first targeted

at learning complex program input languages that contain recursive structure, e.g., XML, regular

expression formats, and programming language syntax.

Chapter 8

Conclusion

Specification inference is a promising approach to improving the usability of program analysis in

practice. Specifications are crucial for modeling parts of programs that are too difficult for a static

program analysis to handle, such as native code or dynamic language features. By either interacting

with the human analyst or leveraging observations from concrete executions, the algorithms we have

described can infer high quality specifications that can be used by client program analyses to test and

verify programs. In particular, we have proposed a novel algorithm, based on abductive inference,

that interacts with a human analyst to infer specifications, and shown that it quickly converges

to the true specifications. We have extended interactive specification inference to the case when

the analyst is not trusted, by instrumenting the code to enforce responses. In addition, we have

proposed novel algorithms that infer specifications, based on inductive inference, that use active

learning strategies to infer complex hierarchical specifications. These algorithms propose candidate

specifications, and then actively query an oracle to determine which candidates may be correct.

There are two important directions for further research. First, for interactive specification infer-

ence, a key challenge is understanding what kinds of queries can feasibly be answered by a human

analyst. We have focused on simple properties of library functions, which are well documented,

and reachability properties, which are easily known by the developer. More complex static analyses

may have intermediate relations that the human analyst is unable to reason about, making it more

challenging to interactively infer specifications. Second, our algorithms for actively inferring specifi-

cations from executions are both domain specific. We believe that these techniques are much more

generally applicable. An important research direction is devising a general framework for inferring

specifications for blackbox code.

Going forward, the techniques we have developed in this thesis can be extended to infer specifi-

cations for a much wider range of program analyses. We hope that by reducing the cost of writing

specifications, these downstream program analyses will become cost-effective enough to use in a

much wider range of practical applications.

145

Bibliography

[1] Mart́ın Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow integrity. In CCS,

pages 340–353, 2005.

[2] Tobias Achterberg. Scip: solving constraint integer programs. Mathematical Programming

Computation, 1(1):1–41, 2009.

[3] Alex Aiken, Suhabe Bugrara, Isil Dillig, Thomas Dillig, Brian Hackett, and Peter Hawkins.

An overview of the saturn project. In PASTE, pages 43–48, 2007.

[4] Alex Aiken, Jeffrey S Foster, John Kodumal, and Tachio Terauchi. Checking and inferring

local non-aliasing. In PLDI, pages 129–140, 2003.

[5] Aws Albarghouthi, Isil Dillig, and Arie Gurfinkel. Maximal specification synthesis. In POPL,

pages 789–801, 2016.

[6] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive program synthesis. In

CAV, pages 934–950, 2013.

[7] Karim Ali and Ondřej Lhoták. Averroes: Whole-program analysis without the whole program.

In ECOOP, pages 378–400, 2013.

[8] Rajeev Alur, Pavol Černỳ, Parthasarathy Madhusudan, and Wonhong Nam. Synthesis of

interface specifications for java classes. In POPl, pages 98–109, 2005.

[9] Glenn Ammons, Rastislav Bod́ık, and James R Larus. Mining specifications. In POPL, pages

4–16, 2002.

[10] Saswat Anand, Edmund K Burke, Tsong Yueh Chen, John Clark, Myra B Cohen, Wolfgang

Grieskamp, Mark Harman, Mary Jean Harrold, Phil McMinn, et al. An orchestrated survey of

methodologies for automated software test case generation. Journal of Systems and Software,

86(8):1978–2001, 2013.

[11] Lars Ole Andersen. Program analysis and specialization for the C programming language. PhD

thesis, University of Cophenhagen, 1994.

146

BIBLIOGRAPHY 147

[12] Dana Angluin. Learning regular sets from queries and counterexamples. Information and

computation, 75(2):87–106, 1987.

[13] Shay Artzi, Adam Kiezun, Julian Dolby, Frank Tip, Danny Dig, Amit Paradkar, and Michael D

Ernst. Finding bugs in dynamic web applications. In ISSTA, pages 261–272, 2008.

[14] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques

Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid: Precise context,

flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. In PLDI, pages

259–269, 2014.

[15] Nathaniel Ayewah, David Hovemeyer, J David Morgenthaler, John Penix, and William Pugh.

Using static analysis to find bugs. IEEE software, 25(5), 2008.

[16] Thomas Ball and Sriram K Rajamani. The slam project: debugging system software via static

analysis. In POPL, pages 1–3, 2002.

[17] Osbert Bastani, Saswat Anand, and Alex Aiken. Interactively verifying absence of explicit

information flows in android apps. In OOPSLA, pages 299–315, 2015.

[18] Osbert Bastani, Saswat Anand, and Alex Aiken. Specification inference using context-free

language reachability. In POPL, pages 553–566, 2015.

[19] Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. Synthesizing program input

grammars. In PLDI, pages 95–110, 2017.

[20] Nels E Beckman and Aditya V Nori. Probabilistic, modular and scalable inference of typestate

specifications. In PLDI, pages 211–221, 2011.

[21] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles Henri-Gros,

Asya Kamsky, Scott McPeak, and Dawson Engler. A few billion lines of code later: using static

analysis to find bugs in the real world. CACM, 53(2):66–75, 2010.

[22] Pavol Bielik, Veselin Raychev, and Martin Vechev. Learning a static analyzer from data. In

CAV, pages 233–253, 2017.

[23] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Taming reflection:

Aiding static analysis in the presence of reflection and custom class loaders. In ICSE, pages

241–250, 2011.

[24] Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker, Daniel Neider, and

David R Piegdon. libalf: The automata learning framework. In CAV, pages 360–364, 2010.

[25] Matko Botinčan and Domagoj Babić. Sigma*: Symbolic learning of input-output specifica-

tions. In POPL, pages 443–456, 2013.

BIBLIOGRAPHY 148

[26] Abdulazeez S Boujarwah and Kassem Saleh. Compiler test case generation methods: a survey

and assessment. Information and software technology, 39(9):617–625, 1997.

[27] Martin Bravenboer and Yannis Smaragdakis. Exception analysis and points-to analysis: better

together. In ISSTA, pages 1–12, 2009.

[28] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowl-

ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon

Colton. A survey of monte carlo tree search methods. IEEE Transactions on Computational

Intelligence and AI in Games, 4(1):1–43, 2012.

[29] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. Polyglot: Automatic extraction

of protocol message format using dynamic binary analysis. In CCS, pages 317–329, 2007.

[30] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unassisted and automatic

generation of high-coverage tests for complex systems programs. In OSDI, pages 209–224,

2008.

[31] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and Dawson R Engler. Exe:

automatically generating inputs of death. In CCS, pages 322–335, 2006.

[32] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: three decades later.

CACM, 56(2):82–90, 2013.

[33] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter Hooimeijer, Mar-

tino Luca, Peter W O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez.

Moving fast with software verification. NFM, 15:3–11, 2015.

[34] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher Kruegel, Gio-

vanni Vigna, and Yan Chen. Edgeminer: Automatically detecting implicit control flow tran-

sitions through the android framework. In NDSS, 2015.

[35] Chia Yuan Cho, Domagoj Babic, Pongsin Poosankam, Kevin Zhijie Chen, Edward XueJun

Wu, and Dawn Song. Mace: Model-inference-assisted concolic exploration for protocol and

vulnerability discovery. In USENIX Security, pages 139–154, 2011.

[36] Wontae Choi, George Necula, and Koushik Sen. Guided gui testing of android apps with

minimal restart and approximate learning. In OOPSLA, pages 623–640, 2013.

[37] Andy Chou, Benjamin Chelf, Dawson Engler, and Mark Heinrich. Using meta-level compilation

to check flash protocol code. In ASPLOS, pages 59–70, 2000.

[38] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler. An empirical

study of operating systems errors. In SOSP, pages 73–88, 2001.

BIBLIOGRAPHY 149

[39] Lazaro Clapp, Saswat Anand, and Alex Aiken. Modelgen: mining explicit information flow

specifications from concrete executions. In ISSTA, pages 129–140, 2015.

[40] Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent Mauborgne, Antoine Miné, David

Monniaux, and Xavier Rival. The astrée analyzer. In ESOP, 2005.

[41] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens. Flowfox: a web

browser with flexible and precise information flow control. In CCS, pages 748–759, 2012.

[42] Colin De la Higuera. Grammatical inference: learning automata and grammars. Cambridge

University Press, 2010.

[43] Isil Dillig, Thomas Dillig, and Alex Aiken. Automated error diagnosis using abductive infer-

ence. In PLDI, pages 181–192, 2012.

[44] Isil Dillig, Thomas Dillig, Boyang Li, and Ken McMillan. Inductive invariant generation via

abductive inference. In OOPSLA, pages 443–456, 2013.

[45] ECMA International. Standard ECMA-262: ECMA 2015 Language Specification. 6 edition,

June 2015.

[46] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P

Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. Taintdroid: an information-flow

tracking system for realtime privacy monitoring on smartphones. TOCS, 32(2):5, 2014.

[47] Michael D Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart Pernsteiner, Franziska

Roesner, Karl Koscher, Paulo Barros Barros, Ravi Bhoraskar, Seungyeop Han, et al. Collabo-

rative verification of information flow for a high-assurance app store. In CCS, pages 1092–1104,

2014.

[48] Espresso. https://developer.android.com/training/testing/ui-testing/

espresso-testing.html, 2017.

[49] Facebook. Adding models, 2017.

[50] Manuel Fähndrich, Jeffrey S Foster, Zhendong Su, and Alexander Aiken. Partial online cycle

elimination in inclusion constraint graphs. In PLDI, pages 85–96, 1998.

[51] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy: Semantics-based detection

of android malware through static analysis. In FSE, pages 576–587, 2014.

[52] Yu Feng, Osbert Bastani, Ruben Martins, Isil Dillig, and Saswat Anand. Automated synthesis

of semantic malware signatures using maximum satisfiability. In NDSS, 2017.

BIBLIOGRAPHY 150

[53] John K Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure transformations

from input-output examples. In PLDI, pages 229–239, 2015.

[54] Justin E Forrester and Barton P Miller. An empirical study of the robustness of windows nt

applications using random testing. In WSS, pages 59–68, 2000.

[55] Adam P Fuchs, Avik Chaudhuri, and Jeffrey S Foster. Scandroid: Automated security certi-

fication of android. 2009.

[56] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-based directed whitebox fuzzing. In ICSE,

pages 474–484, 2009.

[57] Pranav Garg, Christof Löding, P Madhusudan, and Daniel Neider. Ice: A robust framework

for learning invariants. In CAV, pages 69–87, 2014.

[58] Dimitra Giannakopoulou, Zvonimir Rakamarić, and Vishwanath Raman. Symbolic learning

of component interfaces. In SAS, pages 248–264, 2012.

[59] GNU. Gnu bison. https://www.gnu.org/software/bison, 2014.

[60] GNU Grep. https://www.gnu.org/software/grep/manual, 2016.

[61] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-based whitebox fuzzing.

In PLDI, pages 206–215, 2008.

[62] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated random testing.

In PLDI, pages 213–223, 2005.

[63] Patrice Godefroid, Michael Y. Levin, and David Molnar. Sage: Whitebox fuzzing for security

testing. CACM, 55(3):40–44, 2012.

[64] Patrice Godefroid, Michael Y Levin, and David A Molnar. Automated whitebox fuzz testing.

In NDSS, pages 151–166, 2008.

[65] Patrice Godefroid, Aditya V Nori, Sriram K Rajamani, and Sai Deep Tetali. Compositional

may-must program analysis: unleashing the power of alternation. In POPL, pages 43–56, 2010.

[66] E Mark Gold. Language identification in the limit. Information and control, 10(5):447–474,

1967.

[67] David Greenfieldboyce and Jeffrey S Foster. Type qualifier inference for java. In OOPSLA,

pages 321–336, 2007.

[68] Sumit Gulwani. Automating string processing in spreadsheets using input-output examples.

In POPL, pages 317–330, 2011.

BIBLIOGRAPHY 151

[69] Ben Hardekopf and Calvin Lin. The ant and the grasshopper: fast and accurate pointer

analysis for millions of lines of code. In PLDI, pages 290–299, 2007.

[70] William R. Harris and Sumit Gulwani. Spreadsheet table transformations from examples. In

PLDI, pages 317–328, 2011.

[71] Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using cla: A million lines of c

code in a second. In PLDI, pages 254–263, 2001.

[72] Fritz Henglein. Global tagging optimization by type inference. In LFP, pages 205–215, 1992.

[73] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. Stratified synthesis: automati-

cally learning the x86-64 instruction set. In PLDI, pages 237–250, 2016.

[74] Stefan Heule, Manu Sridharan, and Satish Chandra. Mimic: Computing models for opaque

code. In FSE, pages 710–720, 2015.

[75] Christian Holler, Kim Herzig, and Andreas Zeller. Fuzzing with code fragments. In USENIX

Security, pages 445–458, 2012.

[76] Matthias Höschele and Andreas Zeller. Mining input grammars from dynamic taints. In ASE,

pages 720–725, 2016.

[77] Ling Huang, Jinzhu Jia, Bin Yu, Byung-Gon Chun, Petros Maniatis, and Mayur Naik. Pre-

dicting execution time of computer programs using sparse polynomial regression. In NIPS,

pages 883–891, 2010.

[78] Hiroki Ishizaka. Polynomial time learnability of simple deterministic languages. Machine

Learning, 5(2):151–164, 1990.

[79] Jinseong Jeon, Xiaokang Qiu, Jonathan Fetter-Degges, Jeffrey S Foster, and Armando Solar-

Lezama. Synthesizing framework models for symbolic execution. In ICSE, pages 156–167,

2016.

[80] Dave King, Boniface Hicks, Michael Hicks, and Trent Jaeger. Implicit flows: Cant live with

em, cant live without em. In ICISS, pages 56–70, 2008.

[81] Bruce Knobe and Kathleen Knobe. A method for inferring context-free grammars. Information

and Control, 31(2):129–146, 1976.

[82] Donald E Knuth. A generalization of dijkstra’s algorithm. Information Processing Letters,

6(1):1–5, 1977.

[83] John Kodumal and Alex Aiken. The set constraint/cfl reachability connection in practice. In

PLDI, pages 207–218, 2004.

BIBLIOGRAPHY 152

[84] John Kodumal and Alex Aiken. Regularly annotated set constraints. In PLDI, pages 331–341,

2007.

[85] John Kodumal and Alexander Aiken. Banshee: A scalable constraint-based analysis toolkit.

In SAS, pages 218–234, 2005.

[86] Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng, and Dawson Engler. From uncer-

tainty to belief: Inferring the specification within. In OSDI, pages 161–176, 2006.

[87] Lillian Lee. Learning of context-free languages: A survey of the literature. Technical Report

TR-12-96, Harvard University, 1996.

[88] Alan Leung, John Sarracino, and Sorin Lerner. Interactive parser synthesis by example. In

PLDI, pages 565–574, 2015.

[89] Yue Li, Tian Tan, and Jingling Xue. Effective soundness-guided reflection analysis. In SAS,

pages 162–180, 2015.

[90] Percy Liang and Mayur Naik. Scaling abstraction refinement via pruning. In PLDI, pages

590–601, 2011.

[91] Zhiqiang Lin and Xiangyu Zhang. Deriving input syntactic structure from execution. In FSE,

pages 83–93, 2008.

[92] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Reverse engineering input syntactic structure

from program execution and its applications. IEEE Transactions on Software Engineering,

36(5):688–703, 2010.

[93] Christian Lindig. Random testing of c calling conventions. In AADEBUG, pages 3–12, 2005.

[94] Benjamin Livshits and Stephen Chong. Towards fully automatic placement of security sani-

tizers and declassifiers. In POPL, pages 385–398, 2013.

[95] Benjamin Livshits, Aditya V Nori, Sriram K Rajamani, and Anindya Banerjee. Merlin: spec-

ification inference for explicit information flow problems. In PLDI, pages 75–86, 2009.

[96] V Benjamin Livshits and Monica S Lam. Finding security vulnerabilities in java applications

with static analysis. In USENIX Security, pages 18–18, 2005.

[97] Rupak Majumdar and Ru-Gang Xu. Directed test generation using symbolic grammars. In

ASE, pages 134–143, 2007.

[98] Ravi Mangal, Xin Zhang, Aditya V Nori, and Mayur Naik. A user-guided approach to program

analysis. In FSE, pages 462–473, 2015.

BIBLIOGRAPHY 153

[99] David Melski and Thomas Reps. Interconvertibility of a class of set constraints and context-

free-language reachability. TCS, 248(1):29–98, 2000.

[100] Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized object sensitivity for

points-to and side-effect analyses for java. In TOSEM, pages 1–11, 2002.

[101] Barton P Miller, Gregory Cooksey, and Fredrick Moore. An empirical study of the robustness

of macos applications using random testing. In RT, pages 46–54, 2006.

[102] Barton P Miller, Louis Fredriksen, and Bryan So. An empirical study of the reliability of unix

utilities. CACM, 33(12):32–44, 1990.

[103] Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for java. In PLDI,

pages 308–319, 2006.

[104] Mayur Naik, Hongseok Yang, Ghila Castelnuovo, and Mooly Sagiv. Abstractions from tests.

In POPL, pages 373–386, 2012.

[105] George C Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley Weimer.

Ccured: Type-safe retrofitting of legacy software. TOPLAS, 27(3):477–526, 2005.

[106] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight dynamic

binary instrumentation. In PLDI, pages 89–100, 2007.

[107] Jeremy W Nimmer and Michael D Ernst. Automatic generation of program specifications. In

ISSTA, pages 229–239, 2002.

[108] Aditya V Nori and Rahul Sharma. Termination proofs from tests. In FSE, pages 246–256,

2013.

[109] Peter Norvig. http://norvig.com/lispy.html, 2010.

[110] José Oncina and Pedro Garćıa. Identifying regular languages in polynomial time. Advances

in Structural and Syntactic Pattern Recognition, 5(99-108):15–20, 1992.

[111] Oracle America, Inc. The JavaTMVirtual Machine Specification. 7 edition, July 2011.

[112] Saswat Padhi, Rahul Sharma, and Todd Millstein. Data-driven precondition inference with

learned features. In PLDI, pages 42–56, 2016.

[113] Daniel Perelman, Sumit Gulwani, Dan Grossman, and Peter Provost. Test-driven synthesis.

In PLDI, pages 408–418, 2014.

[114] Oleksandr Polozov and Sumit Gulwani. Flashmeta: A framework for inductive program syn-

thesis. In OOPSLA, pages 107–126, 2015.

BIBLIOGRAPHY 154

[115] Paul Purdom. A sentence generator for testing parsers. BIT Numerical Mathematics,

12(3):366–375, 1972.

[116] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. Static specification

inference using predicate mining. In PLDI, pages 123–134, 2007.

[117] Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting program properties from

big code. In POPL, pages 111–124, 2015.

[118] Thomas Reps. Program analysis via graph reachability. Information and software technology,

40(11):701–726, 1998.

[119] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow analysis via

graph reachability. In POPL, pages 49–61, 1995.

[120] Martin Rinard. Acceptability-oriented computing. In OOPLSA, pages 221–239, 2003.

[121] Martin C. Rinard. Living in the comfort zone. In OOPSLA, pages 611–622, 2007.

[122] Giovanni Russello, Arturo Blas Jimenez, Habib Naderi, and Wannes van der Mark. Firedroid:

Hardening security in almost-stock android. In ACSAC, pages 319–328, 2013.

[123] Andrei Sabelfeld and Andrew C Myers. Language-based information-flow security. IEEE

Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[124] Richard L Sauder. A general test data generator for cobol. In AIEE-IRE (Spring), pages

317–323, 1962.

[125] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing engine for c. In

FSE, pages 263–272, 2005.

[126] Rahul Sharma and Alex Aiken. From invariant checking to invariant inference using random-

ized search. In CAV, pages 88–105, 2014.

[127] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang, and Aditya V

Nori. A data driven approach for algebraic loop invariants. In ESOP, pages 574–592, 2013.

[128] Rahul Sharma, Aditya V Nori, and Alex Aiken. Interpolants as classifiers. In CAV, pages

71–87, 2012.

[129] Rahul Sharma, Eric Schkufza, Berkeley Churchill, and Alex Aiken. Data-driven equivalence

checking. In OOPSLA, pages 391–406, 2013.

[130] Olin Shivers. Control-flow analysis of higher-order languages. PhD thesis, Carnegie Mellon

University, 1991.

BIBLIOGRAPHY 155

[131] Sharon Shoham, Eran Yahav, Stephen J Fink, and Marco Pistoia. Static specification mining

using automata-based abstractions. IEEE Transactions on Software Engineering, 34(5):651–

666, 2008.

[132] Rishabh Singh and Sumit Gulwani. Synthesizing number transformations from input-output

examples. In CAV, pages 634–651, 2012.

[133] Yannis Smaragdakis, George Kastrinis, and George Balatsouras. Introspective analysis:

context-sensitivity, across the board. In PLDI, pages 485–495, 2014.

[134] Ray J Solomonoff. A new method for discovering the grammars of phrase structure languages.

In Information Processing, 1960.

[135] Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer Tripp, and Ryan Berg.

F4f: taint analysis of framework-based web applications. In OOPSLA, pages 1053–1068, 2011.

[136] Manu Sridharan and Rastislav Bod́ık. Refinement-based context-sensitive points-to analysis

for java. In PLDI, pages 387–400, 2006.

[137] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bod́ık. Demand-driven points-to

analysis for java. In OOPSLA, pages 59–76, 2005.

[138] Stack Overflow. http://stackoverflow.com/questions/3809401/

what-is-a-good-regular-expression-to-match-a-url, 2010.

[139] Andreas Stolcke. Bayesian learning of probabilistic language models. PhD thesis, University

of California, Berkeley, 1994.

[140] Andreas Stolcke and Stephen Omohundro. Inducing probabilistic grammars by bayesian model

merging. Grammatical inference and applications, pages 106–118, 1994.

[141] Zhendong Su, Manuel Fähndrich, and Alexander Aiken. Projection merging: Reducing redun-

dancies in inclusion constraint graphs. In POPL, pages 81–95, 2000.

[142] Zhendong Su and Gary Wassermann. The essence of command injection attacks in web appli-

cations. In POPL, pages 372–382, 2006.

[143] Michael Sutton and Adam Greene. The art of file format fuzzing. In Blackhat USA conference,

2005.

[144] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: brute force vulnerability discovery.

Pearson Education, 2007.

[145] The Flex Project. Flex: The fast lexical analyzer. http://flex.sourceforge.net, 2008.

BIBLIOGRAPHY 156

[146] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan, and Omri Weisman. Taj:

effective taint analysis of web applications. In PLDI, pages 87–97, 2009.

[147] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sun-

daresan. Soot-a java bytecode optimization framework. In CASCON, page 13, 1999.

[148] Abhay Vardhan, Koushik Sen, Mahesh Viswanathan, and Gul Agha. Learning to verify safety

properties. In ICFEM, pages 274–289, 2004.

[149] Joachim Viide, Aki Helin, Marko Laakso, Pekka Pietikäinen, Mika Seppänen, Kimmo Halunen,

Rauli Puuperä, and Juha Röning. Experiences with model inference assisted fuzzing. In

WOOT, 2008.

[150] W3C. https://www.w3.org/TR/2008/REC-xml-20081126, 2008.

[151] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. Taintscope: A checksum-aware directed

fuzzing tool for automatic software vulnerability detection. In IEEE Symposium on Security

and Privacy, pages 497–512, 2010.

[152] John Whaley and Monica S Lam. Cloning-based context-sensitive pointer alias analysis using

binary decision diagrams. In PLDI, pages 131–144, 2004.

[153] Robert P Wilson and Monica S Lam. Efficient context-sensitive pointer analysis for c programs.

In PLDI, pages 1–12, 1995.

[154] Gilbert Wondracek, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda, and Scuola

Superiore S Anna. Automatic network protocol analysis. In NDSS, volume 8, pages 1–14,

2008.

[155] Yichen Xie and Alex Aiken. Static detection of security vulnerabilities in scripting languages.

In USENIX Security, pages 179–192, 2006.

[156] Yichen Xie and Alex Aiken. Saturn: A scalable framework for error detection using boolean

satisfiability. TOPLAS, 29(3):16, 2007.

[157] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir Das. Perra-

cotta: mining temporal api rules from imperfect traces. In ICSE, pages 282–291, 2006.

[158] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs in c

compilers. In PLDI, pages 283–294, 2011.

[159] Michal Zalewski. American fuzzy lop. http://lcamtuf.coredump.cx/afl, 2015.

[160] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. On abstraction

refinement for program analyses in datalog. In PLDI, pages 239–248, 2014.

BIBLIOGRAPHY 157

[161] Haiyan Zhu, Thomas Dillig, and Isil Dillig. Automated inference of library specifications for

source-sink property verification. In APLAS, pages 290–306, 2013.

[162] He Zhu, Aditya V Nori, and Suresh Jagannathan. Learning refinement types. In ICFP, pages

400–411, 2015.

[163] He Zhu, Gustavo Petri, and Suresh Jagannathan. Automatically learning shape specifications.

In PLDI, pages 491–507, 2016.

