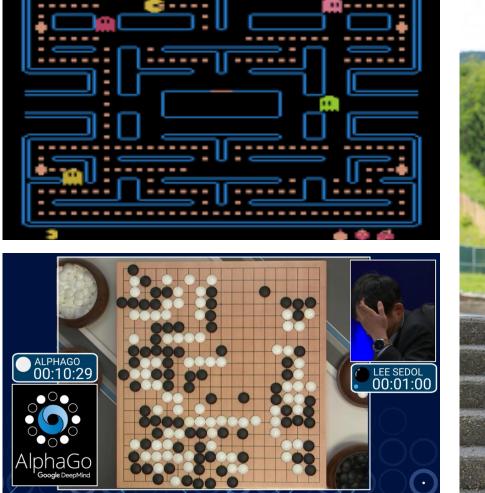
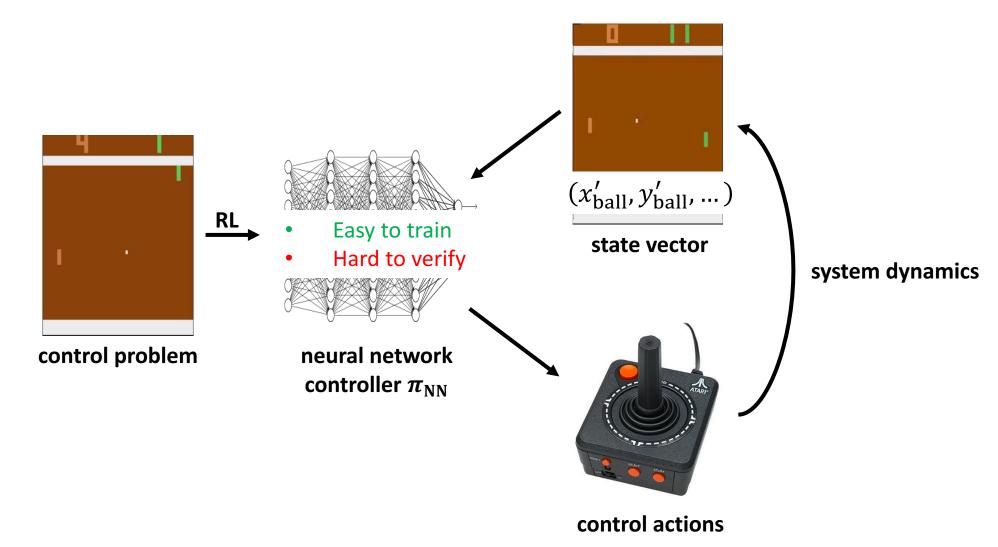
Verifiable Reinforcement Learning via Policy Extraction

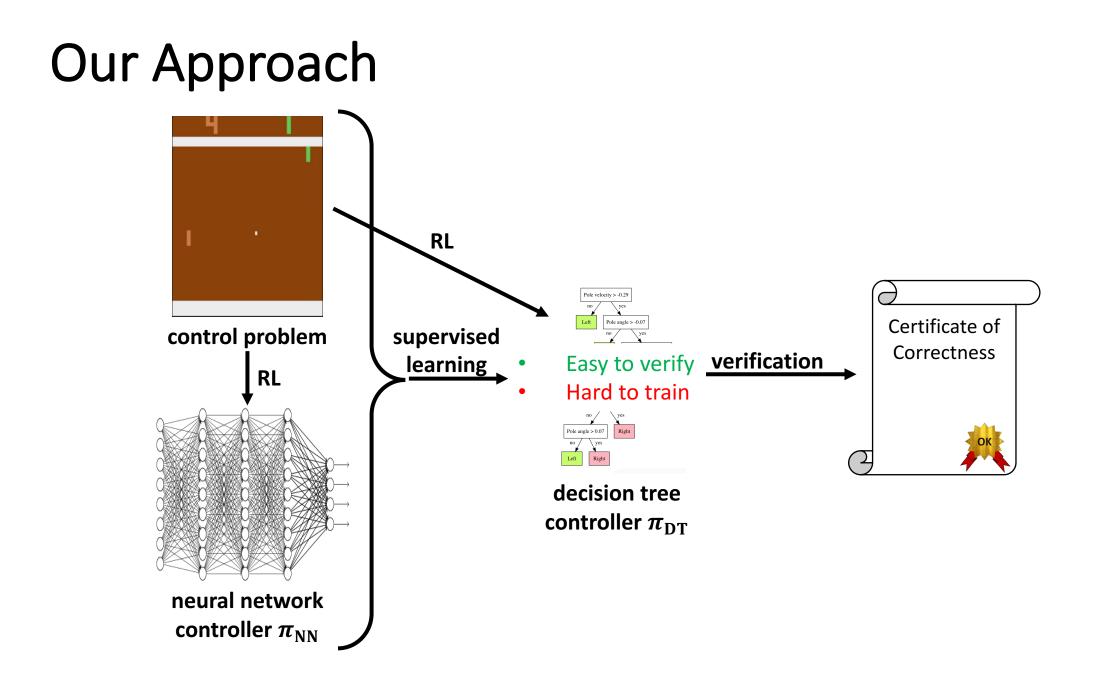
Osbert Bastani, Yewen Pu, Armando Solar-Lezama

Deep Reinforcement Learning



Deep Reinforcement Learning



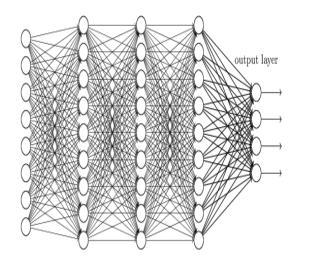


Background

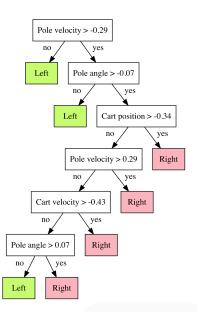
Demonstrations from Human Expert

Controller

Abbeel & Ng 2004

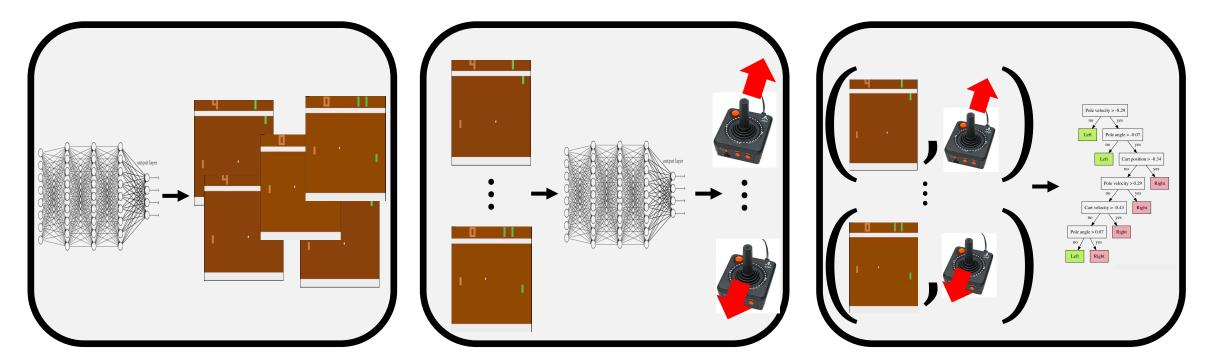


Demonstrations from Neural Network



Decision Tree Controller

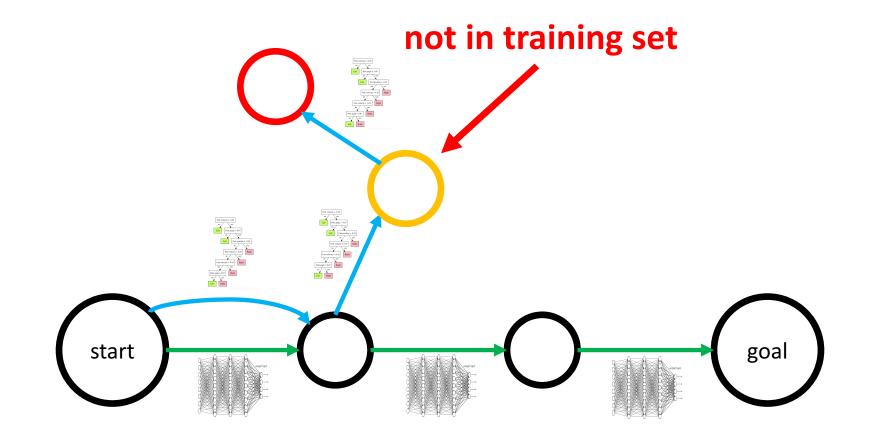
Abbeel & Ng 2004



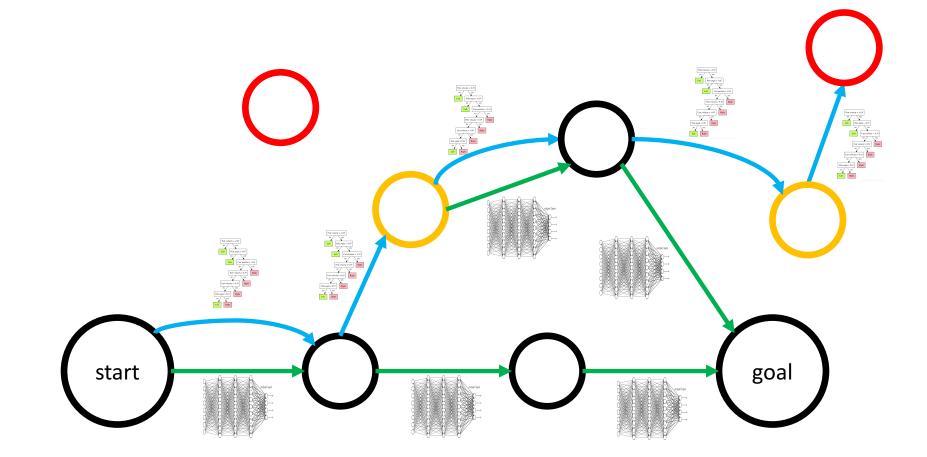
Step 1: Use NN to generate states

Step 2: Use NN to obtain actions

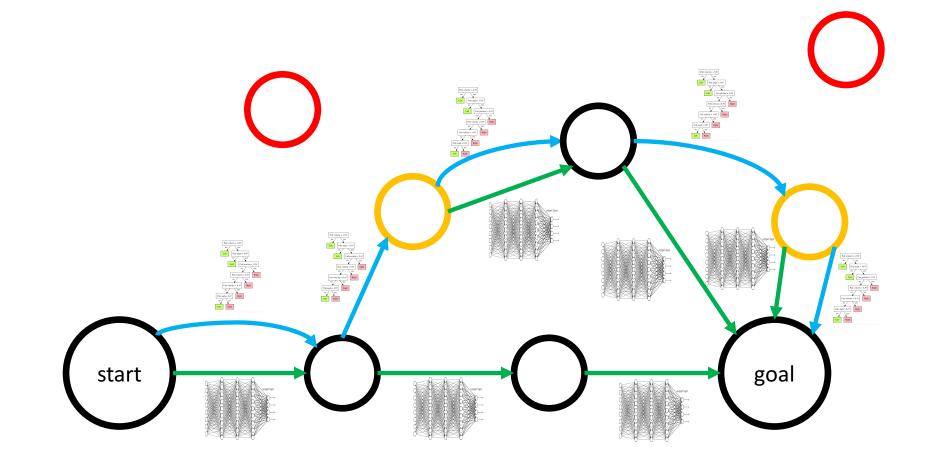
Step 3: Use supervised learning to train a decision tree



Dataset Aggregation (DAgger)

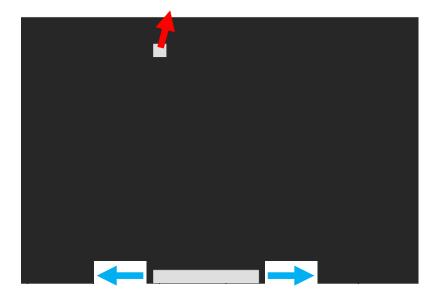


Dataset Aggregation (DAgger)

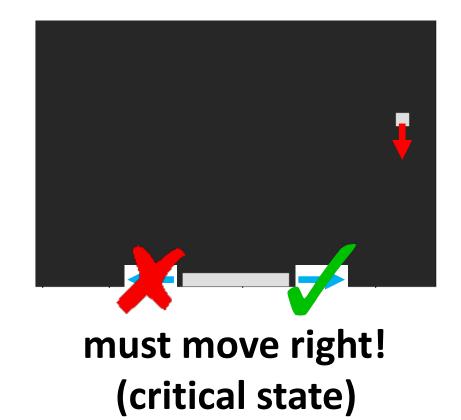


Viper Algorithm

Insight: Critical States



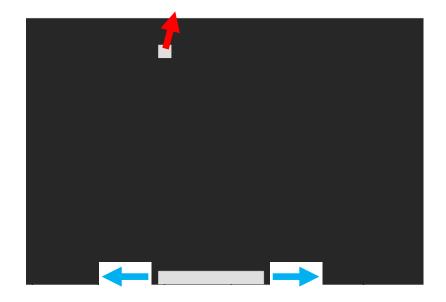
actions are similar (non-critical state)



Our Approach: Leverage the Q-Function

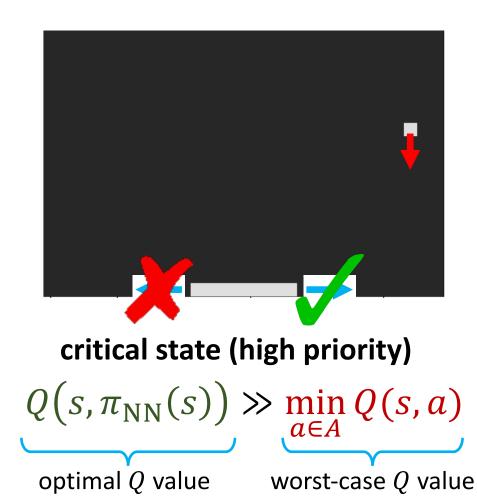
Q(s, a) = "how good is action a in state s?" $\in \mathbb{R}$

Our Approach: Leverage the Q-Function



non-critical state (low priority)

 $Q(s,\pi_{NN}(s)) \approx \min_{a \in A} Q(s,a)$ optimal Q value worst-case Q value



Viper Algorithm

• DAgger treats all state-action pairs equally:

$$\pi_{\mathrm{DT}} = \arg\min_{\pi} \sum_{s \in D} \mathbb{I}[\pi(s) = \pi_{\mathrm{NN}}(s)]$$

• Viper weights state-action pairs by the *Q*-function:

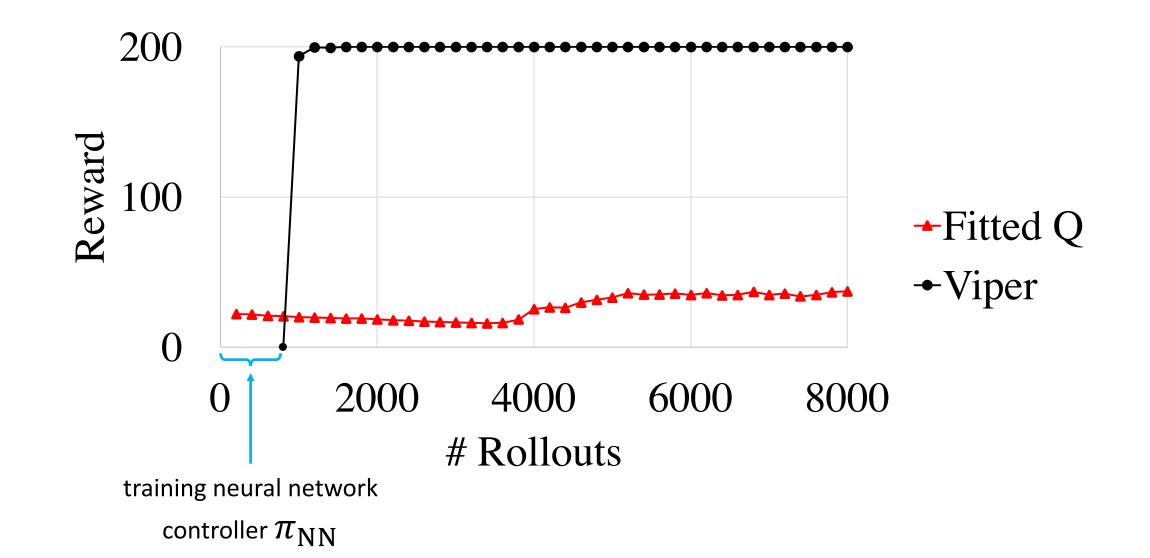
$$\pi_{\mathrm{DT}} = \arg\min_{\pi} \sum_{s \in D} \left(\underbrace{Q(s, \pi_{\mathrm{NN}}(s))}_{\text{optimal } Q \text{ value}} - \min_{a' \in A} Q(s, a') \right) \mathbb{I}[\pi(s) = \pi_{\mathrm{NN}}(s)]$$

Theoretical Guarantees

Theorem. For any $\delta > 0$, there exists a policy $\hat{\pi} \in {\{\hat{\pi}_1, ..., \hat{\pi}_N\}}$ such that $J(\hat{\pi}) \leq J(\pi^*) + T\epsilon_N + \tilde{O}(1)$ with probability at least $1 - \delta$, as long as $N = \tilde{\Theta}(\ell_{max}^2 T^2 \log(1/\delta))$.

Evaluation

vs. Decision Trees via RL (on Cart-Pole)



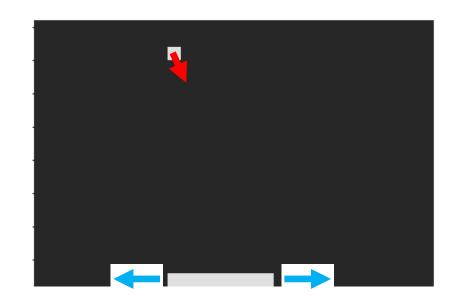
vs. to DAgger (on Atari Pong)

Verifying Correctness of a Toy Pong Controller

- Toy Pong
 - states = \mathbb{R}^5
 - actions = {left, right, stay}

Neural network:

- trained using policy gradients
- 600 neurons
- Decision tree:
 - extracted using Viper
 - 31 nodes



Verifying Correctness of a Toy Pong Controller

• Inductive invariant:

 $s(0) \in \text{blue} \Rightarrow s(t) \in \text{blue}$

- Verification algorithm
 - dynamics are piecewise linear
 - SMT formula over linear arithmetic
 - solved by Z3 in < 5 seconds
- Results:
 - error when ball starts on the right
 - fixed when paddle is slightly longer!

Conclusion

Verifiability is critical to enabling application of deep reinforcement learning to safe-critical systems