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Background



Imitation Learning

Demonstrations from Human Expert Controller

Abbeel & Ng 2004



Imitation Learning
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Demonstrations from Neural Network

Abbeel & Ng 2004
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Imitation Learning

Step 1: Use NN to generate states Step 2: Use NN to obtain actions Step 3: Use supervised learning
to train a decision tree

Ross & Bagnell 2011



Imitation Learning
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Dataset Aggregation (DAgger)

Ross & Bagnell 2011



Dataset Aggregation (DAgger)

Ross & Bagnell 2011



Viper Algorithm



Insight: Critical States

- —

—

actions are similar must move right!
(non-critical state) (critical state)



Our Approach: Leverage the Q-Function

0(s,a) = “how good is action a in state s?” € R



Our Approach: Leverage the Q-Function
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Viper Algorithm
* DAgger treats all state-action pairs equally:

Tpr = arg mninz [[7(s) = mnn(s)]

SED

* Viper weights state-action pairs by the Q-function:

mpr = argmin » (Q(s,mun () — min Q(s,@) ) 1[re(s) = myn (5)]
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Theoretical Guarantees

Theorem. For any § > 0, there exists a policy © € {71, ..., TN} such that
J(#) < J(*) + Tex + O(1)
with probability at least 1 — 6, as long as N = ©(£2 T2 log(1/9)).



Evaluation



vs. Decision Trees via RL (on Cart-Pole)
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vs. to DAgger (on Atari Pong)
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Verifying Correctness of a Toy Pong Controller

* Toy Pong
e states = R®
* actions = {left, right, stay}

* Neural network:

 trained using policy gradients
* 600 neurons

 Decision tree:

» extracted using Viper
* 31 nodes



Verifying Correctness of a Toy Pong Controller

* Inductive invariant:

s(0) € blue = s(t) € blue

* Verification algorithm
* dynamics are piecewise linear
 SMT formula over linear arithmetic
e solved by Z3 in < 5 seconds

* Results:

* error when ball starts on the right
* fixed when paddle is slightly longer!




Conclusion

Verifiability is critical to enabling application of deep
reinforcement learning to safe-critical systems



