Verifiable Reinforcement Learning
via Policy Extraction

Osbert Bastani, Yewen Pu, Armando Solar-Lezama

Deep Reinforcement Learning

 LEESEDOL

- 00:01:00

Deep Reinforcement Learning

l(xlg)all' :Vt,)all')

state vector

system dynamics

W

O SRR XY
SHASN

Ay
N

control problem neural network
controller yy

control actions

Our Approach

control problem

RL

N
'é\ \

neural network
controller Ty /

RL

supervised

Iearning .

Pole velocity > -0.29

Easy to verify verification

Hard to train

decision tree
controller Tyt

(2
Certificate of
Correctness
>
(1

Background

Imitation Learning

Demonstrations from Human Expert Controller

Abbeel & Ng 2004

Imitation Learning

)
WA R
A 0NN

o

4
N

i ‘*{/&%\y/
/ .

, Y

W
\'§ ¥
W

Demonstrations from Neural Network

Abbeel & Ng 2004

Pole velocity > -0.29

no yes

Left

Pole angle > -0.07 ‘

nc/ \‘yes

Left

Cart position > -0.34 ‘

n(/ \‘yes

Right |

Pole velocity > 0.29 ‘

n(/ \(m

Right ‘

Cart velocity > -0.43 ‘

no yes

Pole angle > 0.07 ‘

Right |

Decision Tree Controller

Imitation Learning

Step 1: Use NN to generate states Step 2: Use NN to obtain actions Step 3: Use supervised learning
to train a decision tree

Ross & Bagnell 2011

Imitation Learning

not in training set

goal

Ross & Bagnell 2011

Dataset Aggregation (DAgger)

Ross & Bagnell 2011

Dataset Aggregation (DAgger)

Ross & Bagnell 2011

Viper Algorithm

Insight: Critical States

- —

—

actions are similar must move right!
(non-critical state) (critical state)

Our Approach: Leverage the Q-Function

0(s,a) = “how good is action a in state s?” € R

Our Approach: Leverage the Q-Function

<= = —
non-critical state (low priority) critical state (high priority)
Q(s, myn(s)) = min Q(s, a) Q(s, myn(s)) » min (s, a)
\ J \ J \ J J
Y Y Y Y

optimal Q value worst-case () value optimal Q value worst-case () value

Viper Algorithm
* DAgger treats all state-action pairs equally:

Tpr = arg mninz [[7(s) = mnn(s)]

SED

* Viper weights state-action pairs by the Q-function:

mpr = argmin » (Q(s,mun () — min Q(s,@)) 1[re(s) = myn (5)]

SED) \)
Y Y

optimal Q value worst-case Q value

Theoretical Guarantees

Theorem. For any § > 0, there exists a policy © € {71, ..., TN} such that
J(#) < J(*) + Tex + O(1)
with probability at least 1 — 6, as long as N = ©(£2 T2 log(1/9)).

Evaluation

vs. Decision Trees via RL (on Cart-Pole)

100

Reward

~Fitted Q

0

e

0 | 2000 4000 6000 8000
Rollouts

training neural network

controller TTNN

vs. to DAgger (on Atari Pong)

3000
2
< 4000
=I:Z|: +~DAgger
< Viper
0 e
0 10 20

Reward

Verifying Correctness of a Toy Pong Controller

* Toy Pong
e states = R®
* actions = {left, right, stay}

* Neural network:

 trained using policy gradients
* 600 neurons

 Decision tree:

» extracted using Viper
* 31 nodes

Verifying Correctness of a Toy Pong Controller

* Inductive invariant:

s(0) € blue = s(t) € blue

* Verification algorithm
* dynamics are piecewise linear
 SMT formula over linear arithmetic
e solved by Z3 in < 5 seconds

* Results:

* error when ball starts on the right
* fixed when paddle is slightly longer!

Conclusion

Verifiability is critical to enabling application of deep
reinforcement learning to safe-critical systems

